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Dipole-conserving fluids serve as examples of kinematically constrained systems that can be understood on the
basis of symmetry. They are known to display various exotic features including glassylike dynamics, subdiffusive
transport, and immobile excitations’ dubbed fractons. Unfortunately, such systems have so far escaped a
complete macroscopic formulation as viscous fluids. In this work, we construct a consistent hydrodynamic
description for fluids invariant under translation, rotation, and dipole shift symmetry. We use symmetry principles
to formulate a thermodynamic theory for dipole-conserving systems at equilibrium and apply irreversible
thermodynamics in order to elucidate dissipative effects. Remarkably, we find that the inclusion of the energy
conservation not only renders the longitudinal modes diffusive rather than subdiffusive but also diffusion is
present even at the lowest order in the derivative expansion. This work paves the way towards an effective
description of many-body systems with constrained dynamics such as ensembles of topological defects, fracton
phases of matter, and certain models of glasses.
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I. INTRODUCTION

Over the years, hydrodynamics has evolved into a uni-
versal framework describing the long-wavelength dynamics
of many-body systems. It provides a systematic scheme for
the evolution of conserved charges, leading to an effective
description that is for the most part irrespective of the mi-
croscopic details. The structure of a hydrodynamic theory is
determined by the symmetries of the system at hand, once the
appropriate low-energy degrees of freedom have been identi-
fied and a finite set of phenomenological transport coefficients
introduced. This approach gives access to the low-energy
(long-wavelength) physics of complex many-body systems
that are often impossible to be understood from first princi-
ples. Over time, the hydrodynamic paradigm has proven to be
a robust tool in describing both classical and quantum liquids
[1–4]. Recent effort to apply the formalism of hydrodynamics
concentrates, among others, on systems with kinematic con-
straints. A variant of this problem is particularly important in
the field of amorphous solids or glasses [5].

Classical glasses refer to any noncrystalline solid that ex-
hibits a glass transition when heated towards the liquid state.
Models of classical glasses are largely stochastic lattice mod-
els with imposed kinetic constraints on the allowed transitions
between different configurations of the system, while pre-
serving equilibrium conditions. The glassy behavior of such
systems is visible in the equilibration timescales that grow
exponentially with system size. Unfortunately, the constrained
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models proposed to elucidate classical glasses are only subject
to numerical studies and have not been systematically ana-
lyzed in terms of the low-energy hydrodynamic theory.

Supercooled liquids are not the only physical systems with
glassy characteristics where kinematically constrained mod-
els appear. Such models emerge in many-body ensembles
of elastic defects [6–10], vortices in superfluids [11,12], or
dimer-plaquette models [13,14]. Several quantum systems,
such as lattice models [15–19], spin liquids [20–24], quantum
bosonic matter [25–30], and tilted optical lattices in external
magnetic fields [31,32] have also been shown to exhibit mo-
bility restrictions. In addition, kinematic constraints play an
important role in the novel fractonic phases of matter that are
yet to be realized [33]. A detailed understanding of the low-
energy dynamics is therefore crucial for future experimental
proposals and transport measurements.

Systems with mobility restrictions have inspired a vast
amount of work in theoretical physics, e.g., see Refs. [34,35]
and references therein. Recent developments have revealed
that theories conserving multipole moments of conserved
charges go beyond conventional field theories [36–39], requir-
ing a different approach for integrating high-energy modes
[40,41] and leading to new geometric structures that appear
when coupled to background geometries [42–44]. Conse-
quently, transport properties of kinematically constrained
many-body systems are fundamentally different from the-
ories without mobility restrictions. This is manifested in
the thermalization properties of systems with emergent
dipole-conservation that exhibit a characteristic subdiffusive
behavior [45–48]. Such systems have been studied both
experimentally [31,32] and numerically [45,46]. These de-
velopments have lead to theoretical progress aiming at a
consistent hydrodynamic theory of fluids with dipole moment
conservation, which is sometimes referred to as fracton hydro-
dynamics.
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First, the hydrodynamic theory for simple systems con-
serving charge and dipole, but not momentum, was proposed
[49]. Subsequently, ideal hydrodynamics for several classes
of kinematically constrained fluids with momentum conser-
vation was formulated [50]. Finally, dissipative effects for
fracton fluids without energy conservation were studied in
Ref. [51] and other works followed thereafter [52–55].

In addition to filling in some pedagogical gaps, we strive to
generalize previous work by providing a systematic treatment
of dissipative dipole-conserving fluids with both momentum
and energy conservation, using the method of irreversible
thermodynamics. Within our theory, momentum per particle
behaves as a Stückelberg field; therefore, in analogy with
the superfluid, we propose that constant gradients of such
a variable are allowed at thermodynamic equilibrium. In
fact, the conjugate variable to the gradient of momentum
is understood as the flux of dipoles. Our main results are
a set of dynamical equations for zeroth-order [Eqs. (27)]
and first-order [Eqs. (46)] linear hydrodynamics, respectively.
Contrary to the case of ideal ordinary fluids, the zeroth-order
equations of motion contain a dissipative transport coeffi-
cient interpreted as a thermal conductivity. On the other
hand, the first-order hydrodynamic equations contain 1 + 12
transport coefficients. Strikingly, the thermal conductivity α

modifies the structure of the hydrodynamic modes predicted
in Refs. [34,51], upgrading the longitudinal modes to an
ordinary diffusive form, ω|| ∼ −iαk2, while allowing for sub-
diffusion only in the shear sector ωshear ∼ −iηk4, where η is
the analog to the shear viscosity of the system. In addition,
for some regions in the parameter space, the soundlike modes
scale as ±k2 − ik2, whereas in the complementary regions
they scale as −ik2. Therefore, their propagation will be either
strongly attenuated or fully diffusive.

The paper is organized as follows. In Sec. II we introduce
the symmetries that characterize the kinematically constrained
fluids studied in this work. In Sec. III we propose a ther-
modynamic description compatible with the symmetries. In
Sec. IV the hydrodynamic expansion is systematically derived
on the basis of the entropy current formalism, the constitutive
relations are determined, and the hydrodynamic modes are
studied. Finally, in Sec. V we conclude with a brief discussion
and outlook.

II. SYMMETRIES

Let us start by introducing the set of symmetries underlying
our hydrodynamic construction of kinematically constraint
fluids.

To this end, we consider a many-body system enjoying a
simultaneous conservation of energy H, momentum Pi, U(1)
charge Q, dipole moment Di, and angular momentum Ji j .
In the long-wavelength regime, the conserved charges can be
expressed in terms of the local densities:

H =
∫

dd x ε, Pi =
∫

dd x pi,

Q =
∫

dd x n, Di =
∫

dd x xin,

Ji j =
∫

dd x (xi p j − x j pi ). (1)

Furthermore, we impose parity and time-reversal invariance.
The long-wavelength dynamics near thermodynamic equilib-
rium will be governed by the gapless degrees of freedom. Of
course, it is only the locally conserved densities that remain
relevant, as nonconserved quantities are expected to be fast-
relaxing. Therefore, the hydrodynamic equations will be the
local conservation laws:

∂t n + ∂i∂ jJ
i j = 0,

∂t pi + ∂ jT
ji = 0,

∂tε + ∂iJ
i
ε = 0. (2)

Note that neither dipole nor angular conservation lead to
additional hydrodynamic equations, since their conservation
follows from Eqs. (2), provided that the stress tensor T i j is
symmetric.

The set of transformations generating the conserved
charges form a Lie group with algebra1 as follows:

{Ji j,Jkl} = 2δi[kJl] j + 2δ j[lJk]i,

{Ji j,Pk} = 2δk[iP j],

{Ji j,Dk} = 2δk[iD j],

{Di,P j} = δi jQ. (3)

Notice that the last bracket in Eq. (3) implies, that momentum
is not invariant under the transformation generated by Di. In
fact, it transforms as

δβPi = −β jQ. (4)

Consequently, the momentum density and the stress tensor
must transform under dipole shift in the following manner:

δβ pi = −nβi, δβT i j = ∂kJi jβk − ∂kJk jβi − ∂kJkiβ j . (5)

This transformation property was also obtained in Ref. [44]
by placing the system in curved space and coupling it to
Aristotelian background sources as well as appropriate
gauge fields. As we see in the following sections, these
unusual transformation properties lead to a number of exotic
features in the hydrodynamics (and thermodynamics) of
dipole-conserving fluids.

Finally, we note that the algebra in Eqs. (3) is incom-
patible with boost symmetry (Galilean or Lorentz). In fact,
non-boost-invariant fluids without dipole symmetry have been
recently subjected to intensive theoretical analysis [56–60].

III. THERMODYNAMICS AND DIPOLE CONSERVATION

Thermodynamics of dipole-conserving systems cannot be
captured by the standard textbook treatment. It requires a
modified approach that systematically incorporates kinematic
constraints arising from the dipole conservation. In this sec-
tion, we construct a consistent thermodynamic theory with
dipole conservation built into it.

1Throughout the paper we use squared brackets to refer to anti-
symmetrization of indices, e.g., A[i j] = 1/2(Ai j − Aji ), and to refer
to symmetrization we use parentheses, e.g., A(i j) = 1/2(Ai j + Aji ).
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A. Dipole-invariant equation of state

The internal energy density of a generic system in equi-
librium is a function of the entropy and conserved charge
densities, for example, ε ≡ ε(n, s, pi ). However, owing to
the noncommutative structure of the algebra (3), dipole-
conserving systems are not generic. In fact, the combination
pi/n has a shift symmetry under dipole transformations in
analogy to a Nambu-Goldstone mode; therefore, it could enter
via the invariant combination Vi j = ∂i(n−1 p j ). It is then nec-
essary to introduce a conjugate variable Fi j that, as we will
see, can be interpreted as a flux of dipoles. Thus, we infer that
different (constant) values of Vi j label distinct thermodynamic
states. For such systems, we postulate that the first law of
thermodynamics reads2

dε = T ds + μdn + Fi jdVi j . (6)

Besides rotational invariance, we have also assumed that mi-
croscopically the system preserves parity. After noticing that
under parity transformations V[i j] transforms as a pseudoscalar
and as a pseudovector in two and three dimensions, respec-
tively, we conclude the energy density must depend on the
symmetric part of Vi j only. The pressure of the system is then
defined via the standard thermodynamic relation

P = T s + μn − ε, dP = ndμ + sdT − Fi jdV(i j). (7)

From now on we refer to the symmetrized tensor as Vi j . In
our construction, we take n, ε, and pi as the hydrodynamic
variables. Therefore, we find it convenient to use the entropy
density as the thermodynamic potential. Within this picture,

ds = 1

T
dε − μ

T
dn − Fi j

T
dVi j, (8)

where we have defined the thermodynamic quantities

1

T
= ∂s

∂ε
,

μ

T
= − ∂s

∂n
,

Fi j

T
= − ∂s

∂Vi j
. (9)

The relation s ≡ s(ε, n,Vi j ) is then interpreted as the equa-
tion of state and the thermodynamic quantities are understood
as functions of the dipole-invariant variables (ε, n,Vi j ).

B. Thermodynamic relations

In the next section, we study linearized hydrodynamics
around the global equilibrium state (n = n0, ε = ε0, Vi j = 0).
Therefore, it is useful to introduce a set of thermodynamic
identities that will allow us to relate the variations of (ε, n,Vi j )
with their corresponding conjugate variables.

To do so, we first expand the entropy density function
around the equilibrium state up to the second order in fluc-
tuations:

s = s0 − μ0

T0
δn + 1

T0
δε + 1

2
snnδn2 + 1

2
sεεδε

2 + snεδεδn

− 1

2T0
f||δV 2

kk − 1

2T0
f⊥δV 2

〈i j〉, (10)

2Since we are allowing for gradients of conserved quantities in the
equilibrium state, we could think of this formulation as describing a
hydrostatic regime.

where s0 is the entropy evaluated at the equilibrium state,
and the traceless symmetrization is defined as A〈i j〉 = 1

2 (Ai j +
Aji − 2

d Akkδi j ) with Akk = δikAik denoting the trace. Thermo-
dynamic stability imposes the constraints

f||, f⊥ � 0, sεε, snn < 0, s2
nε − snnsεε � 0. (11)

Therefore, the variations of the thermodynamic quantities in
Eq. (9) can be expressed as

δ
1

T
= sεεδε + sεnδn,

δ
μ

T
= −snεδε − snnδn,

δFi j = f||δVkkδi j + f⊥δV〈i j〉. (12)

Finally, after using Eqs. (12) and (7), we write the variation of
the pressure with respect to the thermodynamic variable as

δP = −T0(Pεδε + Pnδn), (13)

where we have defined

Pε = n0snε + (P0 + ε0)sεε,

Pn = n0snn + (P0 + ε0)snε . (14)

IV. DIPOLE-CONSERVING HYDRODYNAMICS

In this section, we develop the hydrodynamic framework
for dipole-conserving fluids by applying the entropy current
formalism. We construct constitutive relations following a
derivative expansion and impose the second law of thermody-
namics. First, we consider the leading-order hydrodynamics,
and then we study first-order corrections in a linearized
regime. After having the most general constitutive relations,
the transport coefficients will be constrained by the entropy
production condition.

A. Gradient expansion

Following the canonical paradigm of hydrodynamics, we
consider the long-wavelength, near-equilibrium dynamics that
is governed by the hydrodynamic variables, that is, the den-
sities n, ε, and pi of the conserved charges. Macroscopic
currents are then given by local expressions of the conserved
densities organized in a systematic derivative expansion. The
explicit form of the currents dubbed as constitutive relations is
fixed by the symmetries in Eqs. (1). In writing these constitu-
tive relations a set of unknown parameters will emerge, known
as transport coefficients, which are then constrained imposing
the laws of thermodynamics and Onsager relations.

Nonetheless, the nonstandard structure the dipole symme-
try introduces suggests we should consider the momentum
of the system pi to be of order O(pi ) ∼ O(∂i)−1, such that
Vi j ∼ O(∂i )0. Therefore, our derivative expansion is defined
in terms of the order at which the equations of motion are
truncated, e.g., we refer to nth-order hydrodynamics if the set

034142-3



ALEKSANDER GŁÓDKOWSKI et al. PHYSICAL REVIEW E 107, 034142 (2023)

of differential equations is truncated as3

∂tε = −∂iJ
i
ε + O(∂i )

2n+3,

∂t pi = −∂ jT
ji + O(∂i )

2n+2,

∂t n = −∂i∂ jJ
i j + O(∂i)

2n+3. (15)

B. Zeroth-order hydrodynamics

To start, we derive the leading-order constitutive relations
for dipole-conserving fluids. Our results are a dissipative com-
pletion of the theory constructed in Ref. [34], where the zero
temperature ideal constitutive relations were found using the
Poisson bracket formalism. The local form of the first law can
be derived from Eq. (8) as follows:

T ∂t s = ∂tε − μ∂t n − Fi j∂tVi j,

= ∂tε − ∂i

[
Fi j∂t

(
p j

n

)]
− μ̃∂t n − Vj∂t p j, (16)

and in the last step we have defined the effective chemical
potential and velocity as

μ̃ = μ − Vi pi

n
, Vi = −∂ jFji

n
. (17)

Using the equations of motion, Eqs. (2), it is then possible to
recast Eq. (16) into a familiar looking equation:

T ∂t s = −∂iE i + μ̃∂i∂ jJ
i j + Vi∂ jT

ji, (18)

where we have defined a shifted energy current,

Ji
ε = E i − Fi j∂t

(
p j

n

)
. (19)

Throughout the rest of this work, we often find it convenient
to work with the shifted energy current.

Using Eq. (18) we can express the entropy production
constraint ∂t s + ∂iSi � 0 as

∂iS
i − 1

T
∂iE i + μ̃

T
∂i∂ jJ

i j + Vi

T
∂ jT

ji � 0. (20)

Thus, after combining the thermodynamic relation Eq. (7)
with Eq. (20) and a series of tedious algebraic computations
that we show in Appendix A, it is possible to rewrite the
constraint as

∂i

{
Si − 1

T
E i + μ̃

T
∂ jJ

i j − Vj

T

[
Pδi j + Fik∂ j

pk

n

+ ∂k

(
Fi j

pk

n
− Fk j

pi

n

)
−T i j

]}
+(E i − (P + ε)Vi )∂i

(
1

T

)

+ (nVi − ∂ jJ
i j )∂i

(
μ̃

T

)
+

[
Pδi j + Vi p j + Fik∂ j

pk

n

+ ∂k

(
Fi j

pk

n
− Fk j

pi

n

)
− T i j

]
∂i

(
Vj

T

)
� 0. (21)

Therefore, we conclude that the local version of the second
law of thermodynamics will be satisfied provided that the first

3Notice that on-shell temporal derivatives will not be independent
from spatial gradients, in particular, we have the hierarchy O(∂t ) ∼
O(∂i )2.

term in Eq. (21) vanishes and the remainder is semipositive
definite for arbitrary field configurations. This constraint fixes
the zeroth-order currents to

Ji
ε = (ε + P)Vi − Fi j∂t

(
p j

n

)
+ α∂i

1

T
,

Ji j = − Fi j,

T i j = Pδi j + Vi p j + Vj pi + ∂kFi j
pk

n
+ Fi jVkk,

Si = 1

T
E i + P

Vi

T
− μ̃

T
∂ jJ

i j − Vj

T
T i j

+ Vj

T
Fik∂ j

pk

n
+ Vj

T
∂k

(
Fi j

pk

n
− Fk j

pi

n

)
, (22)

with α being a transport coefficient that can be interpreted as
the thermal conductivity of the system, satisfying the inequal-
ity

α � 0. (23)

Actually notice that the stress tensor has the required transfor-
mation property under dipole shift, Eq. (5). In addition, it can
be shown that the entropy current reduces to the simple form

Si = sVi + α

T
∂i

1

T
. (24)

It is important to emphasize that both of the terms in the
entropy current enter with a single spatial derivative of a hy-
drodynamic variable. Thus, in dipole-conserving systems the
limit of ideal hydrodynamics, as constructed in Ref. [50], can
only be reached by fine-tuning α = 0 rather than neglecting
higher-order derivative corrections. This happens because the
lowest-order contributions, in our counting scheme, allow for
a dissipative transport coefficient. This is at odds with fluids
without kinematic constraints.

We now turn our attention to the study of the hydrodynamic
modes. To this aim, we consider linearized perturbations
around the equilibrium state (ε0, n0, p0 = 0). Therefore, the
fluctuations read

n = n0 + δn, ε = ε0 + δε, p = δp, (25)

and the corresponding currents (22) take the forms

Ji
ε = (ε0 + P0)Vi + α∂i

1

T
, Ji j = −Fi j,

T i j = (P0 + δP)δi j . (26)

In order to solve for the evolution of the hydrodynamic
variables, we express all quantities that appear in the above
currents in terms of the variations of the conserved densities
δn, δε, and δp. This is done using the thermodynamic relations
Eqs. (12) and (13), as well as the definition of the effective
velocity, Eq. (17). After doing so, the zeroth-order hydrody-
namic equations of motion become

∂tδn − f̄ ∇2∇ · δp = 0,

∂tδp − T0Pε∇δε − T0Pn∇δn = 0,

∂tδε + αsee∇2δε + αsne∇2δn − f̄
ε0 + p0

n0
∇2∇ · δp = 0,

(27)

where f̄ = n−1
0 ( f|| + f⊥ d−1

d ).
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FIG. 1. Trajectories of the longitudinal modes in the frequency complex plane as a function of the thermal conductivity at fixed momentum
with arrows indicating the direction of increase in thermal conductivity. (a) Frequencies as a function of the thermal conductivity for
a1/a2 = 0.75(a1/a2 )c. (b) Longitudinal modes in the critical regime (a1/a2 )c, the collision of the modes happens at a2 = √

3. (c) Trajectories
in Regime II for a1/a2 = 1.25(a1/a2 )c.

In order to solve the system and find the dispersion relation
of the modes, we must Fourier transform the equations with
frequencies and momenta (ω, ki). For this set of equations,
the transverse sector (k · δp = 0) contains the nondispersive
mode ωshear = 0.

On the contrary, the longitudinal sector (k×δp = 0, δn,
and δε) is determined by the characteristic polynomial(

ω

ω0

)3

+ ia2

(
ω

ω0

)2

− ω

ω0
− ia1 = 0, (28)

with ω0 = √
a0k2, and

a0 = −T0 f̄ n−1
0 [n0Pn + (ε0 + P0)Pε],

a1 = −a
− 3

2
0 αT0 f̄ [snεPε − sεεPn],

a2 = −a
− 1

2
0 αsεε, (29)

where the conditions Eqs. (11) and (23) imply a0 � 0 and 0 �
a1 < a2.

The solutions to Eq. (28) are

ω1

ω0
= −i

x

3

(
x

y
− y

x

)
− 1

3
ia2,

ω2

ω0
= x

2
√

3

(
x

y
+ y

x

)
+ i

x

6

(
x

y
− y

x

)
− i

1

3
a2,

ω3

ω0
= − x

2
√

3

(
x

y
+ y

x

)
+ i

x

6

(
x

y
− y

x

)
− i

1

3
a2, (30)

with

x2 = 3 − a2
2,

2y3 = − 27a1 + 9a2 − 2a3
2

+ 3
√

81a2
1 + 6a1a2

(
2a2

2 − 9
) − 3a2

2 + 12. (31)

Notice that all modes have a k2 dependence. Actually, it is
possible to expand the solutions for small and large values
of the thermal conductivity. In the former case, which corre-
sponds to a2 	 1 and a1/a2 fixed, the modes read

ω1 ≈ −i
√

a0a1k2,

ω2 ≈ √
a0

(
1 − 1

2 i(a2 − a1)
)
k2,

ω3 ≈ −√
a0

(
1 + 1

2 i(a2 − a1)
)
k2, (32)

whereas in the latter (a2 � 1 and a1/a2 fixed) the asymptotic
behaviors of the dispersion relations are

ω1 ≈ √
a0

(√
a1

a2
− i

a2 − a1

2a2
2

)
k2,

ω2 ≈ −i
√

a0

(
a2 − a2 − a1

a2
2

)
k2,

ω3 ≈ −√
a0

(√
a1

a2
+ i

a2 − a1

2a2
2

)
k2. (33)

The full dependence of the modes as a function of the
adimensional thermal conductivity a2 at fixed a1/a2 is shown
in Fig. 1. We notice the existence of two qualitatively dis-
tinct regimes corresponding to a1/a2 < 1/9 (Regime I) and
a1/a2 > 1/9 (Regime II). Actually, at the critical regime
(a1/a2)c = 1/9, there is a point for which the three modes
are equal and purely imaginary. This situation is shown in
Fig. 1(b). The main difference between Regimes I and II is the
existence of a window in the parameter space where the three
modes are purely imaginary (Regime I), whereas in Regime II
there will always be two modes with a nonvanishing real part.

Finally, it is worth pointing out that the thermodynamic
constraints a1/a2 < 1 and α � 0 are enough to guarantee that
the imaginary part of the modes is negative, and no linear
instability will occur.

C. First-order hydrodynamics

In the previous section, we have shown the existence of
one dissipative transport coefficient α that controls how longi-
tudinal fluctuations diffuse in the system. However, the shear
mode ωshear = 0 remained insensitive to the thermal conduc-
tivity. Therefore, at that level of the derivative expansion,
transverse fluctuations will not diffuse. Although we may
think this fact is reminiscent of the fractonic nature of the sys-
tem, in this section we prove that this is not the case. Actually,
the first-order transport coefficients will introduce transverse
contributions to the next-to-leading-order hydrodynamic
equations of motion and predict a subdiffusive shear mode.

To proceed with the analysis, we decompose the currents
into the zeroth- and first-order contributions according to the
derivative counting scheme,

Ji j = Ji j
0 + Ji j

1 , E i = E i
0 + E i

1,

T i j = T i j
0 + T i j

1 , Si = Si
0 + Si

1, (34)
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and plug the decomposition Eq. (34) into Eq. (16) and cancel
out the lower-order terms (as these satisfy the second law
provided that α � 0). Then, the second law requires that

∂iS
i
1 − 1

T
∂iE i

1 + μ

T
∂i∂ jJ

i j
1 + Vi

T
∂ jT

ji
1 � 0. (35)

Note that for fluctuations around Eq. (25) we have that
μ̃ = μ and Ji

ε = E i [see Eqs. (17) and (19)]. Since our goal
is to identify the most general constitutive relations consistent
with the above inequality, we find it convenient to rewrite
Eq. (35) as follows:

∂i

(
Si

1 − 1

T
E i

1 + μ

T
∂ jJ

i j
1 − ∂ j

μ

T
Ji j

1 + Vj

T
T i j

1

)

+ Ji j
1 ∂i∂ j

μ

T
+ E i

1∂i
1

T
− T i j

1 ∂i
Vj

T
� 0. (36)

Ignoring nonlinearities, it is possible to express the energy
current without loss of generality as E i

1 = ∂ jE ji. With that
ansatz at hand, the entropy production constraint can be writ-
ten as

∂i

(
Si

1 − 1

T
∂ jE

ji + ∂ j
1

T
Ei j + μ

T
∂ jJ

i j
1 − ∂ j

μ

T
Ji j

1 + Vj

T
T i j

1

)

+ Ji j
1 ∂i∂ j

μ

T
− Ei j∂i∂ j

1

T
− T i j

1 ∂i
Vj

T
� 0. (37)

Then, we set the first-order correction to the entropy current
to be

Si
1 = 1

T
∂ jE

ji − ∂ j
1

T
Ei j − μ

T
∂ jJ

i j
1 + ∂ j

μ

T
Ji j

1 − Vj

T
T i j

1 ,

(38)

such that the first term in Eq. (37) vanishes. Therefore, the
problem is reduced to finding the proper constitutive relations
such that the leftover is semipositive definite. In fact, the
most general forms for the currents that will allow a positive
production read as follows:

Ji j
1 =

(
γ||
T0

∂kVk + σ||∇2 μ

T
+ β||∇2 1

T

)
δi j

+ γ⊥
T0

∂〈iVj〉 + σ⊥∂〈i∂ j〉
μ

T
+ β⊥∂〈i∂ j〉

1

T
,

−T i j
1 =

(
ζ

T0
∂kVk + γ̄||∇2 μ

T
+ α||∇2 1

T

)
δi j

+ η

T0
∂〈iVj〉 + γ̄⊥∂〈i∂ j〉

μ

T
+ α⊥∂〈i∂ j〉

1

T
,

−Ei j =
(

ᾱ||
T0

∂kVk + β̄||∇2 μ

T
+ κ||∇2 1

T

)
δi j

+ ᾱ⊥
T0

∂〈iVj〉 + β̄⊥∂〈i∂ j〉
μ

T
+ κ⊥∂〈i∂ j〉

1

T
. (39)

Where we have introduced a set of 18 dissipative transport
coefficients. In particular, Onsager reciprocity reduces the
number of off-diagonal coefficients if time-reversal invariance
is imposed:

ᾱ||(⊥) = α||(⊥), β̄||(⊥) = β||(⊥), γ̄||(⊥) = γ||(⊥). (40)

Moreover, the entropy production constraint Eq. (37) can
be written in a compact matrix form:

xᵀA||x + yᵀA⊥y � 0, (41)

with

A|| =

⎛
⎜⎜⎝

ζ γ|| α||
γ|| σ|| β||
α|| β|| κ||

⎞
⎟⎟⎠, A⊥ =

⎛
⎜⎜⎝

η γ⊥ α⊥
γ⊥ σ⊥ β⊥
α⊥ β⊥ κ⊥

⎞
⎟⎟⎠,

x =

⎛
⎜⎜⎝

∂i
Vi
T

∇2 μ

T

∇2 1
T

⎞
⎟⎟⎠, y =

⎛
⎜⎜⎝

∂〈i
Vi〉
T

∂〈i∂ j〉 μ

T

∂〈i∂ j〉 1
T

⎞
⎟⎟⎠. (42)

Since the two contributions are independent, the second law is
then imposed by requiring that matrices A|| and A⊥ are both
semipositive definite. This poses constraints on the transport
coefficients, which are summarized below.

In total, we have found 12 independent transport coeffi-
cients that we classify in two distinct categories. The first cat-
egory involves the diagonal coefficients (ζ , η, σ⊥, σ||, κ⊥, κ||)
satisfying a positivity constraint,

ζ , η, σ⊥, σ||, κ⊥, κ|| � 0. (43)

On the other hand, the second category consists of the off-
diagonal terms (α⊥, α||, β⊥, β||, γ⊥, γ||) obeying inequalities
with the coefficients of the previous group:

α2
⊥ � σ⊥κ⊥, α2

|| � σ||κ||, β2
⊥ � ηκ⊥,

β2
|| � ζκ||, γ 2

⊥ � ησ⊥, γ 2
|| � ζσ||. (44)

The distinction has been motivated by the fact that the
value of the off-diagonal transport coefficients is bounded
from above by the diagonal ones. The last constraint from
semi-positivity corresponds with the positive determinant
condition

ζ (σ||κ|| − β2
|| ) − κ||γ 2

|| − σ||α2
|| � 0,

η(σ⊥κ⊥ − β2
⊥) − κ⊥γ 2

⊥ − σ⊥α2
⊥ � 0. (45)

Having the corrections to the zeroth-order hydrodynamic con-
stitutive currents, we can plug them into the conservation
equations to obtain the first-order hydrodynamic equations of
motion. In particular, they read

∂tδn + jn∇4δn − ( f̄ − jv∇2)∇2(∇ · δp) + je∇4δε = 0,

∂tδp + tv||∇2∇(∇ · δp) + tv⊥∇4δp

− (T0Pn − tn∇2)∇δn − (T0Pε − te∇2)∇δε = 0,

∂tε + (αsee + ee∇2)∇2δε + (αsne + en∇2)∇2δn

−
(

f̄
ε0 + p0

n0
− ev∇2

)
∇2(∇ · δp) = 0. (46)

For a detailed derivation of the equations and the relation of
the parameters shown in Eqs. (46) with the transport coeffi-
cients in Eqs. (39), we refer the reader to Appendix B. The
main output of the first-order approach is the conversion of
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the nondispersive shear mode into a subdiffusive one:

ωshear = −iη
f⊥

T0n2
0

k4. (47)

On the other hand, the longitudinal modes are not strongly
affected by the first-order corrections, since their contribution
enters at higher order in momentum. In fact, the characteristic
polynomial in this case takes the same form as in Eq. (28)(

ω

ω̄0

)3

+ iā2

(
ω

ω̄0

)2

− ω

ω̄0
− iā1 = 0, (48)

where ω̄0 = √
ā0k2 and

ā0 = (a0 + b0k2) + O(k4),

ā1 = ā
− 3

2
0

(
a

3
2
0 a1 + b1k2

) + O(k4),

ā2 = ā
− 1

2
0

(
a

1
2
0 a2 + b2k2

) + O(k4). (49)

with b0, b1, and b2 derived in Appendix B, and shown in
Eq. (B10). Actually, the solutions, Eqs. (30), still apply, once
we substitute a1 → ā1 and a2 → ā2 in Eqs. (31).

V. DISCUSSION

We have presented a hydrodynamic theory of isotropic
dipole-conserving fluids up to the first order in the derivative
expansion. Our construction gives universal lessons about sys-
tems with constrained dynamics.

First, we have shown how to consistently implement the
kinematic constraints of dipole-conserving fluids at the level
of equilibrium thermodynamics. This thermodynamic state
is not the same as that for conventional fluids, but requires
an additional tensor quantity controlling the flux of dipoles.
Second, we elucidated the derivative expansion around this
equilibrium state and constructed hydrodynamic constitutive
relations. Peculiarly, we have found that dipole-conserving
fluids are dissipative even if the equations of motion are trun-
cated at the lowest nontrivial order in the derivative expansion.

Our theory gives a conceptually crisp finite-temperature
description of systems, which preserve the charge and its
dipole moment, energy, and momentum. As a result, it com-
pletes previous studies that have given partial answers to this
problem for systems without momentum conservation [49],
without energy conservation [51], or without dissipative ef-
fects [50].

Using the linear response theory, we have found and
classified 1 + 12 transport coefficients that can, in princi-
ple, be used as experimental signatures of fracton fluids. In
particular, we find nontrivial corrections to both the trans-
verse and the longitudinal modes studied in Ref. [50] for
ideal fracton fluids. One dissipative coefficient, which we
identify with the thermal conductivity, contributes to the diffu-
sive transport of longitudinal perturbations. The shear mode,
which is nondispersive at the lowest order in derivatives,
becomes subdiffusive after the inclusion of the first-order
corrections.

The generalization of our formalism to generic multipole-
conserving systems is straightforward. In fact, we should
expect the real part of the longitudinal modes and the shear
mode to acquire a higher exponent in momentum. However,

the imaginary part of the longitudinal modes should still have
the −ik2 scaling due to its link to the thermal conductiv-
ity. Although we have proven a consistent thermodynamic
description of the system, its origin from a microscopic per-
spective is obscure since

∫
dxVi j does not correspond to any

conserved operator. Therefore, a statistical mechanics picture
of the thermodynamic theory proposed here is still an open
problem.

Finally, let us comment on the nonequilibrium universal-
ity classes recently proposed in Refs. [49,51]. In particular,
the authors of Ref. [51] have shown that dipole-conserving
fluids at rest become unstable against thermal fluctuations
in less than four spatial dimensions. However, the dipole-
conserving models considered there do not assume energy
conservation and consequently display subdiffusive scaling
of the hydrodynamic modes. Thus, we suspect that including
energy conservation changes the universality class and will
render the system stable against thermal fluctuations in three
spatial dimensions. It would be interesting to investigate this
point in greater detail.
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APPENDIX A: LEADING-ORDER HYDRODYNAMICS

1. Entropy current

In this Appendix we show the algebraic manipulations that
were used when going from Eqs. (20) to (21) explicitly.

We start by rearranging Eq. (20) as a total derivative minus
the extra terms:

0 � ∂i

(
Si − 1

T
E i + μ̃

T
∂ jJ

i j + Vj

T
T i j

)

+ E i∂i
1

T
− ∂ jJ

i j∂i
μ̃

T
− T ji∂i

Vj

T
. (A1)

Driven by intuition from the conventional hydrodynamics, we
now incorporate pressure into our construction by adding zero
0 = −∂i(P

Vi
T ) + P∂i

Vi
T + Vi

T ∂iP such that Eq. (A1) becomes

0 � ∂i

(
Si − 1

T
E i − P

Vi

T
+ μ̃

T
∂ jJ

i j + Vj

T
T i j

)

+ E i∂i
1

T
− ∂ jJ

i j∂i
μ̃

T
+ (Pδi j − T ji )∂i

Vj

T
+ Vi

T
∂iP.

(A2)

Using the definition of pressure, Eq. (7), it is possible to
evaluate the gradient

∂iP = n∂iμ + s∂iT − Fjk∂iVjk . (A3)
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We substitute μ = μ̃ + n−1Vi pi and rewrite the last term in
Eq. (A3) obtaining

∂iP = n∂iμ̃ + s∂iT + n∂i

(
Vj p j

n

)
− Fjk∂i∂ j

pk

n
. (A4)

Let us now express the last term as a total derivative:

∂iP = n∂iμ̃ + s∂iT + n∂i

(
Vj p j

n

)

+ ∂ jFjk∂i
pk

n
− ∂ j

(
Fjk∂i

pk

n

)
. (A5)

Using the definition of velocity Vi = −n−1∂ jFji and relabeling
the dummy indices k ↔ j in the second-to-last term, we find

∂iP = n∂iμ̃ + s∂iT + p j∂iVj − ∂ j

(
Fjk∂i

pk

n

)
. (A6)

Thus, the last term in Eq. (A2) can be written as follows:

Vi

T
∂iP = Vi

T

[
n∂iμ̃ + s∂iT + p j∂iVj − ∂ j

(
Fjk∂i

pk

n

)]

= nVi∂i
μ̃

T
− (μ̃nVi + T sVi + Vj p jVi )∂i

1

T

+ p jVi∂i
Vj

T
+ Fjk∂i

pk

n
∂ j

Vi

T
− ∂ j

(
Vi

T
Fjk∂i

pk

n

)
.

(A7)

Relabeling the dummy indices i ↔ j in the last two terms and
using the definition of pressure, Eq. (7), we arrive at

Vi

T
∂iP = nVi∂i

μ̃

T
− (P + ε)Vi∂i

1

T

+
(

p jVi + Fik∂ j
pk

n

)
∂i

Vj

T
− ∂i

(
Vj

T
Fik∂ j

pk

n

)
.

(A8)

Plugging Eq. (A8) back into Eq. (A2) we obtain an expression
that closely resembles Eq. (21):

∂i

(
Si − 1

T
E i − P

Vi

T
+ μ̃

T
∂ jJ

i j + Vj

T
T i j − Vj

T
Fik∂ j

pk

n

)

+ (E i − (p + ε)Vi )∂i

(
1

T

)
+ (nVi − ∂ jJ

i j )∂i

(
μ̃

T

)

+
(

Pδi j + Vi p j + Fik∂ j
pk

n
− T i j

)
∂i

(
Vj

T

)
� 0. (A9)

It is then straightforward to reach Eq. (21) by adding another
zero:

0 = − ∂i

[
Vj

T
∂k

(
Fi j

pk

n
− Fk j

pi

n

)]

+ ∂k

(
Fi j

pk

n
− Fk j

pi

n

)
∂i

(
Vj

T

)
. (A10)

This final step is necessary in order to obtain a stress tensor
that is manifestly symmetric under the exchange of indices.

TABLE I. Classification of the on-shell independent linear data
up to the first order in the derivative expansion.

Order Scalars Vectors Tensors

O(0) n, ε, θ ∂in, ∂iε, δi j, σ
i j

∂ jσ
i j, ∂iθ

O(1) ∇2n, ∇2ε, ∂i∇2n, ∂i∇2ε, ∂〈i∂ j〉n, ∂〈i∂ j〉ε,
∇2θ ∇2∂ jσ

i j, ∂i∇2θ ∂〈i∂ j〉θ, ∇2σ i j

APPENDIX B: DISSIPATIVE CORRECTIONS

1. Fluid data classification

We provide a classification of the independent fluid vari-
ables organized according to their transformations under
rotations. To this aim we decompose the symmetric tensor Vi j

as follows:

Vi j = σ i j + δi j

d
θ, (B1)

where we have defined a transverse tensor σ i j and a scalar θ

satisfying

σ i j = ∂〈i
p j〉
n

, θ = ∂i
pi

n
. (B2)

One may then construct independent structures order by order
in the gradient expansion according to the power counting
scheme established in Sec. IV A. In Table I we present a list
of the on-shell independent linear terms up to the first order in
the derivative expansion.

2. Dissipative currents and gradient expansion

Let us now consider the most general form of the first-order
[linearized around the equilibrium state Eq. (25)] corrections
to the currents, written on the basis of the derivative expan-
sion. These are given by (see Table I)

Ji j
1 = (

jn1∇2n + je1∇2ε + jv1∇2θ
)
δi j + jv2∇2σ i j

+ jn2∂〈i∂ j〉n + je2∂〈i∂ j〉ε + jv3∂〈i∂ j〉θ,

T i j
1 = (

tn1∇2n + te1∇2ε + tv1∇2θ
)
δi j + tv2∇2σ i j

+ tn2∂〈i∂ j〉n + te2∂〈i∂ j〉ε + tv3∂〈i∂ j〉θ,

E i
1 = en∂i∇2n + ee∂i∇2ε + eθ ∂i∇2θ + eσ ∇2∂ jσ

i j . (B3)

In writing Eq. (B3) we have introduced a new set of
phenomenological parameters. These can be related to the
dissipative transport coefficients presented in Eq. (39).

To this aim, we express Vi in terms of the variables θ and
σ i j using Eq. (12):

Fi j = f||θδi j + f⊥σi j → Vi = −n−1
0 ( f||∂iθ + f⊥∂ jσi j ). (B4)

Thus

∂iVi = −n−1
0

(
f|| + f⊥

d − 1

d

)
∇2θ,

∂〈iVj〉 = −n−1
0

(
f||∂〈i∂ j〉θ + f⊥∇2σi j − f⊥

d − 1

d2
∇2θδi j

)
,

∇2Vi = −n−1
0

(
f||∂i∇2θ + f⊥∇2∂ jσ

i j
)
,

∂i∂ jVj = −n−1
0

(
f|| + f⊥

d − 1

d

)
∂i∇2θ. (B5)
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Hence, we see that

jv1 = −T −1
0 n−1

0

[(
f|| + f⊥

d − 1

d

)
γ|| − f⊥

d − 1

d2
γ⊥

]
,

tv1 = T −1
0 n−1

0

[(
f|| + f⊥

d − 1

d

)
ζ − f⊥

d − 1

d2
η

]
,

eθ = T −1
0 n−1

0

[(
f|| + f⊥

d − 1

d

)(
α|| + α⊥

d − 1

d

)
+α⊥ f||

]
,

jv2 = −T −1
0 n−1

0 f⊥γ⊥, tv2 = T −1
0 n−1

0 f⊥η,

jv3 = −T −1
0 n−1

0 f||γ⊥, tv3 = T −1
0 n−1

0 f||η.

eσ = T −1
0 n−1

0 f⊥α⊥. (B6)

Even though jv2 (tv2 ) and jv3 (tv3 ) are a priori independent
parameters, they are in fact related via

jv2
jv3

= tv2
tv3

= f⊥
f||

by the

requirement of the non-negative entropy production equa-
tion (37).

Now, we re-express the terms in Eq. (39) involving δ 1
T and

δ
μ

T in terms of the variables δε and δn. Using the thermody-
namic relations, Eqs. (12), we can identify

jn1 = snεβ|| − snnσ||, jn2 = snεβ⊥ − snnσ⊥,

je1 = sεεβ|| − snεσ||, je2 = sεεβ⊥ − snεσ⊥,

tn1 = snnγ|| − snεα||, tn2 = snnγ⊥ − snεα⊥,

te1 = snεγ|| − sεεα||, te2 = snεγ⊥ − sεεα⊥.

en = snn

(
β|| + d − 1

d
β⊥

)
− snε

(
κ|| + d − 1

d
κ⊥

)
,

ee = see

(
κ|| + d − 1

d
κ⊥

)
− snε

(
β|| + d − 1

d
β⊥

)
. (B7)

3. Linearized equations of motion

In this Appendix, we derive the linearized equations of
motion with the first-order corrections [Eqs. (46)]. This is
most easily done in the basis used in Eqs. (B3), which are,
of course, completely equivalent to Eqs. (39) provided that
the transport coefficients are identified according to Eqs. (B6)
and (B7).

It is then straightforward to compute the relevant gradients
of the dissipative currents:

∂i∂ jJ
i j
1 =

(
jn1 + d − 1

d
jn2

)
∇4n +

(
je1 + d − 1

d
je2

)
∇4ε

+
(

jv1 + d − 1

d

(
jv2 + jv3

))∇4θ,

∂ jT
i j

1 =
(

tn1 + d − 1

d
tn2

)
∂i∇2n +

(
te1+

d − 1

d
te2

)
∂i∇2ε

+
(

tv1 + d − 2

d
tv2 + d − 1

d
tv3

)

× ∂i∇2θ + n−1
0 tv2∇4δpi,

∂iE i
1 = en∇4n + ee∇4ε +

(
eθ + d − 1

d
eσ

)
∇4θ. (B8)

Thus, we see that the linearized equations of motion up to first
order in the derivative expansion are given by Eqs. (46), with

jn = jn1 + d − 1

d
jn2 , je = je1 + d − 1

d
je2 ,

jv = jv1 + d − 1

d

(
jv2 + jv3

)
, tv⊥ = n−1

0 tv2 ,

tv|| = tv1 + d − 2

d
tv2 + d − 1

d
tv3 ,

tn = tn1 + d − 1

d
tn2 , te = te1 + d − 1

d
te2 ,

en = en1 + d − 1

d
en2 , ee = ee1 + d − 1

d
ee2 ,

ev = eθ + d − 1

d
eσ . (B9)

Going to Fourier space, we find that the shear mode picks
up a subdiffusive contribution, Eq. (47), while the dispersion
relations of the longitudinal modes are now given by the roots
of the modified polynomial, Eq. (48), where

b0 = αsεε ( jn + tv ) + f̄
[
tn + n−1

0 (p0 + ε0)te
]

+ T0(evPε + jvPn) − α jesne,

b1 = f̄ PεT0
[
en − n−1

0 (p0 + ε0) jn
]

− f̄ PnT0
[
ee − n−1

0 (p0 + ε0) je
]

− αsnε ( f̄ te + jvPεT0) + αsεε ( f̄ tn + jvPnT0),

b2 = ee + jn + tv. (B10)
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