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Statistical mechanics of thermostatically controlled multizone buildings
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We study the collective phenomena and constraints associated with the aggregation of individual cooling
units from a statistical mechanics perspective. These units are modeled as thermostatically controlled loads
(TCLs) and represent zones in a large commercial or residential building. Their energy input is centralized and
controlled by a collective unit—the air handling unit (AHU)—delivering cool air to all TCLs, thereby coupling
them together. Aiming to identify representative qualitative features of the AHU-to-TCL coupling, we build a
simple but realistic model and analyze it in two distinct regimes: the constant supply temperature (CST) and
the constant power input (CPI) regimes. In both cases, we center our analysis on the relaxation dynamics of
individual TCL temperatures to a statistical steady state. We observe that while the dynamics are relatively
fast in the CST regime, resulting in all TCLs evolving around the control set point, the CPI regime reveals the
emergence of a bimodal probability distribution and two, possibly strongly separated, timescales. We observe
that the two modes in the CPI regime are associated with all TCLs being in the same low or high airflow states,
with an occasional collective transition between the modes akin to Kramer’s phenomenon in statistical physics.
To the best of our knowledge, this phenomenon has been overlooked in building energy systems despite its direct
operational implications. It highlights a trade-off between occupational comfort—related to zonal temperature
variations—and energy consumption.
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I. INTRODUCTION

The essence of demand response (DR) lies in providing
auxiliary services helping power system operators manage un-
certainty. The latter can emerge both from variable generation,
e.g., as wind and solar, or from electricity market volatility
[1]. DR consists in leveraging flexible and inexpensive re-
sources on the demand side of the power balance to ensure
stability. The essential source of flexibility comes from many
consumers of electricity tolerating consumption delays, pro-
vided that some constraints remain satisfied [2]. In addition to
large and stable loads, aggregations of many small loads, e.g.,
residential appliances, can also be involved in DR services
[3]. The heating and cooling system in residential buildings is
one such load that possesses inherent flexibility due to thermal
inertia, and thereby presents significant opportunities in a DR
market. Specifically, the potential for impacting total load via
set-point changes has been investigated numerically [4,5] and
empirically [6–8], as well as its ramifications for occupant
comfort [9].

A. Related work

Theoretical studies on the matter have centered around
so-called thermostatically controlled loads (TCLs), denot-
ing physical entities whose temperature oscillates within a
range or around a target value; examples include rooms
in buildings or refrigerators. Understanding the behavior of
aggregations of individual entities and the underlying po-

tential for DR has underpinned most of the interest in this
discipline.

Initial studies focused on adapting existing and developing
unique approaches to the statistics of TCLs [10,11], and pro-
posed a methodology for the aggregation of individual loads
[12]. Large aggregates, also called ensembles, were studied
with the tools of statistical physics, such as Fokker-Planck
equations [13,14], and of control and reinforcement learning,
such as Markov decision processes (MDPs) [15,16]. The main
operational philosophies in the literature include individual
thermostat set-point control [17–19] or randomization and
automatic feedback control at the individual TCL level, based
on collective output [20,21].

While standard TCL models do represent some installa-
tions like independent AC units or refrigerators, they do not
directly capture the intricate dynamics emerging from the
coupling of those units via a district heating network [22]
or the grid services they provide [17,23,24]. In the context
of heating and cooling within a multizone building, indi-
vidual zones are thermally regulated by a small number of
air handling units (AHUs), see Fig. 1 for a simplified illus-
tration. Each AHU is connected to some number of zones.
Its role is to cool and dehumidify a mix of outside and re-
circulated air to a given temperature and relative humidity,
and then to circulate this air—at a given temperature, the
supply temperature—throughout the building. The airflow is
distributed to each zone via variable air volume (VAV) boxes.
See Ref. [25] for an accurate and detailed description of the
operations of such systems. Standard TCL models fail to
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FIG. 1. Simplified illustration of the setup considered. The AHU
is represented by the fan, while individual units have their own
temperatures. The exhaust system from each unit is not represented
for simplicity, and air recirculation is neglected.

account for the specificities of such systems in two ways.
First, they usually assume units to be independent. However,
they are actually coupled through an AHU via the supply
temperature. This interaction and its implication to building
control has not been studied extensively in the TCL literature.
On the contrary, most studies accounting for such coupling
have centered on the development of algorithmic strategies
[26–31]. While these perspectives are necessary for applica-
tions, in this paper we focus on the dynamical implications of
those interactions. Second, the dynamics of cooling in these
models is very different from the reality of residential and
commercial buildings. Indeed, in standard TCL models, cy-
cling is inherent in the dynamics. A unit is cooled at constant
power until it crosses the lower limit of a deadband, and it
is then left to reheat until it crosses its upper limit, at which
point the cycle restarts. In AHU systems, such cycling is not
enforced directly, and the cooling power changes following
changes in the supply temperature [32]. We will see below
that the absence of a prescribed deadband has far-reaching
consequences on how fast the system can recover from a
perturbation, e.g., caused by the units following a DR request.

B. Contribution

In this paper, we suggest models to represent TCLs coupled
via an AHU, and study the thermalization dynamics of the sys-
tem subject to two-level control—at the collective (AHU) and
at the individual (TCL) level. Specifically, we consider two
principally different models representing distinct scenarios.

1. Constant supply temperature (CST). The supply air
temperature cooling each TCL is held constant over time,
thereby eliminating direct coupling between individual units.
While simplistic, this model enables the understanding of the
fundamental dynamics of TCL units.

2. Constant power input (CPI). TCLs are coupled via the
supply temperature as is the case in large residential and
commercial buildings. The latter is adjusted to ensure constant
power input (CPI).

In both cases, we focus on analyzing the details of the
stabilization of the ensemble to a statistical steady state,
established as a result of the balance between exogenous fluc-

tuations representing TCL-specific perturbations and thermal
relaxation. We combine analytical and numerical analyses to
derive insights into the dynamics of this system. In the CST
model, we find that thermalization is relatively fast and results
in TCLs stabilizing around the prescribed temperature. How-
ever, in the CPI scenario, we observe the appearance of more
complex dynamics. When the level of stochastic fluctuations
is small, all units stabilize in either of the two states associated
with low or high airflow. Transitions between both modes,
and thus relaxation to a statistical steady state, happens at a
timescale which is much longer than the natural timescale of
the problem, associated with a metastable equilibrium around
one of the modes. Increasing the level of fluctuations results
in a phase transition to an entropic state distributed around
the control set point. We argue that this complex behavior
of the CPI model is akin (but not exactly equivalent) to the
phenomenon of the thermally activated barrier crossing in
statistical mechanics, often referred to as the reaction rate, or
Kramers’ theory [33–36].

These observations are directly relevant for the operations
of those common coupled systems. Under low uncertainty and
perturbations, one can argue that operating the system at fixed
supply temperature (CST) will result in a predictable outcome
matching comfort requirements, with minor fluctuations in
the total power required. However, in the case of higher fluc-
tuations, e.g., associated with other uncertainties or driving
forces such as sun irradiation, the nontrivial dynamics imply
a need to balance comfort and energy requirements, e.g., for
use in DR.

C. Outline

The contents are presented as follows. In Sec. II, the prob-
lem is formulated along with the two scenarios of interest.
A statistical analysis of the CST scenario is conducted in
Sec. III. Analyses under CPI are conducted in Sec. IV. We
first consider the noiseless limit for one TCL, and extend its
insights to the presence of noise. The general case with an
arbitrary number of TCLs is studied in Sec. IV C. We conclude
and discuss the path forward in Sec. V.

II. PROBLEM FORMULATION

The system we consider consists of two levels. At the lower
level, TCLs evolve according to their individual dynamics. At
the higher level, the AHU manages the energetic input to all
TCLs, thereby coupling them to one another (cf. Fig. 1). In
this section, we lay out the models governing both levels.

A. TCL dynamics

We model the dynamics of an individual TCL by the fol-
lowing stochastic differential equation (SDE):

c dTi = − f (Ti(t ); s(Ti(t )); Ts) dt +
√

2D dWi(t ), (1)

f (Ti(t ); s(Ti(t )); Ts) = Ti(t ) − To

r

+ μ̄s(Ti(t ))cp(Ti(t ) − Ts), (2)

s(Ti(t )) =
{

s−, Ti(t ) � T̄

s+, Ti(t ) > T̄ ,
(3)
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where t is time and Ti(t ) is the temperature of the i-th TCL
unit i ∈ 1, ..., N . We assume that all units are identical and
characterized by the following physical parameters: r [K/kW]
is the coefficient of thermal resistance to the outside air;
cp [kJ/kgK] is the specific heat capacity of air; c [kJ/K] is
the capacitance coefficient representing the total air-mass as-
sociated with an individual TCL; Wi(t ) is the Wiener process;
and D [kJ2] represents the amplitude of exogenous, stochastic,
zero mean thermal (white) noise affecting the TCLs (associ-
ated, e.g., with some uncertainty around in-zone traffic and
operations). μ̄ denotes the maximum airflow that can get into
the zone, while s(·) ∈ [0, 1] indicates how much air is actually
flowing into the room at time t . In Eq. (2), describing the tem-
perature dynamics of a TCL unit, f (Ti(t ); s(Ti(t )); Ts) denotes
the thermal force associated with two principally different
terms. The first contribution to the thermal force describes
deterministic relaxation of the zone temperature, Ti(t ), with
the rate r to the ambient temperature To, which is taken as
constant in this paper. The second contribution to the thermal
force represents the injection of cool air delivered by VAV
units at the mass flow rate μ̄s(Ti(t )) and at a temperature equal
to the supply temperature Ts into the i-th zone. In the present
system, we assume the VAVs are able to modify only the
airflow entering each zone. While in general they are also able
to reheat the incoming air, we assume this is not applicable, as
is the case in warm regions where cooling is mostly needed.
The dynamics of the airflow at each VAV is a simplification of
the dual-maximum control logic [37]. We neglect the heating
regime and assume instantaneous switching (s(t ) in Eq. (3))
as the set point is crossed instead of gradual changes in the
airflow.

The TCL Eqs. (1)–(3), as well as those describing the
AHU dynamics discussed in the next subsection, are reduced
in the sense that all the transients within the TCL units as
well as within the AHU are ignored. This thermodynamic
modeling is justified because the transients processes—which
would require a detailed modeling of the energy transfers—
are largely complete within minutes, while we are interested
in describing the dynamics of temperature within the building
over longer timescales (tens of minutes to hours). Consis-
tently with the consideration of the time separation as well
as of universality, we model uncertainty due to thermal forces
exerted on an individual TCL as white noise. This simplifi-
cation allows us to write Fokker-Planck equations and then
to derive analytical solutions for some probability distribution
functions of interest. We do not expect qualitatively different
conclusions in the case of a more realistic colored noise, even
though the present derivations do not generalize.

B. AHU dynamics

The model in Eqs. (1)–(3) is incomplete until one provides
a closure relationship for Ts, controlling the second contri-
bution to the thermal force in Eq. (2). As detailed in the
remainder of this section, we consider two scenarios which
will be different in terms of the relation between Ts and the
vector of TCL temperatures, T = [T1, . . . , TN ]. In this paper,
we consider simplified models of the AHU energy consump-
tion. Indeed, we assume that the units lie in areas where the
energy attributed to cooling dominates that associated to de-

humidification. This means that the energy consumption of the
AHU can be modeled by the enthalpy change of the air as it
goes through the AHU [38–41]. For the sake of simplicity, we
also neglect air recirculation within the building and assume
that only the outside air is used as input into the AHU.

1. Constant supply temperature. The first scenario consid-
ered, indexed by a, consists of fixing the temperature Ts of the
air delivered to the TCLs to a prescribed constant value, Ts;a.
The total power, i.e., energy injected into the ensemble per
unit time, then writes

Pa(t ) = μ(t )(To − Ts;a), μ(t ) = μ̄
∑

i

s(Ti(t )), (4)

where μ(t ) is the aggregate airflow within the AHU. We
assume that all the airflows in the system are balanced at any
moment in time. We note that under this CST scenario, where
Ts = const, s(Ti(t )) changes with time due to the evolution of
Ti, thereby driving changes in μ(t ). The total power consumed
by the ensemble, P(t ), therefore inherits temporal dynamics
from the aggregation of individual TCL behaviors.

2. Constant power input. In this second scenario, indexed
by b, we assume that the system operator keeps the power
input, P, constant at all times, i.e., P = Pb = const. This is
achieved by adjusting the supply temperature, Ts(t ), according
to the following modification of Eq. (4):

Ts;b(T (t )) = To − Pb

μ̄
∑

i s(Ti(t ))
. (5)

We see that the supply temperature is continually adjusted
based on the local temperature dynamics.

III. STATISTICAL ANALYSIS OF THE CST SCENARIO

The supply temperature Ts is assumed constant, Ts = Ts;a.
The system of SDEs (1)–(3) is closed, thus translating into the
so-called Kolmogorov-Fokker-Planck (KFP) [42,43] partial
differential equation for the joint probability distribution of
the vector of temperatures T within the TCL ensemble:

∂tPa(T |t ) = 1

c

∑
i

∂Ti ( f (Ti; s(Ti ); Ts;a) + D∂Ti )Pa(T |t ). (6)

We observe that the KFP Eq. (6) can be represented in the
potential form

∂tPa(T |t ) = −
∑

i

∂Ti Ji, (7)

Ji = −1

c
(∂TiU (T|Ts;a) + D∂Ti )Pa(T |t ), (8)

U (T |Ts;a) =
N∑

i=1

U1(Ti|Ts;a), (9)

U1(Ti|Ts;a) = (Ti − To)2

2r

+cpμ̄s(Ti)

2

(
(Ti − Ts;a)2 − (T̄ − Ts;a)2

)
, (10)

where Ji is the probability current along Ti, and U (T |Ts;a)
and U1(Ti|Ts;a) are the aggregated and individual TCL ther-
mal potentials, respectively. As the KFP Eq. (6) describes an
initial-value problem, it should be equipped with an initial
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FIG. 2. Temperature distributions for an individual TCL under
the CST scenario after initial transients for different values of the
supply temperature Ts. c = 20.5 kJ/K, r = 2K/kW, D = 25kJ2,
T̄ = 25 C, (s−, s+) = (0.2, 1), μ = 1 kg/s. Filled: Experimental re-
sults. Dotted lines: Theoretical distributions obtained according to
Eq. (11).

condition, e.g., that all TCLs are at the same temperature T0

at t = 0. Then, Pa(T |0) = ∏
i δ(Ti − T0), where δ(·) is the

Dirac δ function. More generally, if Pa(T |0) is factorized
into a product of marginal distributions of individual Ti, the
solution to the KFP equations at all t is also factorized into
the product of the corresponding marginal probability distri-
butions, i.e., Pa(T |t ) = ∏

i Pa;1(Ti|t ).

A. Stationary distribution

Due to the factorized structure of the differential operator
on the right-hand side of Eq. (6), the steady-state solution to
Eq. (6), Pa;st (T ), i.e., one acquired at t → ∞, is also factor-
ized into the product of the respective marginals, Pa;st (T ) =∏

i Pa;1;st (Ti|Ts;a). Moreover, Pa;1;st (Ti|Ts;a) satisfies a sec-
ond order ordinary differential equation (ODE) which can be
solved for any values of Ts;a, considered as a parameter:

Pa;1;st (Ti|Ts;a) = 1

Z
exp

(
−cU1(Ti|Ts;a)

D

)
, (11)

Z =
∫ ∞

−∞
dT exp

(
−cU1(T |Ts;a)

D

)
. (12)

The single-TCL thermal potential, U1(Ti|Ts;a), defined in
Eq. (9), is continuous in Ti. It is, however, not smooth as the
derivative jumps at Ti = T̄ , and attains a single minimum at

Ta;min(Ts;a) =

⎧⎪⎪⎨
⎪⎪⎩

To+Ts;aμ
(−)cr

1+μ(−)cr , Ts;a � β (−)

T̄ , β (−) � Ts;a � β (+)

To+Ts;aμ
(+)cr

1+μ(+)cr , β (+) � Ts;a,

(13)

where β (±) = T̄ − (To − T̄ )/(μ(±)cr). The most probable
value of the TCL temperature at steady state does not depend
on the amplitude of the thermal noise, D.

We report in Fig. 2 the dependence of the steady-state
individual TCL probability distribution Pa;1;st (Ti|Ts;a) on Ti

at different values of Ts;a. Throughout this paper, unless noted

FIG. 3. Location of the two fixed points for N = 2 in the CPI
scenario. The identity is represented by the gray diagonal line. Green
line, dashed: Expected position of the two fixed points according to
Eq. (14). Blue dots: Final temperatures of both TCLs attained after
100s under multiple initializations.

otherwise, parameters for numerical results are To = 30 ◦C,
s− = 0.2, s+ = 1, μ̄ = 1 kg/s, r = 2 K/kW, c = 15 kJ/K,
T̄ = 25 ◦C, Ts = 10 ◦C. Note that there is a range of supply
temperature values where the most probable value is achieved
at Ti = T̄ , e.g., for Ts = 20 ◦C in Fig. 2. This maximum ap-
pears because fluctuations drive the temperature across T̄ ,
thereby implying repetitive switching of the airflow s(Ti ), and
on average stabilizing the temperature around the set point.

B. Relaxation to the steady distribution

Even in the case when the initial probability distribution
cannot be factorized into a product of independent terms, in-
dependence will appear dynamically at sufficiently large t �
τa, where τa is the so-called mixing time [44]. One can extract
τa and, specifically, its dependence on the supply temperature
Ts;a from the spectral analysis of the the i-th component of the
differential operator entering the KFP Eq. (6). The resulting
dependence does not hold any specific and unexpected fea-
tures and is therefore not reported here.

IV. STATISTICAL ANALYSIS OF THE CPI SCENARIO

The most significant difference between the CST and the
CPI scenarios lies in the stochastic coupling between individ-
ual TCLs. According to Eq. (5), the supply temperature Ts

directly depends on all TCL temperatures. In this section, we
discuss the significance of this modification.

Informally, we expect that this case is special because the
stochastic dynamics of individual TCLs are no longer decou-
pled. The general theory of KFP equations suggests [42,43]
that in the CPI scenario with N > 1, (a) the thermal force
can no longer be represented as a gradient of a potential; (b)
detailed balance is broken; and (c) the steady distribution is
no longer a Gibbs distribution and cannot be factorized into a
product of components, each representing an individual TCL.

In this section, we provide a quantitative analysis of the
aforementioned expected qualitative behavior of the system.
In Sec. IV A, we analyze the system in the noiseless limit, i.e.,
D = 0, and show that the system is strongly sensitive to initial
conditions via the identification of two different fixed points
governing the long-time behavior of the system. In Sec. IV B,
we reintroduce noise in the context of a single TCL as it
enables some analytical treatment. We leverage the latter in
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(a)

(b)

FIG. 4. Dynamics and steady state distribution of one TCL under
the CPI scenario. (a) Temperature distribution of 1 TCL under the
CPI scenario after initial transients, for different values of the noise
amplitude D. Filled: Experimental results. Dashed line: Theoretical
distributions obtained according to Eq. (11) and (b) Time series of 1
TCL under the CPI scenario, with Di = 15 kJ2. Red lines, dashed:
Locations of the theoretical fixed points T± [cf. Eq. (14)]. Filled
background: A change in background color indicates a change in the
value of Tmin(Ts ).

Sec. IV C where the general case of N > 1 TCLs with noise is
considered and where we discover that several features from
the N = 1 case surprisingly hold.

A. Noiseless limit

To extract generic statements about the behavior of this
coupled system, we analyze the fixed points of Eq. (1) with
Ts substituted by Ts;b(T (t )) from Eq. (5) in the noiseless case,
i.e., in the deterministic regime. As TCLs are indistinguish-
able, a fixed point solution is determined by the number of
TCLs in the high-airflow regime, N+(t ) = ∑

i θ (Ti(t ) > T̄ ),
where θ (·) is the indicator function. We observe that there
are potentially N + 1 fixed point solutions to Eq. (1) com-
plemented with the power balance in the CPI scenario, i.e.,
N+(t ) ∈ {0, . . . , N}. According to Eq. (5), Ts;b is directly
determined by N+(t ): Ts;b(N+(t )) = To − Pb/μ̄(N+s+ + (N −

(a)

(b)

FIG. 5. Temperature distribution and dynamics in the general
case of N > 1, D > 0 CPI case. (a) Empirical temperature dis-
tributions of TCLs under the CPI scenario with N = 5, after
initial transients and for different values of the noise amplitude D.
(b) Time series of two TCLs under the CPI scenario, with N = 2.
Red lines, dashed: Locations of the theoretical fixed points T±. Filled
background: A change in background color indicates a switch in the
value of Tmin(Ts ).

N+)s−). For each of the N + 1 possible states, the N TCLs
are split into two groups: a group of N+ units in the high-
flow regime and another N − N+ in the low-flow regime. In
addition, in the deterministic case, all TCLs in a given group
are at the same temperature at the steady state, given by

T±(N+(t )) = To + Ts;b(N+(t ))μ±cr

1 + μ±cr
. (14)

An immediate consequence of this equation is that
T+(N+(t )) < T−(N+(t )), providing that μ+ > μ−. However,
this is in contradiction with the requirement that T+(N+(t )) >

T̄ > T−(N+(t )). In other words, there can be no stable fixed
points, i.e., states realized dynamically at t → ∞ in the
noiseless regime, with a nonzero number of TCLs in both
states (high flow and low flow). Therefore, two options
are left for stable fixed points: N+(t ) = 0 or N+(t ) = N .
Which of the two stable fixed points is attained at long
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(b)

(a)

FIG. 6. Statistical analysis and observation of two different
timescales in the system. (a) Autocorrelation of T (t ) − Tmin(t ). The
exponential decay is indicative of a short associated timescale.
(b) Autocorrelation of Tmin, defined in (13). The decay is much slower
than for Fig. 6(a), and the characteristic timescale increases with the
number of TCLs in the system.

times will depend on the value of T̄ . Indeed, the N+(t ) =
0 state is valid (self-consistent) if T−(N+(t ) = 0) < T̄ and
the N+(t ) = N state is valid if T+(N+(t )) > T̄ . In addi-
tion, T−(N+(t ) = 0) < T+(N+(t ) = N ). Therefore, the steady
state that will be attained will consist of (i) N+(t ) = N
if T̄ < T−(N+(t ) = 0) < T+(N+(t ) = N ), (ii) N+(t ) = 0, if
T−(N+(t ) = 0) < T+(N+(t ) = N ) < T̄ , or (iii) either of the
two if T−(N+(t ) = 0) < T̄ < T+(N+(t ) = N ), in which case
the final state is directly dictated by the initial conditions T (0).
Figure 3 illustrates the dependence of the realized fixed points
on the values of T̄ for different initial conditions in the case
of N = 2 TCLs. T± do indeed act as stable fixed points in the
noiseless limit. Depending on T̄ , either one or both of them
are accessible to the system.

B. Case of N = 1, D > 0

As analysis in the general case with N > 1, D > 0 is
difficult, we focus here on the stochastic case for one TCL.
Equations (10) and (11) still hold in this context, with the
difference that the supply temperature is dictated by Eq. (5). A
similar analysis as that conducted in Sec. III is hence possible,
and results are reported in Fig. 4.

In contrast to the single-peak distributions observed in the
CST scenario (cf. Fig. 2), one observes the emergence of two
maxima corresponding to the two fixed points identified in
Sec. IV A. The position of these stable temperatures is directly
determined by the physical parameters of the system, while
their relative importance can be tuned by the set point T̄ .
We attribute the mismatch between analytical and empirical

FIG. 7. Scaling of the switching time with the number N of TCLs
in the CPI scenario. Dots indicate the average switching time. Error
bars indicate the 75th and 25th percentile of the distributions.

distributions in Fig. 4(a) to a finite computational budget and
step size. The stochastic nature of the system actually enables
switching between both modes. As illustrated in Fig. 4(b), a
single TCL driven by noise successively switches between the
two equilibrium points, thereby implying an adaptation of the
supply air temperature Ts, not shown here.

As the potential U1(T ) has two distinct minima in some
regimes, Kramers theory [33–36] suggests the emergence of
two distinct temporal scales. One short timescale τs should be
associated with equilibrium fluctuations around either of the
two minima, while the transition between either minimum as
seen in Fig. 4(b) is characterized by a longer one τl . These are
related via τl ∼ τs exp(�/D), where � is the potential barrier
at T1 = T̄ . Strong separation of these timescales, i.e., τl � τs,
emerges when D 	 �.

C. Numerical experiments for N > 1, D > 0

Even if, strictly speaking, insights from Kramers theory
only apply to the N = 1 case discussed above, most qualitative
features seem to translate to the general N > 1 case.

a. Bimodal dynamics and emergence of two timescales.
Up to moderate values of the noise amplitude D a similar
bimodal distribution of accessed temperatures is observed
(cf. Fig. 5(a), with D = 10 kJ2). Oscillations of temperatures
around two central values are clearly visible in Fig. 5(b).
Note that both TCLs exhibit coordinated switching from one
fixed point to the other, resulting from the AHU coupling.
Both observations are qualitatively analogous to the N = 1
case, cf. Fig. (4). Specifically, one can also expect switching
and the natural appearance of two characteristic timescales
in the system. As shown in Fig. 6(a), the autocorrelation
ρ(T (t ) − Tmin(t )) of a given TCL temperature decays expo-
nentially fast. However, the decay of ρ(Tmin(t )), associated
with the N TCLs switching from one stable point to the next,
is significantly slower in Fig. 6(b). This suggests that memory
is indeed present in the system and that switching is a rarer
event with increasing values of N . Figure 7 provides another
illustration of this strong N dependence. The switching time
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over trials increases with N , confirming the intuition provided
by Fig. 6(b). While the dependence of the switching time
with N seems subexponential, those results were obtained
with a finite computational budget and might not reflect the
true scaling. Further investigation is needed, via alternative
theoretical and computational methods, to resolve it.

b. Emergence of an entropic state. Large noise amplitudes
will prevent the system from settling in either of the stable
points. Indeed, the two modes of the temperature distribution
disappear as D increases [see Fig. 5(a)]. Instead, they are
slowly replaced by an entropic peak at the location of the set
point T̄ . From the perspective of a single TCL, this entropic
state represents a balance between stochastic and determin-
istic forces resulting in the TCL switching back and forth
between low- and high-flow regimes, and hence meandering
around T̄ . When the amplitude of random fluctuations is high,
the effect of the potential barrier disappears and the resulting
distribution is akin in nature to the CST case in some regimes
as shown in Fig. 2.

V. CONCLUSIONS AND PATH FORWARD

In this paper, we formulate a model describing the stochas-
tic dynamics of coupled TCLs. It differs from standard TCL
models in that it more accurately replicates cooling via a
centralized AHU. The main consequence of this modification
is the resulting coupling between individual units, which is
usually disregarded in other models.

We analyzed the aggregate dynamics in two different sce-
narios. First, we considered the uncoupled dynamics of each
unit by fixing the supply air temperature (CST regime). While
the CST regime is highly stable and predictable, fluctua-
tions of the aggregated power consumption of the building
associated with airflow adjustments in each unit might be
undesirable. In the second CPI scenario, the power input is set
constant, leading to significant coupling between individual
TCLs and revealing interesting collective phenomena, with
ramifications for use of the ensemble in DR. The system’s
response to a perturbation may result in the coexistence of
two quasi-steady modes associated with stable fixed points of
the dynamics in the low-noise regime, which transitions to an
entropic state when the level of the noise increases. A dynamic

consequence of this complex behavior is the emergence of
long transients associated with the transitions between the two
modes in the low-noise regime.

This model and associated results set the stage for several
future challenges:

(1) Investigating the effects associated with inhomogene-
ity (disorder) in physical parameters, thereby describing
populations of nonidentical units, would provide a more ac-
curate picture of real-life systems.

(2) Developing methods leveraging both unit-level and
system-level control to strike a balance between individual
comfort and collective benefits would further our understand-
ing of the inherent flexibility in such systems and potentially
result in innovative solutions for AHU control—e.g., to re-
move the anomalously long relaxation times observed in the
low-noise CPI regime. Ideas in recent papers [20,21] could be
translated to the present case. Specifically, understanding the
nonequilibrium nature of the TCL ensemble in the CPI regime
and its practical significance for operations and control will be
interesting. While similar to typical Kramers phenomena, the
dynamics in the CPI regime are not at statistical equilibrium.
The detailed balance is broken and fluxes emerge. The impli-
cations of such complex dynamics on controllability remain
to be explored.

(3) Confronting this model with real zone-level time series
and experiments [45,46] will provide crucial insight for its
validity and highlight where improvements, modifications, or
relaxing assumptions are needed.

(4) Analyzing the integration of such systems into larger-
scale DR schemes, e.g., in the spirit of Refs. [47,48],
and involving both multiple buildings as well as other
appliances, will be critical in the deployment of such
solutions.
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