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Two-dimensional hydrodynamic simulation for synchronization in coupled density oscillators
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A density oscillator is a fluid system in which oscillatory flow occurs between different density fluids
through the pore connecting them. We investigate the synchronization in coupled density oscillators using
two-dimensional hydrodynamic simulation and analyze the stability of the synchronous state based on the phase
reduction theory. Our results show that the antiphase, three-phase, and 2-2 partial-in-phase synchronization
modes spontaneously appear as stable states in two, three, and four coupled oscillators, respectively. The phase
dynamics of coupled density oscillators is interpreted with their sufficiently large first Fourier components of the
phase coupling function.
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I. INTRODUCTION

Synchronization of coupled limit-cycle oscillators is ob-
served in various systems such as electrical, chemical, and
biological systems [1–3]. Synchronization among many oscil-
lators makes the oscillation more robust in some systems, for
example, an ensemble of pacemaker cells in a heart beating,
whereas it can be harmful in other systems, for example, an
ensemble of neurons in an epileptic seizure [3]. Therefore, it
is important to understand the mechanism of synchronization
and to control the synchronous behavior as needed. Many
efforts have been made to describe synchronization theoret-
ically. One of the well-known methods is a phase reduction
theory, which approximately describes the behavior of weakly
coupled oscillators using one variable (i.e., phase) for each
oscillator [2]. The phase coupling function characterizing the
interaction in coupled oscillators has been investigated for
various systems [4]. For fluid systems, for example, the os-
cillatory convection in a Hele-Shaw cell, flow around the
beating flagella, and the cylinder wake were studied, and
their synchronization under hydrodynamic interaction was
discussed with phase reduction [5–7]. The relation between
synchronization and energy efficiency in fluid systems was
also studied to understand how the emerging synchroniza-
tion mode is selected as an optimal state [8–10]. The energy
efficiency can be evaluated from some criteria with energy
dissipation, such as viscous dissipation and the amount of
fluid transport. The investigations of the phase dynamics and
energy efficiency will be effective for understanding the un-
derlying mechanism of synchronization phenomena in fluid
systems.

A density oscillator is a typical fluid system that exhibits
limit-cycle oscillations. It consists of the lower density fluid
in the outer container and the higher density fluid in the
inner container with a pore at the bottom. In appropriate
conditions for the fluid densities and the dimensions of the
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containers, the downward flow of the higher density fluid and
the upward flow of the lower density fluid through the pore
alternate periodically. This oscillatory phenomenon was first
reported by Martin in 1970 [11]. Subsequently, experimental
and theoretical studies on a density oscillator were reported
from various aspects, such as the mechanism of the oscillatory
flows [12–21], the bifurcation phenomena [18,22–24], and
the response to external force [25,26]. In coupled density
oscillators, which consist of multiple inner containers in a
common outer container, various synchronization modes are
observed depending on the coupling strength and detuning of
the intrinsic frequencies [14,19–21,27–30]. For almost equal
intrinsic frequencies, the two coupled oscillators exhibit the
antiphase synchronization mode [14,20,27,30], the three cou-
pled ones exhibit the three-phase synchronization mode (also
called the rotation mode) [14,20,29,30], and the four coupled
ones exhibit several synchronization modes depending on the
coupling strength [29,30] in experiments. Several theoretical
models for the oscillatory flows reproduced the synchroniza-
tion modes [14,19–21,30]. Horie et al. represented the time
variation of the water level using a combination of expo-
nential functions and investigated synchronization modes in
two, three, and four coupled oscillators with the phase model
[30]. They mainly focused on clustering states depending on
the parameters, and did not perform detailed analysis of the
stability for all the possible synchronization modes. In order to
understand the criteria for selection of the emerging synchro-
nization mode, we need to compare hydrodynamic behaviors
between stable and unstable synchronization modes, as well
as to analyze the stability of them.

In the present study, we investigate the hydrodynamic be-
havior and phase dynamics of coupled density oscillators.
We take the following three approaches. First, we perform
the two-dimensional hydrodynamic simulation for coupled
density oscillators consisting of two, three, and four inner
containers and observe the synchronization phenomena. The
time evolutions of the water levels and the phase differences
are calculated for stable and unstable synchronization modes.
Second, the phase response to the perturbation is measured by
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FIG. 1. Two-dimensional model of coupled density oscillators.
(a) Schematic drawing of coupled density oscillators consisting of n
inner containers. The red broken rectangles represent the calculation
areas. (b) Details of the calculation area. The hatched area shows the
bottom wall of the inner container.

the hydrodynamic simulation for a single density oscillator.
Based on the phase reduction theory, the dynamics of the
phase differences between coupled oscillators is analyzed.
Third, a linear stability analysis is applied for the fixed points
of the phase differences corresponding to stable and unsta-
ble synchronization modes. We evaluate the stabilities of the
fixed points generically with the Fourier components of the
phase coupling function. We finally discuss the criterion for
selection of the synchronization mode.

II. SIMULATION MODEL

We perform the two-dimensional hydrodynamic simula-
tion for coupled density oscillators consisting of n identical
inner containers (n = 1, 2, 3, 4). The simulation model is
extended from the model for a single density oscillator in-
troduced in our previous study [24]. Figure 1(a) shows the
schematic drawing of coupled density oscillators. The widths
of the inner and outer containers, din and dout, are fixed.
The calculation areas are fixed inside the fluid and separated
by the walls for each inner container. The calculations are
performed in respective areas. The n oscillators interact only
through the common pressure at the lower boundaries of the
calculation areas; this pressure corresponds to the water level
in the common outer container. Figure 1(b) shows the ith
calculation area (i = 1, 2, . . . , n). The width and length of the
pore through which the fluid passes are 2a and 2b, respec-
tively. The distance between the upper boundaries of the walls
and the calculation area is Hupper, and the distance between
the lower boundaries of the walls and the calculation area is
Hlower. The origin of the coordinates is set at the center of the
pore, and the calculation area is set as −din/2 � x � din/2,
−b − Hlower � y � b + Hupper. For the ith calculation area,
the Navier-Stokes equation

ρ (i)

[
∂v(i)

∂t
+ (v(i) · ∇ )v(i)

]
= −∇p(i) + μ∇2v(i) + ρ (i)g,

(1)

and the incompressible condition

∇ · v(i) = 0, (2)

are adopted, where ρ (i) = ρ (i)(x, y, t ) is the density, v(i) =
(v(i)

x (x, y, t ), v(i)
y (x, y, t )) is the velocity, p(i) = p(i)(x, y, t )

is the pressure, μ is the viscosity, and g = (0,−g) is
the acceleration of gravity. The normalized concentration
c(i) = c(i)(x, y, t ) is calculated using the advection-diffusion

equation

∂c(i)

∂t
+ ∇ · (c(i)v(i) ) = D∇2c(i), (3)

where D is the diffusion coefficient. We define the density ρ (i),
which depends on the concentration c(i), as

ρ (i) = ρlow + c(i)(ρhigh − ρlow), (4)

where ρhigh and ρlow are the densities of the higher and lower
density fluids, respectively. The water levels in the ith inner
container y(i)

in (t ) and the common outer container yout (t ) are as-
sociated with the pressures p(i)

upper (t ) and plower (t ) at the upper
and lower boundaries of the ith calculation area, respectively,
as

p(i)
upper (t ) = ρhighg

(
y(i)

in (t ) − b − Hupper
)
, (5a)

plower (t ) = ρlowg(yout (t ) + b + Hlower ), (5b)

where plower (t ) is common for all oscillators. The fluid den-
sities in the inner and outer containers should change with
oscillations, but the change is so small that they are assumed to
be constants ρhigh and ρlow in Eqs. (5a) and (5b), respectively.
The changes in the water levels are obtained from the amount
of fluid passing through the pore per unit time, Q(i)(t ), as

dy(i)
in

dt
= Q(i)

din
, (6a)

dyout

dt
= −

∑
i Q(i)

dout
, (6b)

Q(i)(t ) =
∫ a

−a
v(i)

y (x, b, t )dx. (6c)

The boundary conditions are set as follows. At the boundaries
on the walls, the velocity follows the nonslip boundary con-
dition as v(i) = 0, and the concentration follows the Neumann
boundary condition as ∇⊥c(i) = 0, where ∇⊥ denotes the spa-
tial derivative in the direction perpendicular to the boundary.
At the upper and lower boundaries inside the fluid, v(i) and c(i)

follow the Neumann boundary conditions as ∇⊥v(i) = 0 and
∇⊥c(i) = 0, respectively, and the pressure follows Eqs. (5a)
and (5b).

In the initial state, the higher and lower density fluids
are stationary (v(i) = 0) and are not mixed with each other
(c(i) = 0 at y < b and c(i) = 1 at y � b). The initial water
level in the outer container, yout (0) = yout,0, is fixed in all
simulations. For the single oscillator (n = 1), the initial water
level in the inner container is set from the balance with the
hydrostatic pressure by the outer container fluid as y(1)

in (0) =
b + (ρlow/ρhigh )(yout,0 − b). For the coupled oscillators (n �
2), the initial water levels in the inner containers, y(i)

in (0), are
varied as control parameters.

To numerically solve the Navier-Stokes equation with the
incompressible condition in Eqs. (1) and (2), the marker-
and-cell method was adopted [31,32], where the Poisson
equation obtained from the divergence of Eq. (1) was calcu-
lated for the pressure. We ignored the gradient of the density,
∇ρ (i), in the Poisson equation since it is sufficiently small.
The explicit method was adopted for the advection-diffusion
equation in Eq. (3). Each calculation area was divided into
200 × 240 meshes, and the spatial mesh size was set to
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dx = dy = 0.005. The time was evolved with the time step
dt = 0.0002. The parameters were set as follows: a = 0.03,
b = 0.05, din = 1, dout = 6, g = 10, μ = 1/300, D = 0.0001,
ρhigh = 1.2, ρlow = 1, Hupper = Hlower = 0.55, and yout,0 =
10.05.

III. SIMULATION RESULTS

We performed the hydrodynamic simulation for the cou-
pled density oscillators with identical intrinsic frequencies
and coupling strengths between oscillators for n = 2, 3, 4.

In the simulation for the two coupled oscillators (n = 2),
an upward flow and a downward flow alternately occurred
in each oscillator, and several periods later, the oscillations
of flows in both oscillators synchronized; when an upward
flow started in one oscillator, a downward flow started in the
other oscillator. The time series of y(1)

in and y(2)
in are shown

in Fig. 2(a-1). To describe the synchronization quantitatively,
we calculated the phase difference between two oscillators.
Here, a phase φ (0 � φ < 2π ) is defined in proportion to time;
φ = 0 corresponds to the time when an upward flow starts
and φ = 2π corresponds to when the next upward flow starts
[see Fig. 3(a)]. The phase difference between two oscillators
is represented as �φi j = φ j − φi, where φi is the phase of
the ith oscillator. The phase difference �φ12 converged to the
constant value �φ12 = π , i.e., the antiphase mode as shown
in Fig. 2(a-2).

We also realized the in-phase mode (�φ12 = 0), which has
not been observed in experiments, by setting the identical
initial conditions for two oscillators. Due to the symmet-
ric procedure in the numerical calculation, the initial phase
difference �φ12 = 0 was kept, even if it was unstable. The
symmetry of the initial conditions was controlled by the water
levels: the antiphase mode appeared from y(1)

in (0) �= y(2)
in (0),

and the in-phase mode appeared from y(1)
in (0) = y(2)

in (0).
Three coupled oscillators (n = 3) converged to the three-

phase mode with the equivalent phase differences 2π/3 as
shown in Fig. 2(c). By controlling the symmetry of the initial
conditions for a part or all of the oscillators, we realized the
partial-in-phase mode from y(1)

in (0) = y(2)
in (0) �= y(3)

in (0) and the
all-in-phase mode from y(1)

in (0) = y(2)
in (0) = y(3)

in (0) as shown
in Figs. 2(d) and 2(e), respectively.

Four coupled oscillators (n = 4) converged to the 2-2
partial-in-phase mode, where two pairs of in-phase oscilla-
tors synchronized with the phase difference π as shown in
Fig. 2(f). It took a longer time to converge to the constant
phase differences compared with the antiphase mode (n = 2)
and the three-phase mode (n = 3). By controlling the symme-
try of the initial conditions for a part or all of the oscillators,
we realized the 2-2 partial-in-phase mode [Figs. 2(g) and
2(h)], the 3-1 partial-in-phase mode [Fig. 2(i)], and the all-
in-phase mode [Fig. 2(j)]. Here, the 3-1 partial-in-phase mode
consists of a set of three in-phase oscillators and an oscillator
with a different phase from the other three.

IV. ANALYSIS OF PHASE DYNAMICS

We analyzed the stabilities of the synchronization modes
from the viewpoint of phase dynamics. We first investigated
the single density oscillator subjected to a perturbation to

measure the phase response for the limit-cycle oscillation
(n = 1). Figure 3(a) shows the time series of the outer water
level yout without perturbation and the corresponding phase φ.
The perturbation of the outer water level �yout is introduced
at t = t0, and the time evolution of yout with the perturbation
is given instead of Eq. (6b) as

dyout

dt
= −Q(1)

dout
+ �youtδ(t − t0). (7)

The phase shift �φ is determined by subtracting the phase φ0

in the unperturbed system from the phase φ′ in the perturbed
system after sufficiently long time as

�φ = φ′ − φ0. (8)

In the simulation, the perturbation was introduced 15 periods
after the initial state, and the phase shift was measured 15 pe-
riods after the perturbation was introduced to ensure sufficient
relaxation. The phase response curve �φ = �φ(φ,�yout )
represents the phase shift as a function of the phase φ at which
the perturbation is introduced and the perturbation amplitude
�yout. For a sufficiently small perturbation, the phase response
curve is expected to be linear to the perturbation amplitude
�yout as

�φ(φ,�yout ) = �youtZ (φ), (9)

where Z (φ) is the phase sensitivity function. Figure 3(b)
shows the phase shift �φ plotted against the perturbation
amplitude �yout, and the linear region where Eq. (9) holds
was confirmed below �yout ∼ 0.0002. Then, we measured
the phase sensitivity function Z (φ) with the perturbation am-
plitude �yout = 0.0001 as shown in Fig. 3(c). The phase
sensitivity function Z (φ) is positive, and the phase is pre-
ceded at 0 � φ � π/3, 4π/3 � φ � 2π . In contrast, Z (φ) is
negative, and the phase is delayed at π/3 � φ � 4π/3. These
behaviors could be interpreted as follows. Due to an increase
in the outer water level by the perturbation, the upward or
downward flow ran out earlier for Z (φ) > 0, whereas it kept
longer for Z (φ) < 0, compared to those without the pertur-
bation. The change in the sign of Z (φ) might be associated
with the acceleration of the outer water level d2yout/dt2 (=
ωdf (φ)/dφ) [see Fig. 3(d)]. An increase in the outer water
level by the perturbation can precede the phase if the upward
flow is getting strong or the downward flow is getting weak.
In contrast, it can delay the phase if the upward flow is getting
weak or the downward flow is getting strong.

The phase dynamics of n weakly coupled identical oscil-
lators can be analyzed from the phase response of a single
oscillator under the small perturbation based on the phase
reduction theory [2]. The dynamics of the ith oscillator under
the small perturbation from other oscillators is described as

dφi

dt
= ω + Z (φi )

∑
j �=i

f (φ j ), (10)

where ω is the intrinsic frequency of the limit-cycle oscilla-
tion, and f (φi ) = −Q(1)(φi )/dout is the periodic perturbation
by the ith oscillator to yout as shown in Fig. 3(d). The peri-
odic time series of Q(1) was obtained from the time series
15 periods after the initial state for n = 1. Equation (10) is
approximated by taking the time average of the second term
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FIG. 2. Synchronization in coupled density oscillators. [(a), (b)] n = 2, [(c)–(e)] n = 3, and [(f)–(j)] n = 4. [(a-1)–(j-1)] Time series of
y(i)

in − ȳ(i)
in , where ȳ(i)

in is the time average of y(i)
in . The grey bold solid, red narrow solid, green bold dashed, and blue narrow dashed lines represent

i = 1, 2, 3, and 4, respectively. The symmetry of the initial water level y(i)
in (0) is shown above each panel. [(a-2)–(j-2)] Corresponding phase

differences �φi j = φ j − φi. The red circles, green crosses, and blue triangles represent �φ12, �φ13, and �φ14, respectively.

on the right-hand side over a period as

dφi

dt
= ω +

∑
j �=i

	(�φi j ), (11)

where 	(φ) is the phase coupling function:

	(φ) = 1

2π

∫ 2π

0
Z (θ ) f (φ + θ )dθ. (12)
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FIG. 3. Phase description of a density oscillator. (a) Definition
of the phase φ. The black line shows the time series of yout − ȳout

scaled on the left axis, where ȳout is the time average of yout. The
red line shows the corresponding phase φ scaled on the right axis.
(b) Dependence of the phase shift �φ on the perturbation ampli-
tude �yout. The perturbation was introduced at φ = π in a cycle,
where the phase shift was sufficiently large. The slope of the line
was determined by the fitting from five points for �yout � 0.0001.
(c) Phase sensitivity function Z (φ) obtained from the perturbation
with �yout = 0.0001. (d) Periodic perturbation f (φ) to the water
level in the outer container. (e) Phase coupling function 	(φ). The
points represent the discrete data calculated from (c) and (d). The
line shows the fitting curve by the Fourier series up to sixth order.

Figure 3(e) shows the phase coupling function 	(φ) calcu-
lated from Z (φ) and f (φ) in Figs. 3(c) and 3(d), respectively.
	(φ) looks like a sinusoidal function although Z (φ) and f (φ)
seem to include higher harmonics. This reason is discussed in
detail in Appendix A. Here, we consider the Fourier series

	(φ) = a0

2
+

∞∑
k=1

(ak cos(kφ) + bk sin(kφ)), (13)

where ak and bk are the Fourier cosine and sine coefficients
of 	(φ), respectively. The coefficients ak and bk for k � 6
calculated from the discrete points in Fig. 3(e) are shown
in Fig. 4. For the following calculation including 	(φ), we
use the Fourier series expanded up to sixth order. The phase
coupling function represented by the Fourier series is also
shown with a line in Fig. 3(e), which well fits the discrete
points.

FIG. 4. Fourier components of 	(φ) shown in Fig. 3(e).
(a) Fourier cosine coefficient ak . (b) Fourier sine coefficient bk . The
signs of ak and bk are represented by solid circles (positive) and open
circles (negative).

The dynamics of the phase difference �φ12 in two coupled
oscillators is derived as

d�φ12

dt
= 	(−�φ12) − 	(�φ12). (14)

The time derivative of �φ12 is expressed as a function of
�φ12, and the phase portrait is obtained as shown in Fig. 5.
The fixed points, where d�φ12/dt = 0 holds, are �φ12 = 0
and π . The derivative d�φ12/dt is positive at 0 < �φ12 < π

and negative at π < �φ12 < 2π . Therefore, the antiphase
mode corresponding to �φ12 = π is stable, whereas the in-
phase mode corresponding to �φ12 = 0 is unstable.

The dynamics of the phase differences �φ12 and �φ13 in
three coupled oscillators are derived as

d�φ12

dt
= 	(−�φ12) + 	(�φ13 − �φ12)

−	(�φ12) − 	(�φ13), (15a)

d�φ13

dt
= 	(−�φ13) + 	(�φ12 − �φ13)

−	(�φ12) − 	(�φ13). (15b)

The stabilities of the phase differences are visualized
on the vector field in the (�φ12,�φ13) plane as shown
in Fig. 6. There are three synchronization modes sat-
isfying d�φ12/dt = d�φ13/dt = 0: (i) the all-in-phase
mode for (�φ12,�φ13) = (0, 0), which is an unstable star

FIG. 5. Phase portrait in the (�φ12, d�φ12/dt) plane for two
coupled oscillators. It indicates that the antiphase mode for �φ12 =
π is stable, whereas the in-phase mode for �φ12 = 0 is unstable.
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FIG. 6. Vector field of (d�φ12/dt, d�φ13/dt) in the
(�φ12, �φ13) plane for three coupled oscillators. The unstable
star nodes (square), the unstable saddle points (diamond), and the
stable spirals (circle) represent the all-in-phase, partial-in-phase,
and three-phase modes, respectively. The phase velocity√

(d�φ12/dt )2 + (d�φ13/dt )2 in the (�φ12, �φ13) plane is
shown as a color gradient.

node; (ii) the partial-in-phase mode for (�φ12,�φ13) =
(α, 0), (0, α), (2π − α, 2π − α), which are unstable saddle
points; and (iii) the three-phase mode for (�φ12,�φ13) =
(2π/3, 4π/3), (4π/3, 2π/3), which are stable spirals. Here,
α satisfies 	(α) = 2	(−α) − 	(0) and 0 < α < 2π .

The dynamics of the phase differences �φ12, �φ13, and
�φ14 in four coupled oscillators are derived as

d�φ12

dt
= 	(−�φ12)+ 	(�φ13 − �φ12)+	(�φ14 − �φ12)

−	(�φ12) − 	(�φ13) − 	(�φ14), (16a)

d�φ13

dt
= 	(−�φ13)+ 	(�φ12− �φ13) + 	(�φ14 − �φ13)

−	(�φ12) − 	(�φ13) − 	(�φ14), (16b)

d�φ14

dt
= 	(−�φ14)+	(�φ12 − �φ14)+	(�φ13 − �φ14)

−	(�φ12) − 	(�φ13) − 	(�φ14). (16c)

There are four synchronization modes satisfy-
ing d�φ12/dt = d�φ13/dt = d�φ14/dt = 0: (i)
the all-in-phase mode for (�φ12,�φ13,�φ14) =
(0, 0, 0), (ii) the 3-1 partial-in-phase mode for
(�φ12,�φ13,�φ14) = (β, 0, 0), (0, β, 0), (0, 0, β ), (2π −
β, 2π − β, 2π − β ), (iii) the 2-2 partial-in-phase mode
for (�φ12,�φ13,�φ14) = (0, π, π ), (π, 0, π ), (π, π, 0),
and (iv) the four-phase mode for (�φ12,�φ13,�φ14) =
(π/2, π, 3π/2), (π/2, 3π/2, π ), (π, π/2, 3π/2), (π, 3π/2,

π/2), (3π/2, π/2, π ), (3π/2, π, π/2). Here, β satisfies
	(β ) = 3	(−β ) − 2	(0) and 0 < β < 2π . Instead of
visualizing the three-dimensional dynamics of the phase
differences, we investigate the time variation of the phase
differences from arbitrary initial states. Equations (16a)–(16c)
were discretized with the Euler method, and the time

FIG. 7. Behavior of the phase differences �φ12, �φ13, and �φ14

in four coupled oscillators. (a) Time series of the phase differences
from the initial state (�φ12, �φ13, �φ14) = (π/3, 7π/6, 8π/5).
(b) Magnified image for 0 � t � 50 in (a). (c) �φ13 and �φ24 during
the same time range as in (b). The red, green, blue, and magenta lines
represent �φ12, �φ13, �φ14, and �φ24, respectively. (d) Phase por-
trait in the (�φ12, d�φ12/dt) plane for the four coupled oscillators
with two antiphase pairs (�φ12,�φ13, �φ14) = (�φ12, π,�φ12 +
π ). It indicates that the 2-2 partial-in-phase mode for �φ12 = 0 and
π is stable, whereas the four-phase mode for �φ12 = π/2 and 3π/2
is unstable.

evolutions of �φ12, �φ13, and �φ14 were calculated with
the time step dt = 0.01. The numerical calculation indicated
that the system converged to the 2-2 partial-in-phase mode
as shown in Fig. 7(a), where the magnified image around
the initial state is shown in Fig. 7(b). Figure 7(c) shows
the phase differences �φ13 and �φ24 during the same
time range as in (b). Two antiphase pairs were rapidly
formed in the time scale of t ∼ 101, whereas the system
converged to the 2-2 partial-in-phase mode in the time scale
of t ∼ 104. Thus we consider the phase dynamics of the two
antiphase pairs (�φ12,�φ13,�φ14) = (�φ12, π,�φ12 + π ).
Equations (16a)–(16c) are reduced to

d�φ12

dt
= 	(−�φ12) − 	(�φ12)

+	(π − �φ12) − 	(�φ12 + π ), (17a)

d�φ13

dt
= d�φ24

dt
= 0. (17b)

The phase portrait in the (�φ12, d�φ12/dt) plane for the
four coupled oscillators with two antiphase pairs is shown in
Fig. 7(d). The fixed points, where d�φ12/dt = 0 holds, are
�φ12 = 0, π/2, π , and 3π/2. The derivative d�φ12/dt is
positive at π/2 < �φ12 < π, 3π/2 < �φ12 < 2π and nega-
tive at 0 < �φ12 < π/2, π < �φ12 < 3π/2. Therefore, the
2-2 partial-in-phase mode corresponding to �φ12 = 0 and
π is stable, whereas the four-phase mode corresponding to
�φ12 = π/2 and 3π/2 is unstable.
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TABLE I. Period and amplitude of the oscillation in synchronization. The first, second, third, fourth, fifth, and sixth columns show the
number of coupled oscillators, the synchronization mode, the period obtained from the simulation, the period estimated by Eq. (18) with T0

and 	(φ) obtained from the simulation, the sign of
∑

j �=i 	(�φi j ), and the amplitude obtained from the simulation, respectively.

Number of Synchronization Period by Estimated Sign of Amplitude
oscillators mode simulation period

∑
j �=i 	(�φi j ) by simulation

1 13.2 0.0104
2 antiphase 14.4 13.9 negative 0.0112
2 in-phase 12.5 12.5 positive 0.0096
3 three-phase 15.3 14.3 negative 0.0111
3 partial-in-phase 14.1 13.7 negative 0.0102 (i = 1, 2), 0.0121 (i = 3)
3 all-in-phase 12.1 12.0 positive 0.0089
4 2-2 partial-in-phasea 14.4 13.9 negative 0.0112
4 3-1 partial-in-phase 13.8 13.2 negative 0.0095 (i = 1, 2, 3), 0.0129 (i = 4)
4 all-in-phase 11.8 11.4 positive 0.0082

aAmong the three simulation results in Figs. 2(f)–2(h), the simulation result of Fig. 2(h) is adopted.

We compare the analysis of the phase dynamics with
the simulation results in Sec. III. The antiphase (n = 2),
three-phase (n = 3), and 2-2 partial-in-phase (n = 4) modes
obtained from the simulations with asymmetric initial con-
ditions were found to be stable, whereas the other modes
obtained from the simulations with symmetric initial condi-
tions for a part or all of the oscillators were found to be
unstable.

The difference in the period between different synchroniza-
tion modes in the simulation results can be explained based
on the phase reduction theory. Assuming the synchronization
with the constant period T and integrating the phase equa-
tion in Eq. (11) over T , we obtain

T = 1

1 +
∑

j �=i 	(�φi j )

2π
T0

T0, (18)

where T0 = 2π/ω is an intrinsic period. It is found that the
synchronization period T is longer or shorter than the intrinsic
period T0 for negative or positive

∑
j �=i 	(�φi j ), respectively.

The periods obtained from the simulation and those estimated
by Eq. (18) are shown in Table I. Simulation results indicate
that synchronization periods are longer or shorter than the
intrinsic period for

∑
j �=i 	(�φi j ) < 0 or

∑
j �=i 	(�φi j ) > 0,

respectively, which qualitatively agrees with the evaluation
by Eq. (18). The quantitative difference in periods between
the simulation and the estimation could be attributed to the
following two factors. The first is a slight difference in am-
plitudes of coupled oscillators from the single oscillator in
the simulation as shown in Table I. They are assumed to be
equal in the phase reduction theory. The second is the time
averaging from Eq. (10) to Eq. (11) in the phase reduction.

V. LINEAR STABILITY ANALYSIS

A linear stability analysis is applied to the fixed points of
the phase differences between coupled oscillators in Eqs. (14),
(15), and (16) for n = 2, 3, and 4, respectively. We describe
the stabilities of the fixed points generically with the Fourier
components ak and bk of the phase coupling function 	(φ) in
Eq. (13).

For the two coupled oscillators, we consider a fixed point
�φ∗

12 and the perturbation η12(t ) from a fixed point, which
is defined as η12(t ) = �φ12(t ) − �φ∗

12. The perturbation ap-
proximately follows

dη12

dt
= λη12, (19)

where λ is the derivative of the right-hand side in Eq. (14) with
respect to �φ12 at the fixed point �φ12 = �φ∗

12.
For the three coupled oscillators, we consider a fixed

point (�φ∗
12,�φ∗

13) and the perturbation (η12, η13) from a
fixed point, which is defined as (η12, η13) = (�φ12,�φ13) −
(�φ∗

12,�φ∗
13). The perturbation approximately follows

d

dt

(
η12

η13

)
= A

(
η12

η13

)
, (20)

where A is the Jacobian matrix of the right-hand
sides in Eqs. (15a) and (15b) at the fixed point
(�φ12,�φ13)=(�φ∗

12,�φ∗
13).

For the four coupled oscillators, we consider a fixed
point (�φ∗

12,�φ∗
13,�φ∗

14) and the perturbation (η12, η13, η14)
from a fixed point, which is defined as (η12, η13, η14) =
(�φ12,�φ13,�φ14) − (�φ∗

12,�φ∗
13,�φ∗

14). The perturbation
approximately follows

d

dt

⎛
⎝η12

η13

η14

⎞
⎠ = A

⎛
⎝η12

η13

η14

⎞
⎠, (21)

where A is the Jacobian matrix of the right-hand sides in
Eqs. (16a)–(16c) at the fixed point (�φ12,�φ13,�φ14) =
(�φ∗

12,�φ∗
13,�φ∗

14).
The stability of the fixed point can be evaluated from

the eigenvalues λ of the Jacobian matrix A, which indicate
the growth rates of the perturbation. In our simulation, the
first Fourier components a1 and b1 are much larger than
the higher-order components (k � 2) [see Fig. 4]. Thus a1

and b1 most contribute to the stability if they are included
in the real parts of the eigenvalues. Therefore, we discuss
the stability only with a1 and b1 in the eigenvalues. The
results of the linear stability analysis for various synchro-
nization modes are shown in Table II, where the eigenvalues,
the types of the fixed points, and the stabilities evaluated
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TABLE II. Linear stability analysis for the fixed point of the phase difference in coupled oscillators only with the first Fourier components
a1 and b1. The first, second, third, fourth, and fifth columns show the number of coupled oscillators, the synchronization mode, the eigenvalue
λ, the type of the fixed point, and the stability of the fixed point evaluated from the numerical result of a1 and b1, respectively.

Number of Synchronization Fixed point Linear
oscillators mode Eigenvalue type stability

2 antiphase 2b1 node stable
2 in-phase −2b1 node unstable

3 three-phase 3(b1 ± ia1)/2 spiral stable
3 partial-in-phase 3b1, −9b1(a2

1 + b2
1)/(a2

1 + 9b2
1) saddle unstable

3 all-in-phase −3b1 (duplicate) node unstable

4 four-phase 0,a 2(b1 ± ia1)
4 2-2 partial-in-phase 0a (duplicate), 4b1

4 3-1 partial-in-phase 4b1, −8b1(a2
1 + b2

1)/(a2
1 + 4b2

1) (duplicate) saddle unstable
4 all-in-phase −4b1 (triplicate) node unstable

aa1 or b1 is not included in the eigenvalue.

from the numerical result of a1 and b1 are indicated. We
obtained α = arctan(−6a1b1/(a2

1 − 9b2
1)) for the partial-in-

phase mode (n = 3) and β = arctan(−4a1b1/(a2
1 − 4b2

1)) for
the 3-1 partial-in-phase mode (n = 4) only with a1 and b1.
The results of the linear stability analysis suggest that if the
antiphase mode is stable in the two coupled oscillators (i.e.,
b1 is negative), the three-phase mode is also stable in the three
coupled oscillators as long as the first Fourier sine coefficient
b1 is sufficiently larger than the higher-order ones.

The eigenvalues are zero for the four-phase and 2-2
partial-in-phase modes for n = 4 due to the neglect of the
higher-order components. In this case, the higher-order com-
ponents should be considered to evaluate the stability. With
the numerical result of the Fourier components for k � 6,
it was found that the 2-2 partial-in-phase mode is stable,
whereas the four-phase mode is unstable. Here, the eigen-
values including the higher-order components are shown in
Appendix B. The results of the linear stability analysis are
consistent with the stabilities obtained in Sec. IV.

Okuda applied a linear stability analysis to the symmetric
cluster states with equivalent phase differences in globally
coupled oscillators, where the eigenvalue was described with
the Fourier components [33]. The symmetric cluster states,
where each cluster consists of an equal number of oscillators,
include the synchronization modes obtained in our study, ex-
cept for the partial-in-phase (n = 3) and 3-1 partial-in-phase
(n = 4) modes. The eigenvalues for the symmetric cluster
states obtained in our study correspond to those described by
Okuda.

VI. DISCUSSION

We compare our simulation results with experimental re-
sults reported in previous studies. In the experiments of
two coupled oscillators, the antiphase mode was observed
[14,20,27,30]. In the experiments of three coupled oscillators,
the three-phase mode was observed [14,20,29,30]. In our sim-
ulation, the antiphase and three-phase modes were obtained
for n = 2 and n = 3, respectively, which agreed with the
experimental observations. In the experiment of four coupled
oscillators, the four-phase mode was observed for the stronger
coupling, and the 2-2 partial-in-phase mode was observed

for the weaker coupling [29]. Since the weak coupling was
assumed in our study, our simulation for n = 4, where the 2-2
partial-in-phase mode appeared, agreed with this experimental
observation.

In addition to the 2-2 partial-in-phase mode, the 2-1-1
partial-in-phase mode was also observed for the weaker cou-
pling [30]. Here, the 2-1-1 partial-in-phase mode consists of
a pair of in-phase oscillators and the other two oscillators
with different phases. This mode did not appear within our
simulation and analysis based on the phase reduction theory.
In our study, we consider the interaction only through the
common pressure among coupled identical oscillators. In the
experiment, the hydrodynamic interaction could also work
between neighboring oscillators depending on the arrange-
ment of the inner containers. In addition, the oscillators in
the experimental system are not exactly identical due to the
experimental error or the external noise. These factors could
be related to the emergence of the 2-1-1 partial-in-phase mode
only in the experiment.

Regarding the relation between the intrinsic period and
the synchronization period in two coupled oscillators, it was
reported that the period in the antiphase mode was almost
twice the intrinsic period in the experiment [28]. It was also
reported that the period in the in-phase mode was shorter
than the intrinsic period and decreased with an increase in
the number of coupled oscillators in the numerical calculation
using the model with the ordinary differential equations [21].
Our simulation results and the evaluation by Eq. (18) qualita-
tively agreed with the results in these studies. To quantitatively
compare our simulation result with the experimental one, the
dependence of the synchronization period on the parameters
such as the intrinsic period or coupling strength needs to be
investigated, which is left as future work.

We finally discuss the change in the water level as the
criterion for selection of the synchronization mode. In the an-
tiphase (n = 2), three-phase (n = 3), and 2-2 partial-in-phase
(n = 4) modes, which are stable, the changes in yout are ex-
pected to be canceled out among the oscillators with different
phases. We confirm the correlation between the change in
yout and the stability of the synchronization modes obtained
in the simulation. Figure 8 shows the time series of yout in
Figs. 8(a-1)–8(c-1) and the total distances of the changes in
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FIG. 8. Comparison of the water level in the outer container
yout among the synchronization modes for (a) n = 2, (b) n = 3, and
(c) n = 4. [(a-1)–(c-1)] Time series of yout − ȳout, where ȳout is the
time average of yout. [(a-2)–(c-2)] Time series of the total distance
of the change in the water level l . Among the three simulation
results indicating the 2-2 partial-in-phase mode in Figs. 2(f)–2(h),
the simulation result of Fig. 2(h) is adopted.

the water levels l (t ) in Figs. 8(a-2)–8(c–2) for the n coupled
oscillators, where l (t ) is defined as

l (t ) =
∫ t

0

∣∣∑
i Q(i)(t ′)

∣∣
dout

dt ′. (22)

The slope of l was evaluated as the rate of the absolute change
in yout. For the two coupled oscillators (n = 2), the slope of
l in the antiphase mode, which was stable, was much smaller
than that in the in-phase mode, which was unstable, as shown
in Fig. 8(a-2). For the three coupled oscillators (n = 3), the
slope of l in the three-phase mode, which was stable, was
also smaller than those in the partial- and all-in-phase modes,
which were unstable, as shown in Fig. 8(b-2). For the four
coupled oscillators (n = 4), the slope of l in the 2-2 partial-in-
phase mode, which was stable, was also smaller than those in
the 3-1 partial- and all-in-phase modes, which were unstable,
as shown in Fig. 8(c-2). As a result, the simulation results
indicated that the slope of l in stable synchronization mode
was the smallest of the obtained synchronization modes for
all n. It is noted that, for n = 3, the slope of l in the partial-
in-phase mode was almost equal to that in the three-phase
mode [Fig. 8(b-2)], whereas the oscillatory amplitudes in
these modes were significantly different [Fig. 8(b-1)]. Thus,
another criterion that is related to the oscillatory amplitude

could be considered for the stable synchronization modes,
besides the small absolute changes in yout.

VII. CONCLUSION

We performed two-dimensional hydrodynamic simulation
for n coupled identical density oscillators (n = 1, 2, 3, 4). The
antiphase (n = 2), three-phase (n = 3), and 2-2 partial-in-
phase (n = 4) synchronization modes appeared, which agreed
with the experimental observation reported in previous stud-
ies. The all-in-phase and partial-in-phase modes were also
realized by setting the identical initial conditions. The stabil-
ities of the synchronization modes were analyzed based on
the phase reduction theory, where the phase response to the
perturbation was obtained from the simulation for a single
density oscillator. The antiphase (n = 2), three-phase (n = 3),
and 2-2 partial-in-phase (n = 4) modes were found to be sta-
ble, whereas the other modes were found to be unstable. The
linear stability analysis with the Fourier components of the
phase coupling function well reproduced these stabilities. We
numerically confirmed that the stable synchronization modes
indicated smaller absolute changes in the water levels in the
outer containers than unstable modes, which could be one of
the criteria for selection of the synchronization mode in the
coupled density oscillators.

Our simulation for coupled density oscillators is suitable to
investigate various synchronization phenomena by changing
the parameter or boundary condition. We expect that studies
on the hydrodynamic behavior and phase dynamics of coupled
density oscillators, including the present study, will contribute
to further understanding of the synchronization phenomena in
fluid systems.
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APPENDIX A: FOURIER COMPONENTS OF Z(φ) AND f (φ)

We examine the dominant Fourier components of Z (φ) and
f (φ) and how they relate to 	(φ). We consider the Fourier
series

Z (φ) = p0

2
+

∞∑
k=1

(pk cos(kφ) + qk sin(kφ)), (A1)

f (φ) = r0

2
+

∞∑
k=1

(rk cos(kφ) + sk sin(kφ)), (A2)

and compare the magnitudes of Fourier components for Z (φ)
and f (φ) in Fig. 9, which are calculated from the discrete
points in Figs. 3(c) and 3(d), respectively. It was found that the
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FIG. 9. Fourier components of Z (φ) and f (φ). (a) Fourier co-
sine coefficient pk of Z (φ). (b) Fourier sine coefficient qk of Z (φ).
(c) Fourier cosine coefficient rk of f (φ). (d) Fourier sine coefficient
sk of f (φ).

third (k = 3) Fourier components are the second largest. We
derive the Fourier cosine and sine coefficients of 	(φ), ak and
bk , respectively, using those of Z (φ) and f (φ) as a0 = p0r0/2,
ak = (pkrk + qksk )/2 (k � 1), and bk = (pksk − qkrk )/2 (k �
1) based on Eq. (12). The amplitudes of the kth harmonic
oscillations for k � 1, Zk , fk , and 	k , for Z (φ), f (φ), and
	(φ), respectively, are given as

Zk =
√

p2
k + q2

k , (A3)

fk =
√

r2
k + s2

k , (A4)

	k =
√

a2
k + b2

k = 1

2

√
(pkrk + qksk )2 + (pksk − qkrk )2

= Zk fk

2
. (A5)

The product of Zk and fk gives the scale of 	k by Eq. (A5).
The ratio of 	1 and 	3 estimated by the Fourier components
of Z (φ) and f (φ) in Fig. 9 is 	3/	1 = (Z3/Z1)( f3/ f1) ∼

10−1 × 10−1 = 10−2, which is so small that 	(φ) looks like a
sinusoidal function. Therefore, we obtained nearly sinusoidal
	(φ) from nonsinusoidal Z (φ) and f (φ).

APPENDIX B: EIGENVALUES FOR n = 4
IN A GENERAL CASE

We calculate the eigenvalues λ of the Jacobian matrix A
in Eq. (21) for the four-phase and 2-2 partial-in-phase modes
(n = 4) with all Fourier components ak and bk of 	(φ). The
eigenvalues for the four-phase mode are derived as

λ = 2

( ∞∑
k=1

Akbk ± i
∞∑

k=1

Bkak

)
, 8

∞∑
k=1

Ckbk, (B1)

where

Ak =

⎧⎪⎨
⎪⎩

k (k = 2m − 1)

0 (k = 4m − 2)

−2k (k = 4m),

m = 1, 2, . . . , (B2)

Bk =

⎧⎪⎨
⎪⎩

k (k = 4m − 3)

−k (k = 4m − 1)

0 (k = 2m),

m = 1, 2, . . . , (B3)

Ck =

⎧⎪⎨
⎪⎩

0 (k = 2m − 1)

k/2 (k = 4m − 2)

−k/2 (k = 4m),

m = 1, 2, . . . . (B4)

The eigenvalues for the 2-2 partial-in-phase mode are derived
as

λ = 4
∞∑

k=1

(−1)k+1kbk, −8
∞∑

k=1

Dkbk (duplicate), (B5)

where

Dk =
{

0 (k �= 2m)

k/2 (k = 2m),
m = 1, 2, . . . . (B6)

With the numerical result of bk for k � 6 shown in Fig. 4, the
real parts of the eigenvalues are calculated as Re(λ) = −1.3 ×
10−1, 1.2 × 10−4 for the four-phase mode and Re(λ) =
−2.7 × 10−1,−2.2 × 10−4 for the 2-2 partial-in-phase mode.
Therefore, the 2-2 partial-in-phase mode is stable, whereas the
four-phase mode is unstable.
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