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Phase diffusion and fluctuations in a dissipative Bose-Josephson junction
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We analyze the phase diffusion, quantum fluctuations and their spectral features of a one-dimensional
Bose-Josephson junction (BJJ) nonlinearly coupled to a bosonic heat bath. The phase diffusion is considered
by taking into account of random modulations of the BJJ modes causing a phase loss of initial coherence
between the ground and excited states, whereby the frequency modulation is incorporated in the system-reservoir
Hamiltonian by an interaction term linear in bath operators but nonlinear in system (BJJ) operators. We examine
the dependence of the phase diffusion coefficient on the on-site interaction and temperature in the zero- and
π -phase modes and demonstrate its phase transition-like behavior between the Josephson oscillation and the
macroscopic quantum self-trapping (MQST) regimes in the π -phase mode. Based on the thermal canonical
Wigner distribution, which is the equilibrium solution of the associated quantum Langevin equation for phase,
coherence factor is calculated to study phase diffusion for the zero- and π -phase modes. We investigate the
quantum fluctuations of the relative phase and population imbalance in terms of fluctuation spectra which capture
an interesting shift in Josephson frequency induced by frequency fluctuation due to nonlinear system-reservoir
coupling, as well as the on-site interaction-induced splitting in the weak dissipative regime.
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I. INTRODUCTION

A dynamical system in contact with a reservoir has been a
subject of wide attention in dissipative dynamics [1,2]. Over
the years, the dissipative quantum systems under the effect of
random noise have been extensively investigated both theoret-
ically and experimentally [3–7] in widely different areas, such
as condensed matter physics, quantum optics, magnetic reso-
nance spectroscopy, etc. In recent years, the study of quantum
dissipation in ultracold atomic gases has attracted much atten-
tion due to the presence of various loss processes affecting the
coherence of the atomic matter waves [8–10]. Also, an ultra-
cold atomic system has become a test bed to study dissipation
in an out-of-equilibrium quantum many-body system [11–16].
Apart from dephasing and relaxation dynamics, the combined
effect of interaction and dissipation in open quantum systems
can give rise to nonequilibrium steady states and transitions
between them [17–20]. The Bose-Josephson junction (BJJ) is
an ideal system where both the effects of interaction and dissi-
pation can be explored to understand coherent and incoherent
quantum dynamics of matter waves [21,22].

There are various ways in which the dissipation can be
introduced in a system. The presence of an intrinsic coupling
between a Josephson mode and quasiparticle excitations can
lead to dissipation in a BJJ [23,24]. Dissipation also originates
from the finite temperature effects [25–27] and the coupling of
the system with external environment [28]. Phase fluctuation
and heating effect in a BJJ due to thermal fluctuations have
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been already observed in an experiment [29]. In this context,
phase diffusion plays a fundamental role in the dynamical
behavior of cold atoms in optical lattices and Bose-Einstein
condensates (BECs) [30–40]. There are many theoretical and
experimental works suggesting that the interaction between
the particles can lead to phase diffusion [30–33,41–47]. More-
over, dissipation and dephasing may be engineered in an
ultracold atomic system with lasers or with the assistance of a
cavity [48–51]. In particular, we refer to Ref. [22,52–65] for
recent investigations in theory and experiments on dissipative
BJJs.

The traditional treatments of dissipation concern bilin-
ear coupling between the system and the reservoir modes.
Pure phase relaxation, however, cannot be described by such
an interaction linear in both system and bath coordinates
since it causes dissipation of energy and no frequency fluc-
tuation. On the other hand, pure phase relaxations [66–70]
can result from fluctuations of the energy levels of the sys-
tem leading to the phase loss of initial coherence between
its ground and excited states. This can be incorporated in
the system-reservoir interaction by introducing a term of
the form F (a, a†)

∑
j (g jb j + g∗

jb
†
j ), where F is a function

of the annihilation(creation) operator a(a†) for the system
mode and b j (b

†
j ) refers to the same for jth reservoir mode,

g j being the jth coupling coefficient. Such a term arises
for coupling (which is linear in bath coordinates and non-
linear in system coordinates) of the type q2 ∑

j g jx j when

expressed as (a + a†)2 ∑
j g j (b j + b†

j ). In molecular physics
q2x is responsible for Fermi resonance [69]. A coupling of the
form Hs

∑
j (g jb j + g∗

jb
†
j ) where Hs is the system Hamiltonian

[67] may induce a coherent contribution to phase diffusion.
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The role of such nonlinear system-reservoir interaction in
two-dimensional spectroscopy [69], thermal rectification, and
differential thermal conductance [70] was studied earlier. The
recent advances in bath engineering using a relatively broad-
band laser has opened up new directions in open quantum
systems [50,51,71–77]. Guided by these considerations we
examine a minimal model for system-assisted nonlinear in-
teraction in which fluctuations of the BJJ modes become
coupled to the bath coordinates. Thus the interaction induces a
coherent contribution of excitation-deexcitation of the system
to phase diffusion in a one-dimensional (1D) dissipative BJJ.

Based on a two-mode Hamiltonian description we derive
the quantum Langevin dynamics of relative phase and pop-
ulation imbalance. The phase diffusion coefficient for zero-
and π -phase modes reveals its characteristic dependence on
the on-site interaction and temperature of the system. We
find that the phase diffusion coefficient is sensitive to the
variation of temperature for small dissipation. In the π -phase
mode it exhibits an interesting phase transition-like behavior
between the Josephson oscillation and the macroscopic quan-
tum self-trapping (MQST) regime. Making use of the thermal
canonical Wigner distribution [78], we calculate the coher-
ence factor [79] which reveals that the 1D system-assisted
dissipative BJJ has a higher degree of coherence which is con-
sistent with the experimental observation [29]. The underlying
quantum fluctuations in population imbalance and relative
phase have been analyzed in terms of fluctuation spectra to
demonstrate the transition between the coherent and incoher-
ent behavior of the system from weak to strong dissipation
regime and to capture the frequency-fluctuation induced shift
of the Josephson frequency.

The paper is organized in the following way. In Sec. II we
derive the dissipative BJJ equations by coupling the two-mode
Hamiltonian to the bosonic baths in the presence of noise. In
Sec. III we analyze the theoretically phase diffusion coeffi-
cient in a 1D dissipative BJJ. In Sec. IV we derive the general
formula for the fluctuation spectra of population imbalance
and phase difference. In Sec. V we present and discuss our
results on numerical simulations of coherence factor, phase
diffusion coefficient, and the spectra of the fluctuation to
corroborate the theoretical scheme. The paper is concluded
in Sec. VI.

II. DISSIPATIVE BOSE-JOSEPHSON JUNCTION:
A PHASE DIFFUSION MODEL

The many-body Hamiltonian for a system of N bosons at
zero temperature is given by

ĤMB = Ĥ0 + Ĥint, (1)

where

Ĥ0 =
∫

dr

[
− h̄2

2m
ψ̂†∇2ψ̂ + ψ̂†Vextψ̂

]

Ĥint = 2π h̄2as

m

∫
drψ̂†ψ̂†ψ̂ψ̂,

where ψ̂ and ψ̂† represent bosonic fields and Vext is the exter-
nal trap potential [80,81] of the form Vext = V (ρ) + Vdw(x),

where V (ρ) = 1
2 mω2

ρρ
2, which permits harmonic oscillations

with frequency ωρ along radial directions i.e., y- and z-axes
and a symmetric double-well (DW) potential Vdw(x) along the
x axis. Here ρ2 = y2 + z2, as denotes the s-wave scattering
length, and m is the atomic mass. In the strong radial con-
finement regime (ωρ � ωx) where ωx be the axial frequency,
we assume that all the atoms occupy the ground state of the
radial harmonic potential. To proceed further, we integrate
over the radial harmonic oscillator states and obtain an effec-
tive 1D Hamiltonian for the system. The lowest two energy
eigenfunctions are quasidegenerate. For symmetric DW, the
lowest eigenstate φg is space-symmetric [φg(x) = φg(−x)],
and the other quasidegenerate state φe(x) is antisymmetric
[φe(x) = −φe(−x)].

The field operator ψ̂ can be written as

ψ̂ = âgφg + âeφe (2)

with âg and âe (â†
g and â†

e) being the annihilation (creation)
operators for a particle in the ground and first excited states,
respectively. The operators obey the standard bosonic commu-
tation relation [âi, â†

j ] = δi j . By defining further two operators

âL = 1√
2
(âg + âe) and âR = 1√

2
(âg − âe) and their Hermitian

counterparts, the effective 1D field operator becomes

ψ̂ = âLφ+ + âRφ−, (3)

where φ+ = 1√
2
(φg + φe) and φ− = 1√

2
(φg − φe). The valid-

ity of this two-mode approximation for BEC rests on the
fulfillment of the two conditions: (a) the temperature is much
below h̄ωx (and so also much below h̄ωρ) and (b) both the
interaction energy per particle and the chemical potential
are much below h̄ωx. Making use of the field operators in
the many-body Hamiltonian of Eq. (1), we obtain a two-mode
Hamiltonian of the form

ĤTM = â†
LâLE1 + â†

RâRE2 − (â†
LâR + â†

RâL )K

+ U+
2

â†
Lâ†

LâLâL + U−
2

â†
Râ†

RâRâR, (4)

where

K = −
∫ [

h̄2

2m
(∇xφ+∇xφ−) + φ+Vdw(x)φ−

]
dx,

E1(2) =
∫ [

h̄2

2m
|∇xφ+(−)|2 + |φ+(−)|2Vdw(x)

]
dx,

and

U+(−) = 4π h̄2as

m

∫
|φ+(−)|4 dx,

where ∇x ≡ ∂
∂x , K is the tunneling amplitude between two

sites of the DW, and U+(−) is the on-site interaction strength
for left(right) side of the DW arising out of nonlinearity. For a
symmetric DW potential, we write E1 = E2 = E .

A. Two-mode model coupled to bosonic heat baths

Usually Josephson oscillations in a DW potential are
nondissipative, implying that the dynamics of the atom num-
ber imbalance and relative phase remains undamped over time
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[82–84]. However, in recent years several studies reported a
dissipative BJJ which is analogous to a pendulum with friction
[85–87]. In order to study the effects of dissipation in BJJ,
we consider a model of a BJJ coupled to two bosonic baths
described by the total Hamiltonian

ĤT = ĤTM + h̄
∑

k,m=L,R

ωk (b̂†
mkb̂mk )

+ h̄
∑

k,m=L,R

gkâ†
mâm(b̂†

mk + b̂mk ), (5)

where b̂mk and b̂†
mk are the bosonic annihilation and creation

operators, respectively, corresponding to the kth bath mode
and mth well. ωk represents the frequency of the kth bath
mode, and gk represents the coupling between the kth bath
mode and the on-site boson number. The bath-BJJ coupling
constants for the kth bath mode for both wells are assumed to
be the same. A key point in the present treatment is that the
coupling between the system and the bath modes is nonlinear.
Here the excitation in the bath modes is not accompanied
by energetic deexcitation of the system as in the usual lin-
ear system-bath coupling [81]. Thus the coupling leads to
fluctuations of the system energy levels, i.e., modulation in
frequency resulting in phase loss of the BJJ modes [66–70].
The influence of the bath and the nonlinear coupling of the
form (5) have been used earlier [28], and this gives rise to the
phase diffusion of the system. The Heisenberg equations of
motion for the system and the bath operators are given by the
equations

˙̂aL = − iE

h̄
âL + iK

h̄
âR − iU+

h̄
â†

LâLâL − i
∑

k

gkb̂†
Lk (t )âL

− i
∑

k

gkb̂Lk (t )âL, (6)

˙̂aR = − iE

h̄
âR + iK

h̄
âL − iU−

h̄
â†

RâRâR − i
∑

k

gkb̂†
Rk (t )âR

− i
∑

k

gkb̂Rk (t )âR, (7)

˙̂bLk = −iωkb̂Lk − igkâ†
LâL(t ), (8)

˙̂bRk = −iωkb̂Rk − igkâ†
RâR(t ). (9)

After applying Born-Markov and secular approximation
[88–90] and eliminating the high-frequency oscillation terms
using the transformation ÂL,R = âL,Rei	(t−t0 ), we eliminate the
bath degrees of freedom. The Heisenberg equations of motion
take the following form:

˙̂AL = iK

h̄
ÂR − iU+

h̄
Â†

LÂLÂL − γ

2
Â†

LÂLÂL + F̂L(t )âL, (10)

˙̂AR = iK

h̄
ÂL − iU−

h̄
Â†

RÂRÂR − γ

2
Â†

RÂRÂR + F̂R(t )âR, (11)

where

F̂L(t ) = −i
∑

k

gk (t0)b̂Lk (t0)e−i(ωk−	)(t−t0 ), (12)

F̂R(t ) = −i
∑

k

gk (t0)b̂Rk (t0)e−i(ωk−	)(t−t0 ) (13)

refer to the quantum noise due to the heat baths modulated
by oscillation of the system for the L and R modes. γ rep-
resents the dissipation of the system modes and 	 = E/h̄.
Equations (10) and (11) and the noise operators in Eqs. (12)
and (13) appear as a natural consequence of system-reservoir
couplings. The detailed derivation of Eqs. (10) and (11) is
presented in Appendix A.

To construct a quantum Langevin equation with c-number
noise [91,92], we return to Eqs. (10) and (11) and carry out a
quantum mechanical average over the initial product separable
quantum states of the system oscillator and the bath oscillators
at t0 = 0 |α〉|μ1〉|μ2〉 · · · |μk〉 · · · |μN 〉. Here |α〉 refers to the
initial coherent state of the system, and {|μk〉} corresponds
to the initial coherent states of the bath operators. We denote
the quantum mechanical averages for the system and the bath
operators as 〈ÂL,R〉 = αL,R, 〈Â†

L,R〉 = α∗
L,R, and 〈F̂L,R〉 = ξL,R.

Here ξL,R = −i
∑

k gk (t0)μLk,Rke−i(ωk−	)(t−t0 ). The c-number
noise with zero mean follows the fluctuation-dissipation
relation, such that 〈ξL,R(t )〉 = 0 and 〈ξ ∗

L,R(t )ξL,R(t ′)〉 =
γ coth(h̄	/2kBT )δ(t − t ′). The thermal properties of quan-
tum noise are presented in detail in Appendix B. The
c-number amplitudes may now be written as αL = √

NLeiθL

and αR = √
NReiθR . NL(R) is the number of atoms in the left

(right) well. θL(R) is the phase of the atoms in the left (right)
well. The complex amplitude equations for two wells are
given by

α̇L = iK

h̄
αR − iU+

h̄
NLαL − γ

2
NLαL + ξL(t )αL, (14)

α̇R = iK

h̄
αL − iU−

h̄
NRαR − γ

2
NRαR + ξR(t )αR. (15)

In deriving the above equations, the mean-field approximation
is used whereby the coherent state average over the terms
like Â†

LÂLÂL is replaced by 〈Â†
LÂL〉〈ÂL〉 or NLαL, i.e., we have

taken into account the quantum correlations in the lowest or-
der. The underlying assumption is that the fluctuation around
the mean is small. In terms of the Ginzburg criterion this
implies 〈δÂ†

LδÂL〉 
 〈Â†
LÂL〉, which is reasonably good when

the number of atoms in the condensate is not too low.
Separating the real and imaginary parts of Eqs. (14) and

(15) we obtain after some algebra the following equations in
terms of the normalized atom number imbalance z(t ) and
phase difference θ (t ):

ż(t ) = −2K

h̄

√
1 − z2(t ) sin θ (t ) − γ Nz(t ) + ξz, (16)

θ̇ (t ) = 2K

h̄

[
z(t )√

1 − z2(t )
cos θ (t ) + �0z(t )

]
+ ξθ , (17)

where ξz = 2ξL(t )NL/N − 2ξR(t )NR/N , ξθ = ξR − ξL, and
z = |αL |2−|αR|2

|αL |2+|αR|2 = NL−NR
NL+NR

. The conjugate variable is the rel-

ative phase defined by θ = θR − θL. �0(= NU
2K ) character-

izes the many-body interaction parameter with U being
the on-site mean two-body interaction energy where U =
U++U−

2 . Now for symmetric DW, we consider U+ = U− = U .
Equations (16) and (17) represent the dissipative BJJ equa-
tion with noise. The detailed derivation of Eqs. (16) and (17)
is presented in Appendix C. In the absence of noise [ξL,R(t ) =
0] the equations reduce to the dissipative BJJ equations in
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which the dissipative coefficient term can be modified by
the linear contribution from θ̇ (t ), which is usually studied in
the standard dissipative BJJ [81,85,86,93]. In the absence of
dissipation (γ = 0) Eqs. (16) and (17) reduce to the standard
BJJ equations.

III. PHASE DRIFT AND DIFFUSION

Equations (16) and (17) describe the BJJ equations with
quantum noise. These are nonlinear Langevin equations
which cannot be solved by any direct analytical method. The
traditional way to circumvent this difficulty is to resort to the

weak noise limit. To this end we consider first the steady
state of the system in the absence of noise and linearize the
dynamics around it. We are then led to a multivariate Ornstein-
Uhlenbeck (OU) process as considered below.

To proceed, we begin with the steady states of the
dynamical system (zs, θs). These steady states are the zero-
phase mode (zs = 0, θs = 0), π -phase mode (zs = 0, θs =
π ), and π -phase self-trapping mode (zs = ±

√
1 − 1

�2
0
, θs =

π ). Now linearizing the system around (zs, θs) with z =
zs + δz and θ = θs + δθ , where δz and δθ are small per-
turbations, we obtain the linearized Langevin equations in
c-numbers

δż = −2K

h̄

√
1 − z2

s cos θsδθ + 2K

h̄

zsδz√
1 − z2

s

sin θs − γ Nδz + ξz(t ), (18)

δθ̇ = 2K

h̄

[
�0δz − zs sin θs√

1 − z2
s

δθ + cos θs

(1 − z2
s )

3
2

δz

]
+ ξθ (t ), (19)

where ξz(t ) = ξL(t ) − ξR(t ) + zs[ξL(t ) + ξR(t )] and ξθ (t ) = ξR(t ) − ξL(t ). Here we have used the relations NLs,Rs = N
2 (1 ± zs).

NLs,Rs are the steady-state values of the number of atoms in the left and right wells. For γ > 0, δz gets equilibrated at a fast rate.
One can therefore resort to adiabatic elimination of the fast variable z, which results in

δz =
2K
h̄

√
1 − z2

s cos θsδθ − ξz

2K
h̄

zs sin θs√
1−z2

s

− γ N
.

Now inserting δz in Eq. (19), we obtain after some algebra an equation in the form of linear Langevin dynamics for phase δθ (t ):

δθ̇ = −ηδθ + Cξz(t ) + ξθ (t ), (20)

where η is the linear phase drift. The general expressions for η and C are

η = 2K

h̄

⎡
⎢⎣ zs sin θs√

1 − z2
s

− cos θs(
1 − z2

s

) 3
2

⎛
⎜⎝

√
1 − z2

s cos θs

zs sin θs√
1−z2

s

− γ Nh̄
2K

⎞
⎟⎠ − �0

⎛
⎜⎝

√
1 − z2

s cos θs

zs sin θs√
1−z2

s

− γ Nh̄
2K

⎞
⎟⎠

⎤
⎥⎦ (21)

and

C = − cos θs(
1 − z2

s

) 3
2

⎛
⎜⎝ 1

zs sin θs√
1−z2

s

− γ Nh̄
2K

⎞
⎟⎠ − �0

⎛
⎜⎝ 1

zs sin θs√
1−z2

s

− γ Nh̄
2K

⎞
⎟⎠, (22)

respectively. It is important to emphasize that as δz saturates,
δθ is governed by diffusion and drift. The drift η [Eq. (21)]
contains γ . A closer look at the steady states (zs, θs) and
their substitution in expression (21) indicates that η is always
positive. Thus δθ cannot grow indefinitely but is governed
by Brownian dynamics following the fluctuation-dissipation
relation, so that δθ equilibrates in time.

Making use of the fluctuation-dissipation relation for c-
number noise with zero mean [Eqs. (B6) and (B7)] it follows

〈ξ (t )ξ (t ′)〉 = C2(1 + z2
s )2γ coth(h̄	/2kBT )δ(t − t ′),

where ξ (t ) = Cξz(t ) + ξθ (t ). The Fokker-Planck equa-
tion corresponding to the linear Langevin dynamics [Eq. (20)]
is given by [89]

∂P(�, t )

∂t
= − ∂

∂�
(η�)P(�, t ) + D ∂2P(�, t )

∂�2
. (23)

Here P(�, t ) is the probability of finding � at time t ; we have
put δθ ≡ �. D is the phase diffusion coefficient as given by

D = C2γ
(
1 + z2

s

)
coth(h̄	/2kBT ). (24)

A clear separation of the statistical part coth(h̄	/2kBT ) from
the dynamical prefactor is quite apparent in the above ex-
pression. The expression for phase diffusion coefficient is one
of the main results of this section. Equation (23) shows that
phase perturbation can be described as Brownian motion of
a particle characterized by phase drift and diffusion. At finite
temperature, the macroscopic quantum tunneling across 1D
dissipative BJJ is thus significantly affected by number and
phase fluctuations.

Before closing this section, we digress a little bit about
the consistency check of the calculation. Putting the Fokker-
Planck equation (23) in the form of a continuity equation
∂P
∂t + ∂F

∂�
= 0, we identify the flux [89]

F = −
(

η�P + D ∂P

∂�

)
.
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At equilibrium F = 0, we obtain from the above equation the
equilibrium distribution function

Pequ(�) = A exp

[
−

(
κ−1

2 coth
(

h̄	
2kBT

)
)

�2

]
(25)

for the zero-phase mode κ = 1+�0
N , π -phase mode κ = 1−�0

N ,

and π -phase self-trapping mode κ = �2
0(�2

0−1)
N . T is the tem-

perature and A is the normalization constant, respectively.
The distribution does not depend on γ as it should for the
attainment of equilibrium. Second, the width is governed
by the coth function, which carries the signature of Wigner
canonical thermal distribution (B4) employed in the course
of construction of the ensemble for c-number noise in the

present treatment. Third, the occurrence of the �2 term in the
parentheses of the distribution is reminiscent of the potential
energy term of an equilibrium distribution.

IV. SPECTRUM OF FLUCTUATIONS

We now go beyond the adiabatic elimination of a fast
variable to calculate the spectra of the fluctuation of number
imbalance and phase difference associated with the BJJ dy-
namics. To proceed we recast Eqs. (18) and (19) in matrix
form as

β̇(t ) = −Bβ(t ) + M(t ), (26)

where

β =
(

δz
δθ

)
, B =

⎛
⎜⎝

γ N − 2K
h̄

zs sin θs√
1−z2

s

2K
h̄

√
1 − z2

s cos θs

− 2K
h̄

(
�0 + cos θs

(1−z2
s )

3
2

)
2K
h̄

zs sin θs√
1−z2

s

⎞
⎟⎠, M =

(
ξz

ξθ

)

such that ββT ≡ β × β is a direct product of the matrix

β × β =
(

δz(t )δz(t ) δz(t )δθ (t )
δθ (t )δz(t ) δθ (t )δθ (t )

)
.

Taking the average on both sides of Eq. (26) we obtain

〈β̇(t )〉 = −B〈β(t )〉 + 〈M(t )〉.
By virtue of the zero mean of c-number noise 〈ξL,R(t )〉 = 0,
we have 〈M(t )〉 = 0. Direct integration yields

〈β(t )〉 = e−Bt 〈β(0)〉,
where 〈β(0)〉 gives the average of the initial value 〈β(t )〉.
Now, according to the regression theorem the correlation
function decays in the same way as the average decay, which
suggests that

〈β(t )β(0)〉 = e−Bt 〈β(0)β(0)〉,
〈β(0)β(t )〉 = 〈β(0)β(0)〉e−BT t . (27)

To obtain the low-frequency spectrum of various modes of
correlation, we calculate the Fourier transform of 〈β(t )β(0)〉
and define

S (�) =
∫ +∞

−∞
e−i�It 〈β(t )β(0)〉 dt, (28)

where � refers to the detuning around 	, I is the identity ma-
trix and t = 0 refers to the stationary state, i.e., we calculate
the correlation of fluctuation around the stationary state. On
further manipulation of Eqs. (28) and (27), we obtain

S (�) = (B + i�I )−1〈β(0)β(0)〉 + 〈β(0)β(0)〉(BT − i�I )−1.

The stationary state contribution in the above equation can be
expressed in terms of the diffusion matrix of the form

Dz,θ =
(

γ
(
1 + z2

s

)
coth(h̄	/2kBT ) 0

0 γ coth(h̄	/2kBT )

)
so that the 2 × 2 fluctuation spectrum matrix becomes

S (�) = (B + i�I )−12Dz,θ (BT − i�I )−1.

Explicit evaluation of the matrix elements results in the fluctu-
ations of number imbalance as the S11 element, while the S22

element represents the contribution due to phase fluctuation
[88].

The number fluctuation spectrum (S11 element) can be
written as

Sz(�) = 2D11
(
B2

22 + �2
) + 2D22B2

12

(B11B22 − B12B21 − �2)2 + �2(B11 + B22)2
.

(29)

Similarly, the phase fluctuation term (S22 element) can be
written as

Sθ (�) = 2D11B2
21 + 2D22

(
B2

11 + �2
)

(B11B22 − B12B21 − �2)2 + �2(B11 + B22)2
,

(30)

where B11 = γ N − 2K
h̄

zs sin θs√
1−z2

s

, B12 = 2K
h̄

√
1 − z2

s cos θs, B21 =
− 2K

h̄ (�0 + cos θs

(1−z2
s )

3
2

), and B22 = 2K
h̄

zs sin θs√
1−z2

s

. The diffusion ma-

trix elements are defined as D11 = γ (1 + z2
s ) coth(h̄	/2kBT )

and D22 = γ coth(h̄	/2kBT ).

V. RESULTS AND DISCUSSION

We now discuss three distinct aspects of the present work
highlighting the coherence factor, phase diffusion coefficient,
and fluctuation spectra for zero- and π -phase modes. The
conspicuous role of the on-site interaction and tunneling and
their interplay with the system-bath coupling in controlling
coherence, phase transition, and quantum fluctuation of num-
ber and phase are illustrated.

A. Coherence factor

In order to study the coherent and incoherent regimes of the
dissipative BJJ, we now define 〈cos �〉 as a coherence factor
[79] as it provides the degree of coherence of the system.
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FIG. 1. (a) Variation of the coherence factor 〈cos �〉 as a function
of U/K at kBT/h̄	 = 1/10 in zero-phase mode. (b) Variation of
〈cos �〉 as a function of 2kBT/h̄	 for U/K = 1 (blue solid line),
U/K = 2 (red solid line), and U/K = 3 (black solid line). Note the
logarithmic scale on the horizontal axis.

If the value of the linearized phase is localized around zero,
the value of the coherence factor is close to unity. If instead
the phase is fully delocalized and all its values are equally
probable, then the value of the coherence factor is close to
zero implying that the system is in the incoherent state. Since
at equilibrium the relative phase follows the Wigner thermal
canonical distribution [78] as described by Eq. (25), one may
define explicitly the coherence factor as follows:

〈cos �〉 =
∫ π

−π
d� cos � exp

[
cos �

κ coth( h̄	
2kBT )

]
∫ π

−π
d� exp

[
cos �

κ coth( h̄	
2kBT )

] . (31)

The appearance of the factor κ in the canonical distribution
makes the coherence factor dependent on the on-site mean
two-body interaction energy U and the tunneling energy K .
In what follows we examine the coherence factor in the light
of these parameters.

1. Zero-phase mode

For our numerical calculation in zero-phase mode, we set
the total number of atoms N = 1000. In Fig. 1(a) we show the
coherence factor 〈cos �〉 as a function of the ratio U/K for
the low-temperature limit kBT/h̄	 = 1/10 in the zero-phase
mode for which κ = 1+�0

N . It is apparent that in the limit of
strong tunneling U/K 
 1, the coherence factor gets close
to unity. This is because under this condition the system un-
dergoes a small oscillation around the equilibrium zero-phase
value. In this limit the fluctuation of the phase difference is
also small. In the opposite limit, when U/K � 1, the am-
plitude of the oscillation around the equilibrium increases
as a result of delocalization of the phase due to the large
on-site interaction. As the phase fluctuations are not small,
the coherence factor gradually decreases. This is similar to
the prediction of the coherence factor calculated using the
Josephson Hamiltonian [79]. In Fig. 1(b) we plot the tem-
perature dependence of the coherence factor. It is clear that
for a particular value of the interaction energy, the coherence
factor at low temperature is almost constant and then with
increase of temperature the coherence factor decreases. At
high temperature (2kBT/h̄	 ≈ 100), the curves coincide for
different interaction energies close to zero, i.e., the system
becomes incoherent. This general behavior of the coherence
factor is observed over three orders of magnitude of 2kBT/h̄	

FIG. 2. (a) Variation of 〈cos �〉 as a function of U/K at
kBT/h̄	 = 1/10 in the π -phase self-trapping regime. The vertical
dashed-dotted magenta line corresponds to U/K = 0.004. (b) Vari-
ation of 〈cos �〉 as a function of 2kBT/h̄	 for U/K = 0.006 (blue
solid line) and U/K = 0.01 (black solid line). Note the logarithmic
scale on the horizontal axis.

and is in good agreement with the experimental observation
[29].

2. π-phase self-trapping mode

In Fig. 2(a) we plot the coherence factor 〈cos �〉 as a func-
tion of the ratio U/K for the low-temperature limit kBT/h̄	 =
1/10 in the π -phase self-trapping regime. In this regime κ

is given by κ = �2
0[�2

0−1]
N with �0 > 1. The coherence factor

quickly falls from unity to zero with small change in the U/K
ratio. When U/K < 0.004, the value of the coherence factor
is close to unity. In this regime the system oscillates around a
nonzero value of the population imbalance and phase differ-
ence, and the fluctuation in phase remains low. When U/K >

0.004 the coherence factor falls off rapidly from unity to zero.
In Fig. 2(a) the vertical dashed-dotted magenta line corre-
sponds to U/K = 0.004, which basically separates out the
π -phase self-trapping regime from the running π -phase self-
trapping regime [82]. In the running π -phase self-trapping
regime the population imbalance oscillates around a nonzero
mean value, but the phase difference between the two BECs
in the left and right wells evolves unbound as a result of which
the relative phase increases monotonically. So the phase is
delocalized and the phase fluctuations are not small. The sys-
tem becomes incoherent. Furthermore when U/K > 0.025,
the value of the coherence factor is almost zero signifying
the incoherent regime. In Fig. 2(b) we show the temperature
dependence of the coherence factor for fixed interaction ener-
gies by choosing U/K in the nearly coherent regime where the
system is in the running phase self-trapping mode. We observe
similar behavior when compared to the case of the zero-phase
mode. However, compared to the zero-phase mode the degree
of coherence increases by one order of magnitude. This study
of coherence reveals that the 1D dissipative BJJ has a higher
degree of coherence.

B. Phase diffusion coefficient

In this section we present our results for the variation of
the phase diffusion coefficient with temperature and its phase
transition-like behavior in π -phase modes.

1. Variation of D with temperature

The dependence of the phase diffusion coefficient D on the
interaction parameter, dissipation constant, and temperature is
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FIG. 3. Variation of the phase diffusion coefficient D as a
function of 2kBT/h̄	 for different values of γ̃ with many-body
interaction parameter �0 = 0.5 in the zero-phase mode.

clearly illustrated by expression (24). A representative varia-
tion of D as a function of temperature is shown in Fig. 3 for
the zero-phase mode for several values of γ̃ for N = 1000.
We set U/K = 0.001 such that the many-body interaction
parameter becomes �0 = 0.5 (weak interaction or the strong
tunneling regime). It is observed that D remains constant up
to 2kBT/h̄	 ≈ 0.4. On further increase of the temperature,
i.e., (2kBT/h̄	 > 0.4) D increases but for lower values of
γ̃ as shown by the blue dashed-dotted line in Fig. 3. The
variation is insensitive to the temperature for larger values of
dissipation coefficient as evident from the magenta and red
dashed-dotted lines in Fig. 3. The trend is qualitatively similar
to the corresponding cases for the π -phase modes.

2. Variation of D with �0

In the π -phase mode, there are three steady-state solutions
(a) zs = 0, θs = π , (b) zs =

√
1 − 1

�2
0
, θs = π , and (c) zs =

−
√

1 − 1
�2

0
, θs = π . The first solution arises for �0 < 1; the

second and third solutions are acceptable for when �0 > 1. At
�0 = 1 a bifurcation of population imbalance occurs which is
plotted in the inset of Fig. 4. This bifurcation in the π -phase
mode has been observed experimentally in internal BJJs [94].
To analyze the effect of this bifurcation on the phase diffusion
coefficient, we plot D as a function of the interaction param-
eter �0 in Fig. 4. We see that for �0 < 1, i.e., when zs =
0, θs = π , the phase diffusion coefficient D ∝ C2γ where
C = 2K

h̄γ̃
[�0 − 1]. With an increase of �0, the phase diffusion

coefficient D decreases as represented by the solid magenta
line. At �0 = 1, the phase diffusion coefficient becomes zero.
For �0 > 1, there are two possible solutions of zs, and for both
cases C is given by C = 2K

h̄γ̃
[�0 − 1

�3
0
]. For this, we observe

that D increases sharply with the increase of �0 as represented
by the blue solid and red dashed lines. �0 = 1 is therefore the
critical point at which a turnover of the phase diffusion coeffi-
cient occurs due to bifurcation of zs. The phase transition-like
behavior here originates from the symmetry breaking in BJJ
in the π -phase modes. It is interesting to note that the two
branches of the bifurcation in zs shown for the steady-state
population imbalance (inset) coalesce on a single line for the
phase diffusion coefficient in the regime �0 > 1. This can be
understood from the expression for phase diffusion coefficient
D, which is a function of z2

s rather than zs.

FIG. 4. Variation of D as a function of �0 at kBT/h̄	 = 1/10
with γ̃ = 1 in the π -phase mode. Magenta solid line depicts D vs

�0 curve for zs = 0, θs = π and for zs = ±
√

1 − 1
�2

0
, θs = π ; the

D vs �0 curve is depicted by solid blue and red dashed lines. The
vertical black dashed line corresponds to the critical �0 for the
transition between Josephson oscillation and MQST in the π -phase
mode. Inset: Variation of the steady-state population imbalance zs as
a function of �0. The three different colors signify three different
steady states of the population imbalance. The vertical black dashed
line corresponds to �0 where the bifurcation of zs occurs.

The turnover or phase transition-like behavior of D can
be explained as follows: For a small dissipation coefficient
(γ̃ = 1) at low temperature (kBT/h̄	 = 1/10), it follows that
the dynamics of the dissipative BJJ is governed by the Joseph-
son Hamiltonian [82], which gives negative energy for the
zero-phase mode and positive energy for the π -phase mode.
Now, in the π -phase mode, the system initially has large
energy so that the increase of �0 does not change the flow of
the relative phase between two wells in the DW potential as a
result of which D decreases. At the critical �0, the interaction
energy, however, becomes equal to the steady-state Josephson
Hamiltonian energy, which implies that at this point there is no
flow of the relative phase between the wells. Further increase
of �0 implies that many-body interaction energy becomes
large compared to the Josephson Hamiltonian energy so that
the flow is reversed and as a result D increases. This is also
similar to the case of the zero-phase mode because for this
case the initial Josephson Hamiltonian energy is negative and
with increase of �0, D increases. For the sake of brevity the
behavior of D as a function of �0 in the zero-phase mode
is not shown. However, it is clear that as [D ∝ (1 + �0)2] D
increases with increase of �0.

C. Quantum fluctuation spectra

From Eqs. (29) and (30), the analytical expressions for the
spectra of number and phase fluctuations become

Sz(�) =
2γ̃

N coth
(

h̄	
2kBT

)
(4 + �2)(

�2 − f 2 + γ̃ 2

2

)2 + (
f 2γ̃ 2 − γ̃ 4

4

) ,

Sθ (�) =
2γ̃

N coth
(

h̄	
2kBT

)
[ f 2(1 + �0) + γ̃ 2 + �2](

�2 − f 2 + γ̃ 2

2

)2 + (
f 2γ̃ 2 − γ̃ 4

4

) ,

respectively. Here γ̃ = γ N and the oscillation frequency
f = 2K

h̄

√
1 + �0 (zero-phase mode Josephson frequency),
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FIG. 5. Variations of the number fluctuation spectrum Sz(�)
(a) and phase fluctuation spectrum Sθ (�) (b) as a function of �

for zero-phase (solid blue line) and π -phase mode (solid black line)
for U/K = 0.001, γ̃ = 1 with N = 1000, and kBT/h̄	 = 1/10. The
blue and black dashed-dotted lines indicate the Josephson frequency
in the absence of dissipation for zero and π -phase mode, respectively.

f = 2K
h̄

√
1 − �0 (π -phase mode Josephson frequency), and

f = 2K
h̄

√
�2

0 − 1 (π -phase self-trapping frequency) of the
three modes.

From the above expressions we first note that when the
detuning � = 0, both number and phase fluctuations persist
(Sz, Sθ �= 0) in zero- and π -phase modes of 1D dissipative
BJJ down to absolute zero. Second, it is clear that the peak
position depends on a γ̃ -dependent shift from the Josephson
frequency for zero- and π -phase modes and the self-trapping
frequency for the respective mode. We emphasize that this
frequency shift is a direct consequence of the nonlinear
system-bath interaction in which the fluctuation in energy
levels of the system causes a phase loss of initial coherence
without dissipation. Third, depending on the relative strength
of γ̃ , i.e., the system-reservoir coupling and the on-site in-
teraction �0, the phase and number fluctuation spectra may
exhibit a single- or double-peak structure. The interaction
(�0) -induced splitting when γ̃ is small is reminiscent of the
Autler-Townes doublet in quantum optics. We now illustrate
the main results for the fluctuation spectra.

We first examine the general spectral characteristics in the
weak on-site interaction and weak dissipation regime in the
zero- and π -phase mode. For this we set kBT/h̄	 = 1/10,
U/K = 0.001, and γ̃ = 1 with total number of atoms N =
1000. In Figs. 5(a) and 5(b), we plot the number and phase
fluctuation spectra as a function of detuning for the zero-
phase mode denoted by the solid blue line and for the π -phase
Josephson oscillation regime indicated by the solid black line.
For each mode, we observe that two peaks appear where
the dashed-dotted lines indicate the Josephson frequency in
the respective modes. It is clear that exactly at the shifted
Josephson frequency the amplitude of the number and phase
fluctuation spectra is maximum. In the π -phase mode the am-

FIG. 6. Variations of Sz(�) (a) and Sθ (�) (b) as a function of
� for different values of γ̃ in zero-phase mode for U/K = 0.001,
with N = 1000 and kBT/h̄	 = 1/10. The green dashed-dotted line
indicates the Josephson frequency in zero-phase mode in the absence
of dissipation.

plitude of the number fluctuation spectrum is higher compared
to that in the zero-phase mode for the same � value, and the
opposite behavior is observed for the phase fluctuation spec-
tra. We also observe that the difference between the maximum
and minimum of the spectra at � = 0 is large for the π -
phase mode number fluctuation spectra compared to that for
the corresponding zero-phase mode. The reason behind this
behavior is that for a fixed many-body interaction parameter
the Josephson frequency for the zero-phase mode is always
greater than that for the π -phase mode. As a result when
the Josephson frequency decreases the amplitude increases as
well as the depth increases. A similar but opposite behavior
for phase fluctuation spectra is observed. As noted due to the
presence of γ̃ the peak positions of the number and phase
fluctuation spectra are not exactly at the Josephson frequency
in the π -phase mode of the standard BJJ. This signifies that
the peak frequency is modified by γ̃ . The modification is a
direct consequence of the frequency fluctuations in the energy
levels with excitation-deexcitation in the system mode and
is an important feature in the coherent behavior of the 1D
dissipative BJJ.

Next we examine how the phase and number fluctuations
change on increasing dissipation in the system in the zero-
phase mode. In Figs. 6(a) and 6(b) we plot the number and
phase fluctuation spectra as a function of detuning for several
values of dissipation coefficient γ̃ for N = 1000. It is apparent
that with an increase of γ̃ the two-peak structure reduces to
one peak in each case indicating a transition from coherent to
incoherent regime. The coherent regime implies the standard
BJJ picture where the system oscillates between the two wells
with a frequency close to the Josephson frequency, whereas
for the incoherent regime the tunneling is prohibited.

We now study the effect of dissipation on number and
phase fluctuation spectra in the π -phase mode Josephson os-
cillation regime. In Figs. 7(a) and 7(b) we plot the number and
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FIG. 7. Variations of Sz(�) (a) and Sθ (�) (b) as a function of �

for different values of γ̃ in the π -phase Josephson oscillation regime
for U/K = 0.001, with N = 1000 and kBT/h̄	 = 1/10. The green
dashed-dotted line indicates the Josephson frequency in the π -phase
mode in the absence of dissipation.

phase fluctuation spectra as a function of detuning for several
values of dissipation strength. The results are qualitatively
similar to the earlier case. The difference, however, is that in
the π -phase mode one reaches the incoherent regime for weak
dissipation compared to the zero-phase mode for which one
observes a transition from the coherent to incoherent regime
for comparatively large values of γ̃ .

Next we explore the fluctuation spectra for the weak and
strong dissipative regime for the π -phase self-trapping mode.
In Figs. 8(a) and 8(b) we plot the number and phase fluctu-
ation spectra as a function of detuning for weak dissipation

FIG. 8. Variations of Sz(�) (a) and Sθ (�) (b) as a function of
� for γ̃ = 1 (solid blue line) and γ̃ = 8 (solid black line) in the π -
phase mode self-trapping regime for U/K = 0.003, with N = 1000
and kBT/h̄	 = 1/10. The blue dashed-dotted line indicates the self-
trapping frequency in the π -phase mode in the absence of dissipation.

(γ̃ = 1) and strong dissipation (γ̃ = 8). In the π -phase self-
trapping regime, we choose the value of on-site interaction
energy U/K > 0.002 such that the many-body interaction
parameter �0 becomes greater than unity. We observe that
for weak dissipation (γ̃ = 1 the solid blue line) the number
and phase fluctuation spectra show the two peaks implying
the coherent behavior where the peak amplitudes of the fluctu-
ation spectra are at the π -phase mode self-trapping frequency
denoted by the dashed-dotted blue line in Fig. 8. This picture
qualitatively describes the coherent behavior of the 1D dissi-
pative BJJ in the range of small dissipation where both number
and phase of the atoms in the wells oscillate with nonzero
average value. For strong dissipation (γ̃ = 8), we observe
that a single peak appears at � = 0 in the fluctuation spectra.
However, the amplitude of the phase fluctuation spectra is
always greater than that for the number fluctuation spectra.

VI. CONCLUSION

In this paper we have considered the dissipative BJJ within
a two-mode Hamiltonian description. The key point of the
study is the nonlinear coupling between the system and the
bath modes such that the coherent excitation-deexcitation of
the system modes brings out frequency fluctuation, which
later gives rise to decoherence in the system. We have derived
the associated quantum Langevin equations for the relative
phase and population imbalance for the two BJJ modes.
Quantum fluctuations around the three steady states of the
dynamics, zero-phase mode, π -phase mode, and π -phase
self-trapping mode, have been analyzed for several ranges of
interaction parameter �0 (measured in terms of the ratio of
the strength of on-site interaction and tunneling), temperature
T , and system-assisted dissipation coefficient γ̃ , to explore
the coherence factor, phase diffusion coefficient, and fluctu-
ation spectra for population imbalance and phase difference.
Our observations on the variation of coherence factor as well
as the phase transition-like behavior of the phase diffusion
coefficient between Josephson oscillation and MQST regime
as a function of interaction parameter �0 and the splitting
and frequency shift of the Josephson frequency in the spec-
tra are, we believe, amenable to experimental investigation
within the scope of bath engineering. As the dissipation here is
system-assisted it may be worthwhile to consider excitation-
deexcitation of the chosen BJJ modes driven by an external
field within the broadband of the frequency response of the
bath. The on-site interaction-induced splitting and the shift
of the Josephson frequency for the three modes are directly
measurable quantities from the measurement of fluctuation
spectra.

APPENDIX A: DETAILED DERIVATION OF HEISENBERG
EQUATIONS OF MOTION FOR THE SYSTEM

AND BATH OPERATORS

Formal integration of Eqs. (8) and (9) yields

b̂Lk (t ) = b̂Lk (t0)e−iωk (t−t0 )

− igk

∫ t

t0

â†
L(t ′)âL(t ′)e−iωk (t−t ′ ) dt ′, (A1)
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b̂Rk (t ) = b̂Rk (t0)e−iωk (t−t0 )

− igk

∫ t

t0

â†
R(t ′)âR(t ′)e−iωk (t−t ′ ) dt ′, (A2)

where the first term is the free evolution of bath operators,
whereas the second term arises due to the interaction with the
system. Inserting Eqs. (A1) and (A2) in Eqs. (6) and (7) we
get

˙̂aL = − iE

h̄
âL + iK

h̄
âR − iU+

h̄
â†

LâLâL

− i
∑

k

gkb̂Lk (t0)e−iωk (t−t0 )âL

−
∑

k

g2
k

∫ t

t0

â†
L(t ′)âL(t ′)âL(t )e−iωk (t−t ′ ) dt ′, (A3)

˙̂aR = − iE

h̄
âR + iK

h̄
âL − iU−

h̄
â†

RâRâR

− i
∑

k

gkb̂Rk (t0)e−iωk (t−t0 )âR

−
∑

k

g2
k

∫ t

t0

â†
R(t ′)âR(t ′)âR(t )e−iωk (t−t ′ ) dt ′. (A4)

Changing the integration variable from t ′ to τ = t − t ′ in
Eq. (A3), we may write the last term in Eq. (A3) as∑

k g2
k

∫ t−t0
0 â†

L(t − τ )âL(t − τ )âL(t − τ )e−iωkτ dτ , where we
have approximated âL(t ) = âL(t − τ ) for the last annihila-
tion operator, since the interference time τc of

∑
k g2

ke−iωkτ

is much smaller than the time over which the amplitude
and the phase modulation of aL(t ) take place. Thus for
times t − t0 > τc, τc → 0, the summation acts as a delta
function so that we may write the integral approximately
as â†

LâLâL
∫ ∞

0 dτ
∑

k g2
ke−i(E/h̄−ωk )τ . Assuming that the bath

modes are closely spaced in frequency we replace the sum-
mation over k by an integral over ω, i.e.,

∑
k → ∫

dω�(ω),
where �(ω) is the density of states. This density and g(ω)
are proportional to the powers of ω and vary very little in the
frequency interval τ−1 over ω. This leads us to the following
two equations for the reduced dynamics [the same procedure
is followed for Eq. (A4)]:

˙̂aL = − iE

h̄
âL + iK

h̄
âR − iU+

h̄
â†

LâLâL − γ

2
â†

LâLâL + f̂L(t )âL,

(A5)

˙̂aR = − iE

h̄
âR + iK

h̄
âL − iU−

h̄
â†

RâRâR − γ

2
â†

RâRâR + f̂R(t )âR,

(A6)

where γ = 2πg2(	)�(	) represents the dissipation of the
modes and 	 = E/h̄. �(	) is the density of the bath modes.
The terms f̂L(t ) = −i

∑
k gk (t0)b̂Lk (t0)e−iωk (t−t0 ) and f̂R(t ) =

−i
∑

k gk (t0)b̂Rk (t0)e−iωk (t−t0 ) refer to quantum noise due to
the heat baths for the L and R modes.

APPENDIX B: QUANTUM AND THERMAL PROPERTIES
OF NOISE

The noise properties of the operator F̂L,R and F̂ †
L,R in

Eqs. (12) and (13) can be derived using a suitable canonical

thermal distribution of the bath operators at t0 = 0. To this
end we define the quantum statistical average of any reservoir
operator Ô:

〈Ô〉qs = Tr[Ô exp (−ĤR/kBT )]

Tr[exp (−ĤR/kBT )]
, (B1)

where ĤR = ∑
j h̄ω j n̂ j at t0 = 0 and n̂ j denotes the

number operator in jth bath mode. Based on the above
considerations the noise properties of the operator may be
calculated using the canonical distribution of Eqs. (12)
and (13). This immediately gives 〈F̂L,R(t )〉qs = 0 and
〈F̂ †

L,R(t )〉qs = 0 and 〈F̂ †
L,R(t )F̂L,R(t ′)〉qs = γ n̄L,R(	)δ(t − t ′)

and 〈F̂L,R(t )F̂ †
L,R(t ′)〉qs = γ [n̄L,R(	) + 1]δ(t − t ′). The

fluctuation-dissipation relation gives

〈F̂ †
L,R(t )F̂L,R(t ′) + F̂L,R(t )F̂ †

L,R(t ′)〉qs

= γ [2n̄L,R(	) + 1]δ(t − t ′)

= γ coth(h̄	/2kBT )δ(t − t ′), (B2)

where the contangent hyperbolic factor in Eq. (B2) can be
identified with the Bose-Einstein distribution

n̄L,R(	) = 1

eh̄	/kBT − 1
(B3)

using the relation 2n̄L,R(	) + 1 = coth(h̄	/2kBT ) and the
plus one factor is responsible for the vacuum fluctuation,
which is always present on the quantum scale even at absolute
zero temperature.

Now to realize ξL,R(t ) as an effective c-number noise,
we introduce the ansatz that μLk,Rk (0) and μ∗

Lk,Rk (0) are
distributed according to the Wigner thermal canonical distri-
bution of the Gaussian form [78,92] as follows:

WLk,Rk[μLk,Rk (0), μ∗
Lk,Rk (0)]

= NBL,BR exp

[
− |μLk,Rk (0)|2

2 coth
(

h̄	
2kBT

)
]
. (B4)

Here NBL,BR is the normalization constant for L and R wells
and coth( h̄	

2kBT ) is the width of the distribution. For any ar-
bitrary quantum mechanical mean value of the bath operator
〈B̂Lk,Rk〉 which is a function of μLk,Rk (0), μ∗

Lk,Rk (0), its statis-
tical average can then be calculated as

〈〈B̂Lk,Rk〉〉s =
∫

〈B̂Lk,Rk〉WLk,Rk[μLk,Rk (0),

×μ∗
Lk,Rk (0)] dμLk,Rk (0) dμ∗

Lk,Rk (0). (B5)

Using the ansatz (B4) and the definition of statistical average
of Eq. (B5), one can show that the c-number noise satisfies the
following relations:

〈ξL,R(t )〉s = 0,

〈ξ ∗
L,R(t )〉s = 0, (B6)

and

〈ξ ∗
L,R(t )ξL,R(t ′)〉s = γ coth(h̄	/2kBT )δ(t − t ′),

〈ξL,R(t )ξ ∗
L,R(t ′)〉s = γ coth(h̄	/2kBT )δ(t − t ′). (B7)

Equations (B6) and (B7) imply that the c-number noise ξL,R(t )
is characterized by zero mean and follow the fluctuation-
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dissipation relation. The use of the Wigner canonical thermal
distribution function [92] is mainly motivated by the fact that
once the averaging procedure as carried out in two steps (first,
quantum mechanical average over the operators for the bath
variables; second, statistical averaging with Wigner canonical
distribution of the c-numbers) is fixed, one arrives at the
Langevin equation in c-numbers directly. By using the c-
number formalism, we may thus bypass the operator-ordering
prescription for the derivation of noise properties. Once
the noise properties are derived it is easy to formulate the
Fokker-Planck equation for c-number variables and to cal-
culate the correlation functions and fluctuation spectra. The
c-number noise ξL,R(t ) as characterized by Eqs. (B6) and (B7)
is classical looking in form but essentially quantum mechani-
cal in nature [95].

APPENDIX C: DETAILED DERIVATION OF EQS. (16)
AND (17) FROM EQS. (14) AND (15)

We return to the classical field equations for the two wells
as given by Eqs. (14) and (15). The c-number amplitudes may
be written as αL = √

NLeiθL , and αR = √
NReiθR , which give

α̇L = eiθL

2
√

NL

∂NL

∂t
+ i

√
NLeiθL

∂θL

∂t
,

α̇R = eiθR

2
√

NR

∂NR

∂t
+ i

√
NReiθR

∂θR

∂t
.

From the above two equations and Eqs. (14) and (15), we find

1

2
√

NL

∂NL

∂t
+ i

√
NL

∂θL

∂t
= iK

h̄

√
NRei(θR−θL ) − iU+

h̄
NL

√
NL − γ

2
NL

√
NL + (

ξ real
L + iξ im

L

)√
NL, (C1)

1

2
√

NR

∂NR

∂t
+ i

√
NR

∂θR

∂t
= iK

h̄

√
NLe−i(θR−θL ) − iU−

h̄
NR

√
NR − γ

2
NR

√
NR + (

ξ real
R + iξ im

R

)√
NR. (C2)

Now equating the real parts of Eqs. (C1) and (C2) we obtain

∂NL

∂t
= −2K

h̄

√
NLNR sin(θR − θL ) − γ N2

L + 2ξ real
L NL, (C3)

∂NR

∂t
= 2K

h̄

√
NLNR sin(θR − θL ) − γ N2

R + 2ξ real
R NR. (C4)

From the imaginary parts of Eqs. (C1) and (C2) we find

h̄
∂θL

∂t
= K

√
NR

NL
cos(θR − θL ) − U+NL + h̄ξ im

L , (C5)

h̄
∂θR

∂t
= K

√
NL

NR
cos(θR − θL ) − U−NR + h̄ξ im

R . (C6)

Now, subtraction of Eq. (C3) from (C4) and division by the total number N = NL + NR results in

ż(t ) = −4K

h̄

√
NLNR

(NL + NR)
sin(θR − θL ) − γ (NL − NR) + 2ξ real

L NL

N
− 2ξ real

R NR

N
.

Furthermore the substitution 2
√

NLNR

(NL+NR ) =
√

1 − z2(t ) gives

ż(t ) = −2K

h̄

√
1 − z2(t ) sin(θR − θL ) − γ (NL − NR) + 2ξ real

L NL

N
− 2ξ real

R NR

N
.

As a result the equation for population imbalance becomes

ż(t ) = −2K

h̄

√
1 − z2(t ) sin θ (t ) − γ Nz(t ) + ξz. (C7)

Now on subtracting Eq. (C6) from (C5), we get

h̄

(
∂θR

∂t
− ∂θL

∂t

)
= K cos(θR − θL )

⎡
⎣

√
NL

NR
−

√
NR

NL

⎤
⎦ + U+NL − U−NR + h̄ξ im

R − h̄ξ im
L .

We make use of the relation z√
1−z2 = NL−NR

2
√

NLNR
to obtain

θ̇ (t ) = 2K

h̄

[
z(t )√

1 − z2(t )
cos θ + U+NL − U−NR

2K

]
+ ξ im

R − ξ im
L . (C8)

Finally by noting

U+NL − U−NR

2K
= U+ − U−

4K
N + NU

2K
z(t )
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Eq. (C8) becomes

θ̇ (t ) = 2K

h̄

[
z(t )√

1 − z2(t )
cos θ (t ) + U+ − U−

4K
N + NU

2K
z(t )

]
+ ξθ

For a symmetric DW, we write U+ = U−. As a result, the above equation becomes

θ̇ (t ) = 2K

h̄

[
z(t )√

1 − z2(t )
cos θ (t ) + NU

2K
z(t )

]
+ ξθ . (C9)
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