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Adaptive power method for estimating large deviations in Markov chains
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We study the performance of a stochastic algorithm based on the power method that adaptively learns the
large deviation functions characterizing the fluctuations of additive functionals of Markov processes, used in
physics to model nonequilibrium systems. This algorithm was introduced in the context of risk-sensitive control
of Markov chains and was recently adapted to diffusions evolving continuously in time. Here we provide an
in-depth study of the convergence of this algorithm close to dynamical phase transitions, exploring the speed
of convergence as a function of the learning rate and the effect of including transfer learning. We use as a test
example the mean degree of a random walk on an Erdős-Rényi random graph, which shows a transition between
high-degree trajectories of the random walk evolving in the bulk of the graph and low-degree trajectories evolving
in dangling edges of the graph. The results show that the adaptive power method is efficient close to dynamical
phase transitions, while having many advantages in terms of performance and complexity compared to other
algorithms used to compute large deviation functions.
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I. INTRODUCTION

The application of ideas and techniques from large devi-
ation theory in nonequilibrium statistical physics has led to
many new insights about the transport properties of steady-
state nonequilibrium systems [1–3] and other interesting
phenomena such as dynamical phase transitions [4–11], fluc-
tuation symmetries [12–15], and dissipation bounds [16–20].
Within this theory, the fluctuations of observable quantities,
such as particle currents and kinetic activities, are charac-
terized by a function or potential, called the rate function,
giving the rate of decay of the probability distribution of an
observable in the limit where the observation time or volume
of the system considered goes to infinity, similarly to the ther-
modynamic limit of equilibrium statistical mechanics [21].

Finding the rate function of a given observable and Markov
process modeling a nonequilibrium system is difficult in gen-
eral, as it involves solving a spectral problem or a related
optimization problem whose dimension increases with the
size of the process considered [22]. As a result, many numer-
ical techniques have been devised over the years to compute
the rate function by either solving the spectral or optimization
problems using discretization or projection methods [23–27]
or by simulating the underlying process in a way that goes
beyond direct simulation [28–31], which is obviously in-
efficient for sampling large fluctuations and rare events in
general. On the simulation side, techniques such as cloning
[32–36], splitting [37–40], and importance sampling [41–44]
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have also been developed and used with good results, although
more work is needed to efficiently deal with complex systems
involving many interacting particles. Recently, machine learn-
ing tools have been used to address this issue [45–48].

In this paper, we focus on a simulation method that adap-
tively estimates or learns the rate function using a stochastic
variation of the power method for computing eigenvalues that
combines techniques from importance sampling and stochas-
tic approximations. This method or algorithm, referred to as
APM for adaptive power method, was introduced in a series
of works on stochastic control theory [49–51] and was applied
in that context to estimate the likelihood of rare events aris-
ing, for example, in communication networks and portfolio
optimization. Recently, APM was also applied to continuous-
state and continuous-time processes, which require a function
representation or projection of their state [52].

Here we investigate the performance of APM when applied
to systems showing dynamical phase transitions (DPTs), i.e.,
phase transitions in the fluctuations, signaled by singularities
in the rate function or its dual, the scaled cumulant-generating
function [4–11]. The observable and process that we consider
as a test case is the mean degree of a uniform random walk on
an Erdős-Rényi (ER) random graphs, which appears to show
a DPT separating high-degree trajectories of the random walk
evolving in the bulk of the random graph and low-degree tra-
jectories evolving in dangling edges of the graph [53–55]. For
this system, we study the convergence and accuracy of APM
as a function of the system size and learning rate, and also
look at the effect of using transfer learning when initializing
the algorithm.

Studying DPTs numerically is generally difficult because
of the need of simulating large systems and the presence
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of slowing down effects [33–35]. Our results show that the
performance of APM is not affected by DPTs, as it includes
importance sampling, which guides the estimation in the rel-
evant region of the process where the phase transition takes
place. This importance sampling step can be included in other
algorithms, such as cloning, but involves a more complicated
feedback mechanism requiring a large number of parallel
simulations [34]. By comparison, APM estimates the rate
function in a direct way using only one simulated trajectory of
a process that is gradually controlled towards the rare event or
fluctuation of interest. This makes APM a simple and efficient
algorithm for studying DPTs and long-time large deviations in
general. Other advantages of APM are discussed together with
some technical improvements for dealing with large systems.

II. LARGE DEVIATIONS OF MARKOV CHAINS

We review in this section the spectral method used in large
deviation theory to obtain the rate function of time-integrated
functions of Markov processes, which is the starting point of
APM. For simplicity, we consider the case of homogenous
Markov chains evolving in discrete time, which are used
to model various processes, including population dynamics,
queues, chemical reactions, molecular motors and other phys-
ical systems having a discrete number of states [56–58].

A. Markov chain model

We denote by (X�)n
�=1 the sequence of states or trajectory of

a Markov chain evolving in a state space � over n time steps.
We assume that � is discrete and finite and that the transition
matrix �, whose element �(i, j) gives the probability of
going from the state i to j over one time step, is irreducible
and aperiodic, so the Markov chain is ergodic [59]. As a result,
it has a unique stationary probability distribution p∗(i), i ∈ �,
satisfying p∗� = p∗ in (row) vector notation, which gives the
fraction of time spent in each state in the long-time limit.

For this Markov model, we are interested to study the
fluctuations of time-additive quantities, costs, or observables
having the form

Cn = 1

n

n∑
�=1

f (X�), (1)

where f is some real function of the state. This random vari-
able can represent, for example, the mean energy of a system
transitioning randomly between energy levels or the fraction
of time spent in some state. To be more general, one can also
consider observables defined with a function g(X�, X�+1) in-
stead of f (X�) so as to include jump contributions to Cn. This
is commonly done in physics, for example, when considering
particle and probability currents, as well as thermodynamic
quantities such as the entropy production [60]. The results
in this case follow with minor modifications of the results
obtained here with f (X�) [61].

B. Large deviations

The theory of large deviations predicts that the probability
distribution of Cn, denoted by Pn(c), scales with n according

to

Pn(c) ∼ e−nI (c), (2)

with subexponential corrections in n [62–64]. Thus the prob-
lem that we consider is that of estimating the decay function
I (c) so as to get information about the fluctuations of Cn to
leading order in n. This function is called the rate function
and is defined by the limit

I (c) = lim
n→∞ −1

n
ln Pn(c). (3)

We refer to den Hollander [64] for a more mathematical and
rigorous definition of the rate function based on probability
measures and the large deviation principle.

The rate function is positive and is equal to 0 for ergodic
Markov chains only for the typical value of Cn corresponding
to the ergodic expectation

c∗ =
∑
i∈�

p∗
i f (i). (4)

Indeed, by the ergodic theorem, Cn converges in probability
to c∗ as n → ∞, so that Pn(c) concentrates around c∗ in that
limit. The scaling (2) extends this result by showing that Pn(c)
concentrates exponentially around c∗, meaning that fluctua-
tions away from the typical value c∗ are exponentially unlikely
with n.

The rate function can be obtained using different methods
from large deviation theory [63]. The most common pro-
ceeds by considering the scaled cumulant generating function
(SCGF), defined by the limit

�(s) = lim
n→∞

1

n
ln E [esnCn ], (5)

where s ∈ R and E [·] denotes the expectation. For ergodic
Markov chains, the SCGF is known [63] to be given by the
logarithm of the dominant eigenvalue of a transformation of
the transition matrix �, referred to as the tilted matrix, defined
by

�̃s(i, j) = �(i, j)es f (i). (6)

As a result, we have

�(s) = ln ζs, (7)

where ζs denotes the unique (Perron-Frobenius) dominant
eigenvalue of �̃s, which is a positive matrix. From this point,
one then uses the Gärtner-Ellis theorem [63] to obtain I (c) as
the Legendre transform of �(s), given by

I (c) = scc − �(sc), (8)

where sc the unique solution of

c = � ′(s). (9)

This has an obvious similarity with the Legendre transform of
thermodynamics connecting the entropy and free energy. For
this reason it is common to interpret the parameter s of the
SCGF as a Legendre parameter or “temperature” conjugated
or dual to Cn [21].
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C. Effective Markov chain

The result above shows that the problem of finding the rate
function reduces to solving a spectral problem, namely,

�̃srs = ζsrs, (10)

for the dominant eigenvalue ζs and its corresponding eigen-
vector rs with components rs(i), i ∈ �. The knowledge of this
eigenvector is also important in large deviation theory, as it
provides a way to understand how a given fluctuation Cn = c
away from c∗ is created by a modified Markov chain with
transition matrix

�s(i, j) = �̃s(i, j)rs( j)

ζsrs(i)
= es f (i)�(i, j)rs( j)

ζsrs(i)
. (11)

Since rs > 0 and ζs > 0, �s is a well-defined nonnegative
matrix, which is also stochastic and ergodic [65]. As a result, it
defines another ergodic Markov chain on �, which is known to
be equivalent to the original Markov chain conditioned on the
event {Cn = c} in the long-time limit where n → ∞, provided
that s is chosen according to the duality relation (9) [61,66,67].
Hence, the modified Markov chain can be interpreted as an
effective Markov model that describes the subset of paths of
the original Markov chain that lead to the fluctuation Cn = c.

From a simulation point of view, the Markov chain de-
scribed by �s can also be seen an exponential tilting of the
original Markov chain, which can be used to efficiently sam-
ple the event {Cn = c} using importance sampling [29–31].
This follows because the typical value of Cn in the modified
Markov chain is cs = � ′(s), so choosing s according to (9)
gives us cs = c [67]. In other words, what is a rare event for
the original Markov chain is transformed into a typical event
for the modified Markov chain.

This can be applied to estimate the SCGF. The exponential
expectation E [esnCn ] entering in the definition of the SCGF
is dominated by rare fluctuations of Cn centered around cs

[21]. Sampling those fluctuations with the original Markov
chain is inefficient when s �= 0, whereas sampling them with
the modified process is efficient [67]. This is important for
understanding APM.

III. ADAPTIVE POWER METHOD

The dominant eigenvalue ζs and its corresponding eigen-
vector rs can be obtained numerically by diagonalizing �̃s, but
this method is not efficient for large systems, as it generally
requires O(|�|3) steps for a system of size |�|. Since we need
only the dominant eigenvalue, we can use instead the power
method, which proceeds by choosing an initial (positive) vec-
tor r (1) and by calculating successive approximations of rs in
a recursive way using the (column) matrix product

r (m+1) = �̃sr
(m). (12)

From this update, the dominant eigenvalue is then approxi-
mated as

ζ (m+1) = r (m+1)(i)

r (m)(i)
, (13)

where i is any component in �.
Provided that the norm of r (m) is kept constant at every

iteration by including a normalization step, as explained in

detail below, we have r (m) → rs up to an arbitrary multiplica-
tive constant and ζ (m) → ζs in the limit where m → ∞. In
particular, we can divide r (m) by its maximum component,
located say at i0, before the next matrix product to obtain

ζ (m+1) = r (m+1)(i0). (14)

This corresponds to choosing the infinity norm for the normal-
ization.

The complexity of the power method is O(|�|2), since it
is based on repeated matrix products, which is better than
diagonalization but still inefficient for large systems. The idea
of APM is to apply the power method in a statistical way by
observing that the action of �̃s is a conditional expectation
over one step of the Markov chain:

(�̃sr)(i) =
∑
j∈�

es f (i)�(i, j)r( j)

= es f (i)E [r(X�+1)|X� = i]. (15)

This suggests estimating the expectation using Monte Carlo
simulations by drawing samples of the Markov chain. In this
way, we avoid calculating the matrix product over all the
states, focusing instead on those that are actually visited.

This approach for calculating the SCGF was proposed by
the group of Borkar [49–51], who suggested two different
simulation schemes for estimating the expectation (15): a
concurrent or synchronous scheme in which many copies of
the Markov chain are simulated starting from the state i, and
an asynchronous scheme in which the expectation is estimated
as an ergodic average using a single trajectory of the Markov
chain. The latter scheme appears to us simpler and is therefore
the one that we consider here. It is summarized in Algorithm
1 and involves three steps explained in the next subsections.

A. Importance sampling

The estimation of the expectation in (15) using samples
of the Markov chain (X�)n

�=1 becomes inefficient as more and
more steps of the power method are taken, since this method
tries to estimate the exponential expectation in the definition
of the SCGF [52], which cannot be estimated efficiently, as
mentioned, from trajectories of the original Markov chain.
Instead, we must generate samples from the modified Markov
chain, so as to write the same expectation with importance
sampling as

(�̃sr)(i) =
∑
j∈�

es f (i)�s(i, j)
�(i, j)

�s(i, j)
r( j)

= es f (i)E [r(X̂�+1)Rs(X̂�, X̂�+1)|X̂� = i], (16)

where X̂� denotes the modified Markov chain with transition
matrix �s given by (11) and

Rs(i, j) = �(i, j)

�s(i, j)
(17)

is the likelihood factor that corrects for the fact that the expec-
tation involves X̂� rather than X�.

In the algorithm, states of the modified Markov chain are
generated from the current estimates ζ (�) and r (�) of the domi-
nant spectral elements at time � [68], resulting in the following
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estimate of the modified transition matrix:

�(�)
s (i, j) = es f (i)�(i, j)r (�)( j)

ζ (�)r (�)(i)η(�)(i)
, (18)

which includes an additional normalization factor η(�)(i),
compared to (11), because r (�) is not exactly the dominant
eigenvector of �̃s. As a result, we must introduce this factor
so that ∑

j∈�

�(�)
s (i, j) = 1 (19)

for all i ∈ �. It is easy to check that imposing this normaliza-
tion is equivalent to rewriting �(�)

s as

�(�)
s (i, j) = �(i, j)r (�)( j)

γ (�)(i)
, (20)

where

γ (�)(i) =
∑
j∈�

�(i, j)r (�)( j) (21)

is a different normalization factor.

B. Stochastic approximation

The expectation in (16) is not calculated as a matrix
product, as mentioned before, but evaluated pointwise on
realizations of the modified Markov chain. Considering, the
power method update in (12) with the result (20) means that
the eigenvector is updated stochastically as

r (�+1)(i) = es f (i)γ (�)(i)

ζ (�)
(22)

at the realization i of X� at time �.

C. Annealing

Applying (22) recursively on random samples of the modi-
fied Markov chain will not result in a convergent estimation of
rs or ζs, since γ (�) always changes randomly as new states are
visited. To filter this “noise,” we can use an annealing scheme
whereby the update of rs is progressively reinforced according
to

r (�+1)(i) = (1 − a�)r (�)(i) + a�

es f (i)γ (�)(i)

ζ (�)
(23)

using a sequence (a�)��1, called the learning sequence, that
vanishes as � → ∞ in such a way that

∞∑
�=1

a� = ∞,

∞∑
�=1

a2
� < ∞. (24)

These two conditions are known to be sufficient for the
stochastic approximation to converge [69], and are meant
intuitively to balance the need between exploration and ex-
ploitation. In practice, other decreasing sequences can be used
that satisfy

a� = �−α (25)

with α > 0. We call the exponent α the learning rate.
In the end, the steps combine to work as detailed in Al-

gorithm 1: From the state x� reached at the �th iteration, we

Algorithm 1 Adaptive power method (APM)

Data: Transition matrix �, initial state x1, Lagrange parameter s,
number of time steps n, learning sequence a�.
Initialization: r (1) = 1, ζ (1) = 1, �(1)

s = �, γ (1) = 1
for � = 1, . . . , n − 1 do

Draw x�+1 from x� with probability �(�)
s (x�, ·)

Update r (�) to r (�+1) at i = x� using (23)
Locate max of eigenvector: i0 ← arg maxk r (�+1)(k)
Update eigenvalue: ζ (�+1) ← r (�+1)(i0)
Compute normalizing factor γ (�+1) at i = x� using (21)
Update �(�+1)

s at i = x� and j = x�+1 using (20)
return: �̂n(s) = ln ζ (n).

generate a new random state x�+1 with probability �(�)
s (x�, ·),

where �(�)
s is the current estimate of the modified transition

matrix given by (18) or (20). From these two states, we then
update the eigenvector at the location i = x� according to (23)
and the modified Markov matrix at the locations i = x� and
j = x�+1 according to (20), having computed the normalizing
factor in (21). This can be done in O(|�|) steps, since only
one entry of �(�)

s is modified, so only one of its rows needs
to be normalized. The complexity of one step of the APM is
thus reduced compared to the power method from O(|�|2) to
O(|�|).

The result of the algorithm is an eigenvalue estimate �̂n(s)
of the SCGF �(s) for one value of s, which can be repeated
so as to obtain an interpolation of this function over a range
of values. Alternatively, the SCGF can be estimated using the
time-additive estimator

�̄n(s) = sCn,s − Kn,s, (26)

where Cn,s is the observable value obtained by running the
algorithm for the parameter s, which converges in probability
to cs = � ′(s) as n → ∞, and

Kn,s = −1

n

n−1∑
�=1

ln Rs(x�, x�+1) (27)

is an additive cost associated with the likelihood ratio, which
is also estimated using the trajectory of the modified Markov
chain generated by the algorithm. The form of �̄n(s) follows
from a control interpretation of large deviation functions for
Markov processes [67] and is advantageous for computing
error bars.

To obtain the rate function, we can in principle take the
Legendre transform of either estimator of the SCGF. However,
although �(s) is convex by definition [21], neither �̂n(s) nor
�̄n(s) is found in simulations to be convex because of statis-
tical errors (see Fig. 4), so taking their Legendre transform
would yield spurious results. To avoid this problem, which is
not specific to our model [52], it is best to estimate I (a) using
the additive cost Kn,s, which converges in probability to I (cs)
as n → ∞ [67]. By computing the pair (Cn,s, Kn,s) for varying
s values, we then obtain an approximation of the rate function
in parametric form as (cs, I (cs)) [52]. An advantage of this
method is that, as for the SCGF, error bars can be computed
directly.
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IV. APPLICATION

We investigate in this section the performance of the APM
algorithm for a system showing a DPT, specifically, a simple
random walk evolving on an ER random graph, for which the
observable is taken to be the mean of the degrees of the nodes
visited by the random walk [53–55]. We define this model
next and review recent results about its large deviations and
the existence of a first-order DPT in the thermodynamic limit.
We then reproduce these results using APM, testing different
annealing schedule and the effect of transfer learning.

A. Model

We consider a random walk evolving on an undirected
graph G with N vertices and M edges or links, determined
by the adjacency matrix

Ai j =
{

1 i, j are connected
0 otherwise. (28)

The graph is chosen randomly from the ER random ensemble
of graphs in which edges are chosen in a binomial way over
the N (N − 1)/2 possible edges with probability p = κ/N ,
where κ > 1 [70]. The random walk itself is determined by
the transition probabilities

�(i, j) = Ai j

ki
, (29)

where ki is the degree of node i. This defines an unbiased ran-
dom walk (URW) over the graph, assigning equal probability
for transitions to happen from one node i to its neighbours
j ∈ ∂i, which is known to be ergodic.

Many dynamical observables can defined for the URW.
The one that we consider is the mean degree

Cn = 1

n

n∑
�=1

kX�
, (30)

visited by a trajectory of the URW over a time n. The
large deviations of this observable have been studied recently
[53–55] and are interesting in that they show very different
mechanisms creating large fluctuations of Cn above the ex-
pected value c∗ = κ + 1 and small fluctuations of Cn below
c∗. Large degree fluctuations, on the one hand, come from
rare trajectories of the URW that localize around a hub of
highly connected nodes [see Fig. 1(a)], resulting in an effec-
tive Markov chain for s > 0 that concentrates on this hub as
s → ∞. On the other hand, small degree fluctuations come
from rare trajectories that localize on low-degree nodes and,
for the smallest degree fluctuations, on “dangling chains” or
“hairs” consisting of two nodes of degrees 2 and 1, respec-
tively, resulting in cmin = 1.5 (see Fig. 1 and Fig. 2 in [55]).

These two fluctuations regimes are very different because
large ER graphs typically have a single hub but many dan-
gling chains. Moreover, dangling chains are not connected to
each other, but are connected instead via high-degree nodes
around the hub, so the small degree fluctuation regime, related
to s < 0, must come with a symmetry-breaking mechanism,
akin to a phase transition, whereby the URW localizes on
a particular dangling chain (out of many equivalent chains),

Hairs

Hub

FIG. 1. ER graph of size N = 46 obtained with κ = 3 showing a
hub node and two dangling chains or hairs.

which depends on the initial value of the random walk and the
graph itself [55].

This transition is especially visible when the connectivity
parameter κ is small and translates mathematically into a
sharp corner of �(s) near s = 0 related to a near-linear branch
of I (c) left of the expected value c∗, corresponding to the zero
of I (c) (see Fig. 4 and Fig. 1 in [55]). These features of �(s)
and I (c) get more pronounced as the graph size N increases,
suggesting the existence of a DPT in the fluctuations of Cn,
which should be first-order given that � ′(s) develops a jump
singularity. Whether this DPT is a “true” phase transition in
the thermodynamic limit where N → ∞ is still unresolved.
The numerical evidence published so far suggest that it is, but
there is no rigorous proof yet that �(s) has a singularity in the
thermodynamic limit [71].

The exact nature of the transition is not crucial for us;
what is interesting is that a sharp transition or crossover is
visible already for N = 50, so one does not need to consider
extremely large system sizes to study its effect on numerical
computations of large deviation functions. For this reason,
the URW on ER graphs is a good benchmark for testing the
efficiency of numerical methods near DPTs and for comparing
such methods. It is also a simple benchmark, as it does not
involve many interacting particles. For an application of the
APM to larger graphs, showing the efficiency of the algorithm
on larger systems, we refer to the recent study of Di Bona et al.
[72].

B. Convergence of APM

We show in Fig. 2 the evolution of the SCGF returned by
APM over time (i.e., iterations) for two values of s, namely,
s = −1 and s = 1, and different graph sizes. As can be seen,
the convergence of �̂n(s) towards the exact value �(s), cal-
culated by exact diagonalization [73], is slow because the
APM needs to learn by single-step exploration where the
corresponding rare event takes place in the graph, leading to
a long “exploration” phase starting from the initial position
x1, which is chosen to be a random node on the graph. The
case s = 1, for example, corresponds to a larger-than-average
degree fluctuation, associated with paths of the random walk
concentrating on the high-degree nodes, which need to be
found and explored sufficiently in time before the eigenvalue
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(a)
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6

Ψ
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)
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FIG. 2. Convergence of APM starting from random initial states for (a) s = −1 and (b) s = 1. The colored lines show the average of the
eigenvalue estimate �̂n(s) calculated over 100 simulations for different graph sizes (see legend) while the colored regions show the standard
deviation. Learning rate: α = 0.1. The graph used is the one shown in Fig. 1.

can converge. This takes longer the bigger the graph is, as the
random walk needs to reach the hub of the graph starting from
random nodes, which are further from the hub, on average, the
bigger the graph is. For s = −1, on the other hand, the random
walk needs to reach hairs of the graph, a faster process, as
shown in Fig. 2(a), as the number of hairs grows with the
system size.

In practice, we should take advantage of the exploration
phase, since it visits different regions of the graphs, associated
with different degree fluctuations and, therefore, different s
values. Thus, instead of trying to reach the correct eigenvalue
for a given s, we should start the algorithm at a small value of
s close to s = 0, let it run for this value, which is only a small
perturbation of the result ζ0 = 1, and repeat the process by
incrementing or “quenching” s in small steps of �s [48,52],
reinitializing the annealing sequence at each step. The result
with �s = 0.25 is shown in Fig. 3 again for s = −1 and s = 1,
two graph sizes, and different number of iterations for each
quench level. As can be seen, the APM now converges quickly
for each value of s considered, leading to a much smaller

error region (shaded region) compared to the results of Fig. 2,
especially for s = 1. Moreover, the convergence now does not
depend significantly on the system’s size, especially again for
s = 1, which shows quenched plateaux being reached more or
less at the same times for the two sizes considered (N = 50
and 100). This arises because the simulation for a given s “lo-
cally” informs the next simulation for s + �s by transferring
the state of the Markov chain and the computed eigenvector
from one simulation to another.

We call this transfer of information between different runs
of the algorithm “transfer learning” in analogy with a similar
method used in machine learning for transferring parameters
from one learned model to another. An obvious advantage
of this method is that we are able to efficiently obtain the
SCGF for a range of s values by using a small step �s, as
shown in Figs. 4(a)–4(c), which was obtained for the graph
shown in Fig. 1 using �s = 0.02. In this figure, we also show
the effect of using different iterations for each run, steps or
“quenches” of s, as well as different learning rates α. The
results show overall that convergence with small error bars
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FIG. 3. Convergence of APM with transfer learning for (a) s = −1 and (b) s = 1. The colored lines show the average of �̂n(s) calculated
over 100 simulations for two different graph sizes (see legend) while the colored regions show the standard deviation. Four steps were used to
reach the final SCGF by changing s in steps of �s = 0.25. Learning rate: α = 0.1.

034137-6



ADAPTIVE POWER METHOD FOR ESTIMATING LARGE … PHYSICAL REVIEW E 107, 034137 (2023)

-1.0-0.75-0.5-0.25 0.0 0.25 0.5 0.75 1.0
s

−2
−1

0
1
2
3
4
5
6

Ψ

(a)

Exact

α=0.1

α=0.5

α=1

-1.0-0.75-0.5-0.25 0.0 0.25 0.5 0.75 1.0
s

−2
−1

0
1
2
3
4
5
6

Ψ

(b)

-1.0-0.75-0.5-0.25 0.0 0.25 0.5 0.75 1.0
s

−2
−1

0
1
2
3
4
5
6

Ψ

(c)

2 3 4 5 6
c

0.0

0.2

0.4

0.6

0.8

1.0

I

(d)

2 3 4 5 6
c

0.0

0.2

0.4

0.6

0.8

1.0

I

(e)

2 3 4 5 6
c

0.0

0.2

0.4

0.6

0.8

1.0

I

(f)

FIG. 4. Estimation of the SCGF and rate function with transfer learning for the graph shown in Fig. 1. Top row: Estimated SCGF from
the dominant eigenvalue for (a) 500, (b) 1000, and (c) 10 000 iterations per s value, i.e., per transfer learning step. Botton row: Estimated rate
function for (d) 500, (e) 1000, and (f) 10 000 steps per s value.

is achieved with 1000 iterations, and lower when considering
the tails of the SCGF. What is more important for convergence
is the learning rate, which needs to be low enough so that the
learning is annealed in a slow way, favoring exploration. By
trying different values, we have found that α = 0.1 gives good
results for the graph sizes considered. Above this value, the
APM is annealed too quickly, leading to a negative bias in
the SGCF, especially near the DPT around s = 0, as shown in
Fig. 4.

This bias is seen more clearly at the level of the rate
function, shown in the lower plots of Fig. 4. There we see
that the APM gets trapped if annealed too quickly in different
phases of the DPT, corresponding to different regions of the
graphs that either have a low or a high connectivity, resulting
in a positive bias in the estimated rate function.

The bias is reminiscent of hysteresis effects seen in Monte
Carlo simulations of equilibrium systems having first-order
phase transitions and can be alleviated by performing longer
simulations and, in our case, by using a low learning rate.
Convergence around the DPT can also be improved by using
a dynamical variant of the replica exchange method [74],
whereby two simulations with different s values are randomly
exchanged, as proposed and tested recently [48]. We have not
used this method for the APM, but we think that it might be
useful when dealing with very large systems showing DPTs.

It is important to note again that I (c) is estimated from
the additive cost Kn,s shown in (27) and not from the Leg-
endre transform of �̂n(s), since the latter is not necessarily
convex, as seen from Fig. 4. The SCGF itself can also be
estimated as a time average, as noted before, using the esti-
mator �̄n(s) defined in (26). This method in fact converges
faster and is more stable, as shown in Fig. 5, and is there-
fore our preferred method for computing the SCGF. Using
the dominant eigenvalue gives good results, but the additive

estimator gives better results for the same number of iterations
and learning rate simply because the latter is a self-averaging
quantity.

To obtain an idea of the error associated with the addi-
tive estimator, and therefore of APM in general, we have
computed �̄n(s) for s = −1 using four levels or quenches
separated by �s = 0.25 and have computed the relative error
ε between the final value of the estimator and the exact SCGF
obtained by direct diagonalization. The results, also computed
for s = 1, are shown in Fig. 6 as a function of the number
n of iterations per quench and for different system sizes.
As expected, the relative error decreases with n in a way
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FIG. 5. Estimated SCGF with transfer learning using the additive
estimator �̄n(s), defined in Eq. (26), instead of the eigenvalue esti-
mator �̂n(s). Parameters: 1000 iterations per transfer plateau spaced
with �s = 0.02.
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FIG. 6. Relative error of �̄n(s) for (a) s = −1 and (b) s = 1 as a function of the number of iterations per step of the transfer learning.
Parameters: α = 0.1 and κ = 3.

that appears roughly to be polynomial with n for all system
sizes, demonstrating the efficiency of APM coming from the
importance sampling step, which has the effect of biasing the
random walk in the relevant fluctuation region regardless of
system size. From the plot, we can also see that the error is
smaller for s = 1, confirming the smaller error bars shown in
Fig. 3 for this value of s.

An error analysis can also be performed, in principle, for
the eigenvalue estimator �̂n(s) of the SCGF, although in this
case one must decide whether to compare the final value esti-
mated or average over an entire simulation. We do not show
results for this estimator, as they are less stable compared with
the additive estimator �̄n(s).

The error bars shown in all the plots discussed so far were
obtained by repeating runs of the APM algorithm, but it is
important to note that error bars could have been obtained
for the additive estimators from single runs using batch mean
methods [29]. This, in fact, is a further advantage of using ad-
ditive estimators for the SCGF and the rate function. Defining
error bars for the eigenvalue estimator based on single runs is
more difficult, since this estimator is not a time average, but an
annealed version of the eigenvalue returned by APM. As far
as we know, no theoretical work has been done on deriving
a central limit theorem for the eigenvalue estimator, which
would serve as the basis for defining error bars for this estima-
tor. Our advice, based on the results that we have obtained, is
to use additive estimators whenever possible. They converge
quicker and have better variance properties compared to the
eigenvalue estimator.

C. Effective Markov chain

The APM yields not only the SCGF and rate function, but
also the effective process associated with the set of trajectories
creating a given fluctuation Cn = c in the long-time limit.
This process was discussed extensively in an earlier study
[55]. In Fig. 7 we show the stationary distribution ps of this
process obtained by running the APM for some time after it
has found the SCGF. The results are plotted, together with the
dominating eigenvector rs, for four s values located around
the DPT and compared with the theoretical results obtained
again by direct diagonalization. Note that, for convenience, we

plot rs and ps as a function of the node degree k rather than
as a function of the node state, although both are of course
functions of i ∈ � [75]. Moreover, we normalized rs in such a
way that maxk rs(k) = 1.

The plots show that APM is able to recover rs and ps with
good accuracy. We recall that rs is used in the importance
sampling step to bias the random walk in the region where a
given degree fluctuation is likely to take place, while ps shows
where that region is. In the case s = −1, for example, which
corresponds to small degree fluctuations, the plot of ps shows
that the effective random walk concentrates on small degree
nodes (viz., on hairs), whereas for s = 1 the random walk
concentrates on higher degree nodes located around the hub
of the graph. We refer again to [55] for a detailed discussion
of this concentration and its relation to the DPT.

What is important to note in relation to the APM is that, for
the purpose of biasing the process in the importance sampling
step, one does not need to estimate the dominant eigenvector
rs(i) with high precision for all states i of the state space �, but
only for those states that are most often visited, as determined
by ps. This arises because the additive estimators of the SCGF
and the rate function are in fact estimators of expectations with
respect to ps [67]. As a result, we do not need in practice
to represent rs over the whole of �, but can truncate that
representation to states that have been visited a certain number
of times, in analogy with real-space renormalization methods
[76]. This can be done dynamically within simulations to save
memory (as done, e.g., in reinforcement learning algorithms
[77]), opening the possibility of applying APM to very large
systems.

V. CONCLUDING REMARKS

We have tested in this paper the APM algorithm on a
simple random walk to show the efficacy of this algorithm
for computing large deviation functions characterizing the
fluctuations of time-additive functions of Markov processes.
Compared to previous studies on this algorithm [49–52], we
have studied the effect of the learning rate on the conver-
gence of the algorithm and demonstrated that the algorithm
is not slowed down around DPTs when a relatively small
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FIG. 7. Dominant eigenvector rs and stationary distribution ps of the effective Markov chain plotted as a function of node degree. The
numerical result, averaged over 100 simulations, are compared for different s with theoretical results obtained by direct diagonalization.
Learning rate: α = 0.1. The graph used is the one shown in Fig. 1.

learning rate is used. In practice, different learning rates (start-
ing from large to small), initial conditions, and simulation
times should be used to test whether the APM converges in
a robust way. One advantage of estimating the rate function
using the cost estimator is that the value obtained is an upper
bound on the true rate function (within statistical errors), so
reducing that cost with different parameters necessarily leads
to an improvement in the estimated function, as illustrated
in Fig. 4.

Following [52], we have also shown that the SCGF and
rate function are most efficiently computed by performing
long simulations in which the large deviation parameter s is
increased in small steps, using the knowledge of the computed
eigenvalue and eigenvector at each step to guide with impor-
tance sampling the random walk in the fluctuation region of
interest. The use of importance sampling is critical for the
algorithm to work—indeed, for any large deviation simulation
method to work—and leads the APM to gradually learn the
effective process, which is known to be efficient for sampling
large deviations and rare events in general [29–31].

The effective process can be estimated or learned in other
ways, for instance, using splitting or cloning algorithms
[34], stochastic optimization [48], or reinforcement learning
[45–47]. Compared to these approaches, APM has some ad-
vantages:

(1) The algorithm is guaranteed to converge to the cor-
rect SCGF [49], and so has no bias, essentially because the

feedback mechanism that updates the importance sampling
is based on the power method. Other methods based on
variational representations of the SCGF (see, e.g., [48]) are
generally found to converge, but it is often difficult to guaran-
tee that the solution they return is the optimal solution (global
minimum) corresponding to the SCGF.

(2) The annealing of the stochastic approximation of the
eigenvector has the effect of stabilizing the adaptive impor-
tance sampling, as it gradually reinforces previous updates
and filters out the randomness or noise inherent in the new
generated states. Importance sampling can also be included
and adapted in cloning but the feedback mechanism that has
been proposed so far [34] is not annealed and has not been
proved to converge.

(3) Since the estimators of the SCGF and rate function are
time-additive quantities, just like the observable itself, their
statistical errors can be computed directly in single runs of the
algorithm using standard batch mean methods [29]. The same
applies to stochastic optimization and reinforcement learning
approaches, but not to cloning, which is not based on additive
estimators.

More work is needed to compare these methods and
the many more that have been proposed recently for com-
puting large deviation functions and, moreover, to develop
good benchmarks for comparing different methods. In a
sense, all methods should have the same complexity, if im-
plemented efficiently, since they are aimed at solving the
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same problem—that of finding a dominant eigenvalue and
its eigenvector [67]. However, some methods might be easier
to implement, depending on the process and observable con-
sidered. Moreover, some methods might be advantageous in
terms of stability, for proving convergence, or for computing
errors, as discussed here.
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