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Brownian translation and rotation from the ballistic to the diffusive limit and derivation
of the physical properties of dust agglomerates
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We analyzed the translational and rotational Brownian motion of aggregates of micrometer-sized silica spheres
under microgravity conditions and in rarefied gas. The experimental data was collected in the form of high-speed
recordings using a long-distance microscope as part of the ICAPS (Interactions in Cosmic and Atmospheric
Particle Systems) experiment on board of the sounding rocket flight Texus-56. Our data analysis shows that
the translational Brownian motion can be used to determine the mass and translational response time of each
individual dust aggregate. The rotational Brownian motion additionally provides the moment of inertia and the
rotational response time. A shallow positive correlation between mass and response time was found as predicted
for aggregate structures with low fractal dimensions. Translational and rotational response times are roughly in
agreement. Using the mass and the moment of inertia of each aggregate, we determined the fractal dimension of
the aggregate ensemble. Slight deviations from the pure Gaussian one-dimensional displacement statistics were
found in the ballistic limit for both the translational and rotational Brownian motion.
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I. INTRODUCTION

The history of the thermal motion of massive particles actu-
ally begins in botany. As early as 1828, Brown observed with
a simple light microscope that flower pollen grains floating
in a drop of water moved suddenly and irregularly [1]. The
physical explanation for this phenomenon was given decades
later by Einstein [2] and also by Smoluchowski [3]. Finally
in 1930, Uhlenbeck and Ornstein could mathematically prove
the fundamental solution to the stochastic process of Brown-
ian motion [4].

The mathematical starting point to describe the Brownian
motion of dust particles in the ICAPS (Interactions in Cos-
mic and Atmospheric Particle Systems) experiments is the
Ornstein-Fürth relation [4]

〈�x2〉 = 2 �t
kT τt

m

(
1 − τt

�t
+ τt

�t
e−�t/τt

)
, (1)

which represents the one-dimensional mean-squared displace-
ment 〈�x2〉 experienced by a dust particle with mass m during
the time interval �t , with k, T , and τt being Boltzmann’s
constant, the gas and dust temperature (assumed to be equal),
and the translational response time (or friction time) of the
dust particle to the gaseous environment, respectively. In the
free molecular flow regime, the translational response time is
proportional to the ratio between mass and geometrical cross
section of the dust particle [5].
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Analogous to Eq. (1), the rotational Brownian motion can
be described by the relation

〈�θ2〉 = 2 �t
kT τr

I

(
1 − τr

�t
+ τr

�t
e−�t/τr

)
, (2)

with 〈�θ2〉 being the mean-squared angular displacement of
a rotating particle during the time interval �t , with I and τr

being the moment of inertia of the dust particle with respect
to its momentary rotation axis and its rotational response time,
respectively.

For short times �t � τt and �t � τr, Eqs. (1) and (2) can
be approximated by their ballistic limits

〈�x2〉 = (�t )2 kT

m
(3)

and

〈�θ2〉 = (�t )2 kT

I
, (4)

respectively. In this limit, the mean particle speed is given by

〈v〉 =
√

〈�x2〉
(�t )2 =

√
kT

m
, (5)

whereas the mean angular velocity reads

〈ω〉 =
√

〈�θ2〉
(�t )2 =

√
kT

I
. (6)

With this, the mean one-dimensional translation and rotation
energies read 〈Et〉 = 1

2 m〈v〉2 and 〈Er〉 = 1
2 I〈ω〉2, respectively.
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In contrast, for very long times, �t � τt and �t � τr,
Eqs. (1) and (2) become

〈�x2〉 = 2 �t
kT τt

m
= 2 Dt �t (7)

and

〈�θ2〉 = 2 �t
kT τr

I
= 2 Dr �t, (8)

i.e., the classical diffusion equations, with the diffusion con-
stants for translation

Dt = kT τt

m
(9)

and rotation

Dr = kT τr

I
, (10)

respectively.
In an experimental approach, the ICAPS campaign tries

to overcome previous difficulties of losing the dust cloud on
rather short timescales due to minuscule temperature gradi-
ents in the gas, which lead to thermophoretic drift motion
of the entire dust cloud. This is achieved by actively con-
trolling and restoring the position of the dust cloud using a
thermophoretic dust-cloud manipulation system [6]. On top
of that, ICAPS allows us to study the transition from the fully
developed ballistic to the fully developed diffusive Brownian
motion with a large number of particles.

Earlier work by our group on the Brownian motion of dust
aggregates as an experimental simulation of the conditions
in protoplanetary disks has always used the same technique,
namely, dispersing a cloud of dust particles and small ag-
gregates thereof under microgravity conditions (drop towers,
sounding rockets, and orbital experiments, respectively) into
rarefied gas [5,7–9]. The latter is a prerequisite for a realistic
simulation of the gaseous environment of protoplanetary disks
for which the gas flow around the dust particles is always in
the free-molecular flow regime, i.e., the mean-free path of the
gas molecules is much larger than the size of the dust grains
considered. Observations have been performed by no-invasive
optical long-distance microscopy combined with high-speed
imaging techniques. In the earliest study [5], we found that
this technique is feasible to derive quantitative information
about the particle motion. Thereupon, we investigated how
dust aggregates grow due to ballistic Brownian motion [7,8].
A further experimental study with increased temporal resolu-
tion could resolve the translational Brownian motion in the
transition from the ballistic [Eq. (3)] to the diffusive limit
[Eq. (7)] and could also quantitatively describe the Brownian
rotation of microrods [9].

In this paper, we aim at resolving the full range from bal-
listic to diffusive Brownian motion, both for its translational
and rotational components. As we will do this for the identical
aggregates, we can derive the mass (m) and the moment of in-
ertia (I) as well as the translational (τt) and rotational response
time (τr) independently of each other for every particle. From
the knowledge of m and I , one can derive the radius of inertia

rg =
√

I

m
, (11)

which reveals important structural information of the dust
aggregates.

When dust grains of identical individual radii r0 and mass
m0 agglomerate, the forming aggregates are often fractal in
nature, i.e., they follow the relation

m

m0
= β

(
rg

r0

)df

, (12)

with the so-called fractal dimension df and a scaling param-
eter β. Using Eqs. (11) and (12), one can then derive these
parameters as well.

II. EXPERIMENTAL DETAILS

The ICAPS philosophy is to disperse a cloud of initially
individual dust particles into a rarefied N2 atmosphere. The
gas pressure is chosen to mimic the rarefied gas kinetics of
a protoplanetary disk, i.e., the Knudsen number with respect
to the individual dust grains has to be much larger than unity.
This also means that in a terrestrial laboratory, the dust grains
sediment to the ground at relatively high speed, so a long
undisturbed observation of Brownian motion is impossible.
Thus, the ICAPS experiment was performed onboard the
sounding rocket Texus-56 in November 2019 as part of a
campaign of the European Space Agency. In the following
subsections, we will describe the experimental setup, the dust
sample, and the procedures during the ICAPS flight.

A. Experimental setup

To simulate as realistically as possible the conditions dur-
ing early planet formation, the dust particles were injected
into a rarefied N2 gas atmosphere with a pressure of 56 Pa,
and in a second experiment run with a pressure of 67 Pa.
The dust particles were deagglomerated and injected into
the gaseous environment using a rapidly spinning cogwheel
[10]. To avoid loss of the dust cloud by any type of residual
acceleration, we used a cloud manipulation system (CMS)
[6], which compensates any global residual acceleration to
facilitate long observation times. Two mutually perpendicular
overview cameras with a field-of-view of ∼1.5 cm2 and a
pixel resolution of ∼12 µm measured the 3D cloud position
with a frequency of 50 Hz. This continuous tracking was used
by the CMS as input for a feedback loop, which generated
the compensation force to keep the cloud quiescent in the
observation volume. The active element of the CMS was a
set of fast Peltier elements, arranged in a coaxial four-ring
geometry. The dust particles can be attracted or repelled by
the Peltier elements due to the effect of thermophoresis and
the thermal creep flow, with both forces being collinear. The
arrangement of the Peltier elements allowed the CMS to create
a three-dimensional force that translates the cloud at constant
velocity without deformation, since the thermophoretic veloc-
ity in the free-molecular flow regime is independent of the
particle size or agglomeration status [11,12].

To observe the motion of the dust aggregates, the ICAPS
setup used a combination of a long-distance microscope
(LDM) and high-speed imaging techniques. The optical
resolution of the LDM was ∼1 µm and its depth-of-focus
was a few 10 µm. The particles were imaged by a high-speed
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TABLE I. Comparison of the derived physical properties of par-
ticle 1 in Fig. 1 with all particles from data set T2 (mass and
translational friction time τt) and data set R2 (moment of inertia and
rotational friction time τr). The reference to data sets T2 and R2 can
be found in Fig. 23 in Appendix G.

Property Particle 1 All particles Unit

Mass 2.5 × 10−13 3 × 10−15–4 × 10−12 kg
No. of monomers 78 1–1000
Moment of inertia 1.5 × 10−23 1 × 10−25 − 4 × 10−22 kg m2

τt 9.2 × 10−3 4 − 25 × 10−3 s
τr 10.1 × 10−3 1 − 13 × 10−3 s

camera with a region-of-interest of 1024 × 1024 pixels, a
continuous recording speed of 1000 frames per second, a pixel
resolution of 1 µm/pixel, i.e., a field of view of 1 mm × 1 mm,
and a bright-field LED illumination.

B. Dust sample

The particles used in ICAPS were monodisperse SiO2 par-
ticles with radii r0 = 0.725 ± 0.030 µm [13] (Sicastar type
43-00-153). Their physical properties are detailed in Blum
and Schräpler [14] (their Table 1). As the mean-free paths of
the N2 gas molecules were 126 µm for a pressure of 56 Pa
and 105 µm for a pressure of 67 Pa, the Knudsen numbers
with respect to the monomer grains were Kn = 168 � 1 and
Kn = 140 � 1 for the two experimental runs, respectively. In
this case, the free-molecular flow limit of the hydrodynamic
interaction between gas and solid particles applies.

Analysis of the injected dust cloud showed that the number
density of the monomer grains throughout the experimental
runs was on the order of 3 − 6 × 1012 m−3. With a monomer-
grain mass of 3.2 × 10−15 kg, this yields an average mass
density in the range of 0.01 − 0.02 kg/m3. With gas densi-
ties of 6.3 × 10−4 kg/m3 and 7.5 × 10−4 kg/m3 in the two
experiments, the density ratio between solids and gas was on
the order of 15–30. Effects of this high mass loading on the
Brownian motion of nearby particles could, however, not be
investigated, due to the relative large interparticle distances
(>100 µm) and the smallness of the depth of focus of the
LDM.

Due to a slight electric charging of the particles upon in-
jection, an initial rapid agglomeration phase of the monomer
grains into aggregates containing up to ∼1000 monomer
grains was observed. The Coulomb interactions between
neighboring aggregates had no influence on their Brown-
ian motion due to their large mean separation distance of
�100 µm. Thus, in this paper we describe the Brownian mo-
tion of these aggregates. Examples of the dust aggregates are
shown in Fig. 1. In the Appendix, we will show examples of
our Brownian motion analysis for particle 1 in Fig. 1. The
derived properties of this aggregate are summarized in Table I
along with the same properties of all aggregates in the sample.

C. Experimental procedure

During the flight with the high-altitude rocket Texus-56,
a little more than 360 seconds of microgravity time were

FIG. 1. Example of the dust aggregates used for the translational
and rotational Brownian motion analysis. Due to the observation
principle of bright-field microscopy, particles in the raw images are
darker than the background. For the purpose of analysis, the images
have been flat-field corrected, effectively inverting them and remov-
ing illumination patterns (see Appendix F 3). In the upper left frame,
particle 1 can be seen, which is used as example in the Appendix.

achieved. During these six minutes, a total of two particle-
cloud injections could be performed, which are therefore
treated as two separate experimental runs in the data analysis.
The cloud was lost due to a software bug after about 220 s, so
a new experiment run starting with an injection was initiated
manually via telecommand.

After the injection of the particle cloud, the experiment was
set to run a sequence of several different modes (e.g., charge
measurements). For the analysis of Brownian motion, how-
ever, we used only undisturbed phases, i.e., the CMS levitation
mode during which no external fields were applied, apart from
those counteracting ensemble drifts (overall cloud motion).
Figure 2 shows that the impact of the latter on the single-
particle trajectories is negligible. The undisturbed phases
collectively span 187 112 LDM images (approximately 187 s
of total duration, i.e., roughly half of the microgravity time
available). Of these images, 124 107 are from the first and
63 005 are from the second experiment run.

D. Observation of Brownian motion and data extraction

The analysis of the Brownian motion of the dust aggregates
present in the ICAPS flight on Texus-56 is based on the
187 112 LDM images from the undisturbed phases mentioned
above. Apart from occasional CMS operations (see Sec. III
for a discussion of the noise level caused by the CMS), all
particles are almost entirely free from any external distur-
bances, so any derived particle motion can be attributed to
Brownian translational and rotational motion, i.e., a stochastic
interaction with the ambient rarefied gas.

In the first step of the data extraction, a flat-field cor-
rection was applied to the raw images (see Appendix F 3).
The particles on each image were then localized using a
connected-component analysis with a threshold of four counts
[15]. For each particle, a bounding box was created before
the particle center was determined from the image moments
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FIG. 2. Left: 〈�x( j)2〉 and 〈�y( j)2〉 values as a function of �t ( j) for all measured particles (data points). The symbols are slightly offset
to the right (left) for data set T1 (data set T2). Gray symbols were not used to fit Eq. (1). The gray curves connect data points that belong to
the same particle for an exemplary subset including particle 1 from Fig. 1, which is shown in blue. The red curved band denotes the noise level
caused by the CMS. The hatched horizontal band marks the noise level caused by the discretization of the aggregate images, the shot noise,
and illumination flickering by the LDM light source (see Appendix F 3). The dashed line denotes the estimated upper limit of noise caused
by vibrations of the rocket, as discussed in Appendix F 6. Right: Rotational equivalent to left panel for all particles in data sets R1 and R2 .
The hatched band marks the shot noise and illumination flickering by the LDM light source (see Appendix F 3). The dashed line denotes the
boundary imposed by the maximum unambiguous rotation angle of θ = π/2 rad (see Sec. II D).

of the cropped image. The trajectories of the particles were
then determined using a Crocker and Grier tracking algorithm
[16,17]. At this stage of the analysis, the output for each
particle consisted of a unique ID, the x, y coordinates of
the center of extinction for every image of the particle, and
the coordinates of the bounding box, respectively. Also, we
implemented a measure of sharpness, for which we compiled
a sorted statistic of the absolute pixel-to-pixel gradients in x
and y directions in a given cropped particle image. The 84%
quantile, i.e., where the gradient statistic exceeds 1σ , is then
our measure of sharpness (for each image of each particle).
This criterion appeared to be much more consistent than other
methods (e.g., the standard deviation after convolution with
a Laplacian or the brightness-to-area ratio) and is therefore
considered to be sufficient for our purposes. Further data,
mostly unused in this paper, included the optical radius of
inertia, the total extinction, and the total pixel number (or area)
for each particle image.

With this data set, we then started the filtering process.
For the analysis of Brownian motion, perturbations in the
gas flow have to be kept to a minimum. Therefore, we se-
lected only undisturbed experimental phases, i.e., during the
levitation mode of the CMS. We then excluded segments
from the particle tracks in those time frames in which not all
of the particle was visible, i.e., where the bounding box
touched the image edge, retaining the original IDs. Next, we
dropped all particle tracks consisting of less than 100 usable
images, which we regarded as the minimum number of frames
for a statistical analysis. At this point, the data set consisted of
1367 particles, which we used for the translational Brownian
motion analysis.

For the rotational analysis, however, more filtering steps
were needed, because the requirements for the particle sharp-
ness are higher than in the translational case. We chose only

those particles for further Brownian rotation analysis, which
made up an area of at least 50 pixels and had a sharpness of
at least 10 (see above) for at least 100 frames. For smaller or
fainter particles, any elongation became indiscernible, which
is crucial in the next steps. This subset was then further filtered
by hand for sufficient ellipticity as all rotational parameters
would be derived from fitting ellipses to the particle contours.
The ellipse fitting procedure, which used a threshold of 20
counts to get a contour of the sharpest region, then yielded the
angle of rotation with respect to the vertical center axis and
the ellipse center, as well as the lengths of the semimajor and
semiminor axes, leaving us with 77 particles for the rotational
analysis.

At this point, we had compiled two data sets, with the one
for the rotational analysis being a full subset of the transla-
tional data set. For both data sets, we proceeded as follows:
First, the displacements in the two spatial directions (x and
y) were calculated independently for different time steps �t ,
with �t = 1 − 10 ms in 1 ms increments, �t = 11 − 25 ms
in 2 ms increments, and �t = 30 − 50 ms in 5 ms increments,
respectively. Then, for each �t value and for a minimum
number of 20 data points, a normalized cumulative frequency
plot of the displacements was made and the standard devia-
tions σx and σy were determined by using an error integral fit.
More details on how these fits were applied can be found in
Sec. III A.

We set 〈�x2〉 = σ 2
x (same for the y component) and applied

to these mean-squared standard deviations a fit of Eq. (1),
which has only the particle mass and the translational friction
time as fit parameters. However, since the data points for
�t = 1 ms often showed considerable deviations from the
expected trend [〈�x2〉 ∝ (�t )2, see Fig. 13 in Appendix A
for an example], this value was always ignored. One reason
for this deviation might be that the uncertainty in the determi-
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nation of the difference in particle position is maximal at the
smallest �t values [18].

The quality of each fit is here represented by a modified
residual sum of squares

RSSt,x = 1

J

jmax∑
j= j0

(log10(〈�x( j)2〉) − log10(	(�t ( j), mx, τt,x )))2,

(13)
where 	(�t ( j), mx, τt,x ) is the right-hand side of Eq. (1). The
logarithmic values have been used to avoid overrepresenta-
tion of 〈�x( j)2〉 values at large �t . Also, the RSS has been
normalized by the number of data points included in the fit
J = jmax − j0, with j0 and jmax being the indices of the first
and last data point used, to allow us to draw comparisons
between particles.

The same procedure was also applied to the analysis of the
rotational Brownian motion, replacing 	 with the right-hand
side of Eq. (2) and 〈�x( j)2〉 with 〈�θ ( j)2〉 in Eq. (13) to yield
an RSSr. However, as the maximum unambiguous rotation
angle is �θ = π/2, we restricted the data to mean-squared
rotation angles of 〈�θ2〉 � π2/4. Still, the tracks used for the
rotational analysis can sometimes become too short for proper
resolution at high �t values, since they are reduced to mostly
in-focus segments, despite a minimum length of 100 frames.
Therefore, the last data point used in the fit ( jmax) is chosen
by hand in these cases. Also, the data points at �t = 1 ms and
�t = 2 ms were ignored to achieve a better fit.

Then, finally, the normalized RSSt of the chosen fits were
used to filter out 589 particles with a maximum RSSt in both
spatial directions of 0.004. We further constrained the data set
to a maximum relative error of the mass resulting from the fit
of 10% (see Fig. 18 in Appendix C), which left us with 362
particles. These data make up the first translational data set
T1. If the same margin of error is assumed for the translational
friction time, we get data set T2 with 172 particles. Since the
quality of the friction time is irrelevant for comparing mea-
surements of mass and moment of inertia, we derived the first
rotational data set R1 from T1. Here, only those particles were
included for which a RSSr of less than 0.006 was achieved
in the rotational analysis. Also, a threshold for the relative
error of the moment of inertia was applied, though it was
set to a more lenient 50% due to the challenges of rotational
measurements. This resulted in 65 particles in data set R1. For
the purpose of comparing translational and rotational friction
times, we finally applied a 10% margin of error to τt as in data
set T2 and a 50% margin of error to τr and get 55 particles
in total in data set R2. The procedures, data sets, and particle
numbers are summarized in Fig. 23 in Appendix G.

III. DATA ANALYSIS

A. Analysis of the translational Brownian motion

From the recorded tracks (see Fig. 10 in Appendix A as
an example for particle 1), the two-dimensional positions xi

and yi of each particle were determined for all available time
stamps ti = i �t0, with �t0 = 1 ms and i = 0, . . . , N . As the
two spatial dimensions are physically independent of each
other, the subsequent analysis was done for each of the di-

mensions. In the following, we will only consider the spatial
dimension x. The analysis for y is completely analogous.

We calculated one-dimensional displacement data through

�xi( j) = xi+ j − xi, (14)

with

�t ( j) = j �t0 (15)

and j = 1, 2, 3, . . . n; i = 0, j, 2 j, . . . nj. Thus, we derived
one-dimensional displacement arrays with lengths ∼N

j . From
statistical mechanics and thermodynamics, it follows that
the �xi( j) should obey a Gaussian distribution. To prove
this for our dust aggregates and to determine the mean-
squared displacement 〈�xi( j)2〉 required for the application
of Eq. (1), we size-sorted the �xi( j) values for each �t ( j)
from the smallest (negative) value to the largest (positive)
value [hereafter, the arrays �x( j) and �x′( j)], accumulated
their number, normalized the total to unity, and fitted error
integrals, i.e.,


(�x( j)) = 1√
2πσ 2

x ( j)

∫ �x( j)

−∞
e
− (x′ ( j)−δx ( j))2

2σx ( j)2 d�x′( j), (16)

to the normalized cumulative histograms with the two fit
parameters σ 2

x ( j) ≡ 〈�x2
i ( j)〉 and δx( j) ≡ 〈�xi( j)〉, respec-

tively, the latter being a measure for a possible systematic drift
of the particles (see Appendix D). Figure 12 in Appendix A
shows examples of the fits for dust aggregate 1 and various
values of �t .

To visualize how close the particle displacements of all
particles in our sample follow a Gaussian, we normalized the
one-dimensional displacement values �xi( j) according to

ξG,x( j) = �xi( j) − δx( j)

σx( j)
, (17)

so all particles should follow the same normalized error
integral:


(ξG( j)) = 1√
2π

∫ ξG ( j)

−∞
e− ξ ′

G ( j)2

2 dξ ′
G( j). (18)

The top left of Fig. 3 shows, for sampling times �t =
1 ms < τt and �t = 5 ms ∼ τt , the cumulative displacement
data and their residuals to the integrated Gaussian for all dust
aggregates in the translation data set T1. It can be recognized
that in both cases the displacement data follow a Gaussian dis-
tribution very closely (also see Fig. 16 in Appendix B for more
sampling times). However, for values of �t � τt , the residuals
are, on the order of a few percent, systematic and possess
a characteristic quadruple-peaked shape, which suggests that
a single Gaussian may not be the exact description for the
one-dimension displacement. For �t � τt , the residuals are
randomly distributed with a standard deviation on the order
of 1%.

A systematic deviation from a single Gaussian has been
observed before and is usually described by an additional
exponential function [19]. However, a combination of two
Gauss functions has also been reported to fit the data [19]. We
tried both approaches and found that a double-Gauss ansatz
results in a better fit to the data. Details of these approaches
are presented in Appendix B. From the best fit function, we
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FIG. 3. Full characterization of the translational Brownian trajectories of all particles in data set T1. Top left: One-dimensional displace-
ment data after normalization following Eq. (17). The solid red curves show the normalized error integrals [Eq. (18)]. Additionally, a double
Gaussian fit to the composite data of all particles is shown (dashed blue curves). A fit must be used since Eq. (B1) cannot be normalized in
the same way a singular Gaussian can. The residuals for the single and double Gaussians are shown in the second and third rows of the plots.
The left and right panels were calculated for sampling times of �t = 1 ms and �t = 5 ms, respectively. Top right: 〈ξ 2

OFT〉 values as a function
of ϑt for the translational Brownian motion in x and y directions and comparison to Eq. (21) (red curve, color online). Data points that were
discarded when fitting to single-particle data before normalization are shown in gray. The bottom panel shows the residuals in logarithmic
units. Bottom left: Ratio of the width of the wider to the narrower Gauss function, max(σx,y,wx,y )

min(σx,y,wx,y ) for �t = 1 ms, with σx,y and wx,y from Eq. (B1),
as a function of the amplitude (ax,y or 1 − ax,y, respectively) of both Gaussians. The width ratio for each set of amplitudes is identical. Bottom
right: Spectral density distribution of the translational displacements at �t = 1 ms in x and y, represented by the light gray dots, where Px,y is
the signal strength and f the frequency, according to Eq. (29). A moving average with a window size equal to the number of particles is shown
in black. The dashed line represents the f −2 slope, which is expected for Brownian motion.

determined the mean square displacement 〈�x2〉 by assuming
that this is the square of the standard deviation given by the
16% and 84% confidence level of the fit function, in analogy
to the single-Gauss distribution function.

In the next step, the retrieved 〈�x2〉 values were plotted as
a function of �t (see Fig. 13 in Appendix A for an example)
and Eq. (1) was fitted to the data, which resulted in a set of four
fit values for the masses mx, my and the translational response
times τt,x, τt,y of each dust aggregate and for the two spatial
directions x and y.

Figure 2 shows the corresponding data for all the particles
and a comparison to the disturbance levels caused by the CMS
control sequence (curved red band) and by the discretization

noise, shot noise, and brightness flickering of the illumination
source (hatched bands, see legend). The various noise sources
are discussed in Appendix F. The symbols are slightly offset
to the right (left) for data set T1 (data set T2). Gray symbols
were not used to fit Eq. (1). As can be seen, none of the
particles in our data-set T2 are affected by the CMS operation
and only very few in the larger data set T1.

The goodness with which the data of the complete en-
semble of our particles follows the Ornstein-Fürth relation
[Eq. (1)] can be assessed by rescaling

〈
ξ 2

OFT

〉 = 〈�x2〉
2
(

kT
m

)
τ 2

t

(19)
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FIG. 4. The measured response times of the dust aggregates. Left: Cumulative histogram of the combined τt,x and τt,y values for the first
injection at 56 Pa gas pressure (indicated by the black circles) and by the second injection at 67 Pa gas pressure (indicated by the gray squares).
To get rid of the dependency of the response time on gas pressure (or density), as suggested by Eq. (22), the light gray diamonds show the
second-injection data multiplied by the pressure ratio. The two vertical dashed lines correspond to τt = 4.8 ms and τt = 15 ms, respectively,
which should be the lower and upper limits of the expected values (see Sec. IV A). The percentages of data points in the respective ranges are
shown in the black boxes for the first and (adjusted) second injections. Right: Same for the rotational response times τr .

and

ϑt = �t

τt
(20)

and using the fit values for m and τt for each particle and each
spatial direction. Then, Eq. (1) transforms into a unique form〈

ξ 2
OFT

〉 = ϑt − 1 + e−ϑt . (21)

In the top right of Fig. 3, this function is plotted as a red
curve and compared to the measured and rescaled data points
in the x direction. The close relation between measured and
theoretical values can be seen, with statistical deviations in
the few percent range for ϑt � 1 and on the order of 10% for
ϑt � 1 (see bottom panel in the top right of Fig. 3). For ϑt < 1,
there are, besides the statistical deviations, also systematic de-
viations visible, which stem from the non-Gaussian behavior
of the trajectory (see above). For the choice of the best fit for
each particle, these systematic deviations were discarded (see
Sec. II D).

Figure 4 (top) shows a combined cumulative histogram of
the collective τt,x and τt,y data for the two dust injections, with
ambient gas pressures of 56 Pa and 67 Pa, respectively. As the
mean-free paths of the gas molecules for these pressures are
∼170 µm and ∼140 µm, respectively, and, thus, much larger
than the particle dimensions (free-molecular flow regime), the
gas-grain response time of the spherical monomer grains can
be calculated by

τt = ρ r0

ρg v̄
, (22)

with ρ = 2000 kg m−3 [20], ρg, r0 = (0.725 ± 0.030) µm
[13] and v̄ = 477 m s−1 being the bulk density of the
monomer grains, the N2-gas density, the grain radii, and the
mean speed of the N2 molecules, respectively. With ρg =
6.3 × 10−4 kg m−3 for the first and ρg = 7.5 × 10−4 kg m−3

for the second dust injection, we get τt = 4.8 ms and 4.1 ms,
respectively. This is in good agreement with the smallest

occurring response-time values in Fig. 4 (top). In addition
to the two measured response-time distribution functions, we
also plotted the response-time distribution function of the
second injection of the dust cloud, but rescaled to the lower
gas density of the first dust injection. Although there are slight
differences in the upper half of the response times that are
possibly due to somewhat different large-aggregate morpholo-
gies, the agreement for response times similar to that of the
monomer grains or small aggregates is good.

B. Analysis of the rotational Brownian motion

The analysis of the rotational Brownian motion of the dust
aggregates was performed in complete analogy to the trans-
lational Brownian motion, as shown in Sec. III A. From the
recorded tracks and the ellipse-fitting algorithm (see Fig. 11
in Appendix A for an example), the angular orientation θi of
each particle was determined for all available time stamps ti =
i �t0, with �t0 = 1 ms and i = 0, . . . , N . We then derived the
one-dimensional angular displacement data through

�θ ( j) = θi+ j − θi, (23)

with

�t ( j) = j �t0 (24)

and j = 1, 2, 3, . . . ; i = 0, j, 2 j, . . .. As in the case of transla-
tion, we derived one-dimensional angular displacement arrays
with lengths ∼N

j . Also, all �θ ( j) should obey a Gaussian
distribution. Thus, we also size-sorted the �θ ( j) values for
each �t ( j) from the smallest (negative) value (data point
number 1) to the largest value (data point number ∼N

j )
and again fitted error integrals [see Eq. (16)] to the nor-
malized cumulative histograms with the two fit parameters
σ 2

θ ≡ 〈�θ ( j)2〉 and δθ ≡ 〈�θ ( j)〉, respectively. The left of
Fig. 16 in Appendix A shows as an example again parti-
cle 1 from Fig. 1 with its cumulative angular-displacement
histograms for �t = 1, 5, 10, 21, 35, 50 ms together with the
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FIG. 5. Full characterization of the rotational Brownian trajectories of all particles in data set R1. Top left: Angular displacement data after
normalization analogous to Eq. (17). The solid red curves show the normalized error integrals [analogous to Eq. (18)]. Additionally, a double
Gaussian fit to the composite data of all particles is shown (dashed blue curves). A fit must be used since Eq. (B1) cannot be normalized in the
same way a singular Gaussian can. The residuals for the single and double Gaussians are shown in the second and third rows of the plots. The
left and right panels were calculated for sampling times of �t = 1 ms and �t = 17 ms, respectively. Top right: 〈ξ 2

OFR〉 values as a function of
ϑr for the rotational Brownian motion and comparison to Eq. (27) (red curve, color online). Data points that were discarded when fitting to
single-particle data before normalization are shown in gray. The bottom panel shows the residuals in logarithmic units. Bottom left: Ratio of
the width of the wider to the narrower Gauss function, max(σθ ,wθ )

min(σθ ,wθ ) for �t = 1 ms, with σθ and wθ from the rotational equivalent to Eq. (B1),
as a function of the amplitude (aθ or 1 − aθ , respectively) of both Gaussians for all particles in data set R2. The width ratio for each set of
amplitudes is identical. Bottom right: Spectral density distribution of the rotational displacements at �t = 1 ms for every particle in data set
R2, represented by the light gray dots, where Pθ is the signal strength and f the frequency, according to Eq. (30). A moving average with a
window size equal to the number of particles is shown in black. The dashed line represents the f −2 slope, which is expected for Brownian
motion.

best Gaussian-integral fits. Figures 5 and 16 show the same
for all particles in data set R1 after normalization analogous
to the translational case [see Eqs. (17) and (18)]. Similar to
the translational case, the overall agreement with a Gaussian is
good, but the systematic deviations are even more pronounced
and lessen only at very high sampling times �t � 17 ms (see
Fig. 5 and Fig. 16 in Appendix B).

As for the translational Brownian motion, in the next step
the 〈�θ ( j)2〉 values were plotted as a function of �t ( j) (see
Fig. 13 in Appendix A for an example) and fitted to Eq. (2),
using the same algorithm as described for the translational
Brownian motion (see Sec. III A). Figure 2 shows all particles
in data sets R1 and R2. This resulted in values for the moment

of inertia I (data set R1) and the rotational response time τr

(data set R2) of each dust aggregate.
As for the translational Brownian motion (see Sec. III A),

the goodness with which the data of the complete ensemble of
our particles follow the Ornstein-Fürth relation [Eq. (2)] can
be assessed by rescaling

〈
ξ 2

OFR

〉 = 〈�θ2〉
2
(

kT
I

)
τ 2

r

(25)

and

ϑr = �t

τr
(26)
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and using the fit values for I and τr for each particle. Then,
Eq. (2) becomes 〈

ξ 2
OFR

〉 = ϑr − 1 + e−ϑr . (27)

In the top right of Fig. 5, this function is plotted as a red
curve and compared to the measured and rescaled data points.
The close relation between measured and theoretical values
can be seen, with statistical deviations in the few 10% range
(see bottom panel in the top right of Fig. 5). As in the case
of translational Brownian motion, systematic deviations from
the expected curve can be seen for values ϑr < 1, which are
also caused by the non-Gaussian behavior of the rotational
trajectory. For the choice of the best fit of each particle, these
systematic deviations were also discarded (see Sec. II D). The
deviations for values ϑr > 1 stem from a lack in temporal
resolution at large sampling times and were discarded by hand
when fitting to the data, as discussed in Sec. II D.

For a comparison to the translational friction times of the
aggregates, we also plotted in Fig. 4 (bottom) a cumulative
histogram of the rotational response times. If we apply the
same limits for τr as for τt (dashed vertical lines in Fig. 4),
it is apparent that no particles exceed the upper limit, but a
considerable fraction of all particles fall below the lower limit
of τr .

IV. RESULTS AND DISCUSSION

Similar to the previous section, the results of the trans-
lational and the rotational motion analysis will be discussed
separately. This is followed by a discussion about correlations
between translational and rotational properties of dust aggre-
gates and, finally, the derivation of the fractal dimension based
on the observed agglomerates.

A. Translational Brownian motion

Translational Brownian motion analysis could be per-
formed completely for 362 agglomerates (data set T1).
Applying even tougher filter criteria left 172 agglomerates
(data set T2) for which the analysis could be performed with
the highest accuracy. An optical visualization of the two data
sets is shown in Fig. 2.

1. Systematic deviations from Gaussian displacements

As demonstrated in Figs. 3 and 16, there are systematic de-
viations from a Gaussian distribution of the one-dimensional
displacements for small sampling times �t � 5 ms and all
agglomerate masses, whereas for �t � 5 ms the deviations
from Gaussian are random and mark the noise level down
to which we can extract the data. To mathematically describe
the systematic deviations, we fitted a double Gaussian as well
as a combination of a Gaussian and an exponential function,
as suggested by Wang et al. [19], to the data derived for
each particle. It turned out that the double Gaussian fits the
displacement data better than an additional exponential func-
tion (see Table II). Figure 17 in Appendix B demonstrates
for which cases the fit quality can be improved. In the top
left of Fig. 3, we show that the overall improvement by
fitting the sum of two Gaussians cannot only be measured
quantitatively but also leads to the complete disappearance of

TABLE II. Comparison of the residual sums of squares, RSSt

for translation and RSSr for rotation, respectively (following the
traditional definition but normalized by the number of data points),
of the three different methods of fitting to the displacement data,
namely, the single-Gauss function [Eq. (16)], double-Gauss function
[Eq. (B1)], and the sum of a Gaussian and an exponential function
[Eq. (B2)]. The values shown are the medians across all particles at
�t = 1 ms from data set T1 for both spatial displacements and data
set R1 for angular displacements, respectively. The reference to data
sets T1 and R1 can be found in Fig. 23 in Appendix G.

Single Gaussian Double Gaussian Gaussian + Exp.

〈RSSt〉 8.2 × 10−5 2.7 × 10−5 6.6 × 10−5

〈RSSr〉 21.1 × 10−5 3.1 × 10−5 4.4 × 10−5

the quadruple-peaked residuals for �t = 1 ms. It might seem
surprising that a unique second Gaussian can be found for the
normalized data, but looking at the top left panel of Fig. 17
in Appendix B shows that this could be expected because the
highest improvements in fit quality (highest values of RSSsingle

RSSdouble
)

are closely grouped around a width ratio of the two Gaussians
of ∼2. This is confirmed by the data in the bottom left of
Fig. 3, where we plotted the ratio of the width of the wider
to the narrower Gauss function, max(σx,y,wx,y )

min(σx,y,wx,y ) , with σx,y and
wx,y from Eq. (B1), as a function of the amplitude (ax,y or
1 − ax,y, respectively) of both Gaussians. The width ratio for
each set of amplitudes is therefore identical. It can be seen that
the width ratio is symmetric to ax,y = 0.5 and groups around
values of max(σx,y,wx,y )

min(σx,y,wx,y ) = 2 for 0.2 � a � 0.8. For amplitude
values outside this range, the width ratio can obtain higher
values. However, due to the smallness of the amplitude of one
of the two Gaussians in these cases, the width ratios can only
be derived with large error margins, so we conclude that

max(σx,y,wx,y)

min(σx,y,wx,y)
= 2 (28)

could be valid for all amplitudes. As for the amplitudes them-
selves, there is no obvious grouping present, but all values
occur equally often.

We can not identify any noise source in our data that can
quantitatively explain this behavior. In Appendix F, we list
the investigated noise effects, which are partly also displayed
in Fig. 2.

Next we compare the power spectrum of the one-
dimensional trajectories x(t ),

Px( f , T ) = 1

T

∣∣∣∣
∫ T

0
x(t ) e−i2π f t dt

∣∣∣∣
2

, (29)

with the expectation for pure (single-)Gaussian Brownian mo-
tion. Here, f and T are the frequency and the total observation
time of the trajectory, respectively. In the ideal case of in-
finitely long observation time, T → ∞, the power spectrum
of the Brownian diffusion follows a f −2 power law for all
frequencies; for finite observation times T , however, there is
a cutoff at a frequency of f ≈ 1/T [21].

The power spectrum for our standard particle (particle
1 in Fig. 1) is shown in Fig. 15 in Appendix A (top for
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translational, bottom for rotational Brownian motion). The
data nicely show the f −2 behavior over most of the frequency
range, with a slight indication of flattening at high frequencies.

The bottom right plot in Fig. 3 shows the power spectrum
for all particles in data set T2 (gray data points). The black
data points mark a moving geometric average of these data
with a window size equal to the number of particles.

We can recognize the f −2 power law for frequencies f �
200 Hz and a flatter slope for f � 200 Hz. It is remarkable
that the frequency at which the f −2 power law ends equals
a timescale of τ ≈ 5 ms, which is close to the characteristic
translational friction time of the particles. Thus, the power
spectrum also shows that a transition from pure Gaussian
( f −2) Brownian motion to something more complex occurs
at sampling times below the gas-grain coupling (or dissipa-
tion) time, i.e., in the ballistic limit of Brownian motion in
which the time-averaged equivalence between fluctuation and
dissipation is not necessarily fulfilled.

2. Absolute values of the translational friction times
and their correlation with aggregate mass

Fractal aggregates (see Sec. IV C) should possess response
times that are, in general, larger than those of their con-
stituent monomer grains due to partial shielding of some
monomer grains from the gas-flow field. However, this effect
might be rather small for very low fractal dimensions due
to the openness of the corresponding aggregate structures.
Mukai et al. [22] simulated the two cases of BPCA (ballis-
tic particle-cluster aggregation, df ≈ 3) and BCCA (ballistic
cluster-cluster aggregation, df ≈ 1.9) and found for the latter a
relation between mass m (or number of constituent grains) and
the average projected geometric cross section A of the form
A ∝ m0.95, from which a mass dependency of the response
time of τt ∝ m

A ∝ m0.05 can be derived in the free-molecular-
flow limit. For BCCA aggregates with constituent-grain
numbers between N = 1 and N = 1000 (this is approximately
the range of aggregate masses in our study; see Fig. 18 in
Appendix C), the increase of the ratio between mass and geo-
metric cross section, a proxy for the response time, is about a
factor of 3. Thus, we would not expect response times above
τt ≈ 15 ms, which is true for the bulk of the data points in
Fig. 4 (top). Following the simulations of Mukai et al. [22] and
suggesting that our aggregates have a low fractal dimension
too (see Sec. IV B), we expect a slight positive correlation
between τt and m. This behavior can be recognized in Fig. 6
where τt is plotted as a function of m for all particles of data
set T2. A formal power-law fit to the displayed data yields
a slope of 0.04 ± 0.02, which is in good agreement with the
expectation.

B. Rotational Brownian motion

Rotational Brownian motion analysis could be performed
completely for 65 agglomerates (data set R1). Applying even
tougher filter criteria left 55 agglomerates (data set R2) for
which the analysis could be performed with the highest accu-
racy. An optical visualization of data set R1 is shown in Fig. 2.

FIG. 6. The masses and translational response times of all dust
aggregates from data set T2. For the dust aggregates of the second
injection, the response times were multiplied by the pressure ratio of
the two injections to account for the higher gas pressure and, thus,
systematically smaller friction times after the second injection. The
dashed line shows the best-fitting power-law function with a slope of
0.04 ± 0.02 and corresponds well to the predictions by Mukai et al.
[22] for BCCA particles.

1. Systematic deviations from Gaussian displacements

As in the case of translational Brownian motion (see
Sec. IV A), we also observed in the rotational case system-
atic deviations from a Gaussian distribution for the angular
displacement data �θ for short sampling times �t . In Fig. 5,
we compile the full characterization of the rotational data set
R2, equivalent to the translational case shown in Fig. 3. The
top left of Fig. 5 shows that the double-Gaussian leads to a
much better fit of the overall displacement data than the single
Gaussian [analogous to Eq. (18)] also for the full ensemble of
particles. The top right of Fig. 5 displays the two best-fitting
Gaussians in direct comparison. The bottom left of Fig. 5
emphasizes that the width ratio of the two Gaussians is close
to 2, as in the translational case. Finally, the bottom right of
Fig. 5 shows the power spectrum of the rotational trajectories
θ (t ),

Pθ ( f , T ) = 1

T

∣∣∣∣
∫ T

0
θ (t ) e−i2π f t dt

∣∣∣∣
2

, (30)

with the sampling time T and the frequency f . Similar to
the translational case, we can distinguish between three fre-
quency ranges. For small frequencies, f � 1 Hz, the power
spectrum is rather flat. For intermediate frequencies, 1 Hz �
f � 200 Hz, the spectrum follows a power law, with a slope
close to −2. For high frequencies, f � 200 Hz, the spectrum
again becomes flatter. We interpret this behavior in the same
way as for translational Brownian motion (see Sec. IV A).

2. Absolute values of the rotational friction times and their
correlation with the moment of inertia of the dust aggregates

In Fig. 4 (bottom), we plotted a cumulative histogram of
all values of τr. Different to the translational case, the gas-
grain response times for rotation do not entirely fall into the
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FIG. 7. The moments of inertia and rotational response times of
all dust aggregates from data set R2. For the dust aggregates of the
second injection, the response times were multiplied by the pressure
ratio of the two injections to account for the higher gas pressure
and, thus, the shorter friction time after the second injection. The
dashed line shows the best-fitting power law function with a slope of
0.13 ± 0.03.

predicted range of values between τt = 4.8 ms and τt =
15 ms, but 25–33% of the data fall below τt = 4.8 ms, with
no particle above τt = 15 ms. The reason for this unexpected
behavior is unclear.

It is certainly interesting to see whether a correlation be-
tween the moment of inertia and the rotational friction time
exists. Lacking numerical data about this, there is, however,
no model available to compare these data too. In Fig. 7, we
show a plot of the rotational friction times as a function of the
moment of inertia for all particles from data set R2. Based
upon the relation between translational response time and
mass, we tried to fit a power law of the form τr ∝ Ia and
derived a slope of a = 0.13 ± 0.03 (see Fig. 7).

3. Deviations from the Ornstein-Fürth theory
for large values of �t

As can be seen in the uppermost curves in Fig. 2, the
measured data seem to deviate from the Ornstein-Fürth rela-
tion for large values of 〈�θ2〉. In contrast to the translational
Brownian motion, for which the displacement �x increases
beyond bonds for �t → ∞, the Brownian rotation angle is
periodic and limited to a range θ = [−π/2 rad, π/2 rad]. This
is observationally manifested by the onset of a saturation of
the 〈�θ2〉 data for large values of θr in Fig. 2.

C. Combining translational and rotational Brownian motion
and the derivation of the fractal dimension of the agglomerates

After the derivation of the properties of the dust aggregates
through Brownian translational and rotational motion, we here
will try to compare the two friction times as well as to use the
combined information of the particle masses and moments of
inertia to derive the fractal dimension of the ensemble of dust
aggregates.

FIG. 8. The translational and rotational response times, τt and τr ,
respectively, for all particles in data set R2. The dashed diagonal line
shows the expected relation τt = τr .

1. Comparison of the friction times derived through translational
and rotational Brownian motion

In the previous subsections, we discussed the individual
distribution of the translational and rotational friction times
(see Fig. 4). In Fig. 8, we now display the relation between τt

and τr . A clear deviation from τt = τr (dashed line in Fig. 8)
can be seen. This is unexpected, because each mass element
dm in the dust aggregate (e.g., a monomer grain), interacting
with the ambient gas, characterized by the respective response
time, should experience a force dF = dm v/τt as well as a
torque dD = dI ω/τr , with v and ω being the relative trans-
lational speed and rotational angular frequency between dust
aggregate and gas, the latter assumed to be at rest. Due to
dI = dm r2 and v = ω r, with r being the distance of the mass
element from the rotation axis of the aggregate, we get τt = τr .
If the deviation from this equality seen in Fig. 8 is real, the
effect can only be caused by a collective action of all mass el-
ements, which then obviously shields particles better from the
frictional interaction with the ambient gas in the translational
than in the rotational motion, hence often τt > τr. However,
we cannot exclude that the systematic deviation between the
two response times is caused by noise in the data, particularly
those cases for which τr < 5 ms, i.e., when the response time
of the dust aggregate is even shorter than that of a monomer
grain.

2. Derivation of the fractal dimension of the dust aggregates

For small collision speeds and microscopic particles, each
collision results in a so-called hit-and-stick event. This means
that the colliding grains establish a stiff connection at the
first point of contact. This scenario has been reproduced in
models [23] as well as in laboratory experiments [24]. Thus,
the resulting agglomerates are not compact and grains at the
periphery may shield incoming particles from reaching the
interior. Depending on the mass-frequency distribution of
the aggregates at any given time and the importance of ag-
gregate rotation, this may result in aggregate structures with
fractal dimensions [see Eq. (12)] in the range df = 1 . . . 3.
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FIG. 9. The moment of inertia of the dust agglomerates in data
set R2, determined by the rotational Brownian motion analysis, as a
function of the mass of the agglomerates, determined by the transla-
tional Brownian motion analysis. A power-law fit is shown by the red
line. Its slope provides the ensemble fractal dimension of df = 1.40.
The black data points with errors were derived from the Brownian
motion in x direction, the gray data points with errors from the y
direction. The moments of inertia for both mass values are identical.

Particles with df = 1 are stringlike agglomerates, whereas
those with df = 3 are porous clusters with a constant, i.e.,
mass-independent, density.

Using Eqs. (11) and (12), we get a relation between the
moment of inertia I and the mass m of an agglomerate with a
fractal dimension df , which reads

I ∝ m(1+ 2
df

)
. (31)

Thus, the slope α in a log-log plot of I versus m of an ensemble
of dust aggregates is given by α = 1 + 2/df and we finally
get the fractal dimension of the ensemble of dust aggregates
through

df = 2

α − 1
. (32)

Fitting a power law to the data shown in Fig. 9, according
to Eq. (31), yields df = 1.40+0.08

−0.07. This is a remarkably low
value for the fractal dimension and suggests that the rota-
tional motion has a considerable influence on the outcome of
a collision. Paszun and Dominik [25] studied the influence
of the gas density for Brownian-motion-induced agglomera-
tion and found that the fractal dimensions fall into the range
df = 1 . . . 1.46. For high gas densities, Brownian motion is
in the diffusive limit so two dust aggregates cannot penetrate
deep into one another so the lowest fractal dimensions result.
For low gas densities, both the translational and rotational
Brownian motion are ballistic so a slight chance exists that
some interpenetration can occur. Thus, the fractal dimension
in this case reaches the highest value of df = 1.46 possible
for Brownian motion. The model by Paszun and Dominik
[25] can explain previous results on Brownian-motion driven
fractal agglomeration, which showed that df ≈ 1.4 [7].

Here, we do not claim that the agglomerates in ICAPS
were entirely formed by Brownian motion because we have

indications that the initial growth was also affected by grain
charging. We will describe this in more detail in a forthcoming
paper. However, the low fractal dimension found in this work
is a clear indication that hit-and-stick processes were at work.

It should be emphasized that the ensemble fractal dimen-
sion derived by the analysis of the translational and rotational
ballistic Brownian motion is independent of any model as-
sumption and relies entirely on Eq. (12), with the mass and the
moment of inertia as direct outputs from the motion analysis
of the aggregates.

V. LIMITATIONS

Any analytical procedure is limited by the quality of the
available data, statistical uncertainties of measurement, and
other biases. The method we present for mass and friction time
determination using the Ornstein-Fürth equation is particu-
larly sensitive to biases caused by noisy data but also has other
limitations, which we will briefly discuss in the following.

First, small inaccuracies can creep in during data prepara-
tion due to tracking. However, we tried to minimize these as
far as possible. For example, a subpixel accuracy algorithm
was implemented to determine the center of the particles. But
even this only improves the tracking accuracy and does not
fully guarantee that the correct center was determined. Fur-
thermore, a flat-field correction was implemented to improve
tracking. However, this value is very sensitive, especially for
small particles, because possibly darker edge pixels of a parti-
cle can be detected as background and thus the determination
of the position of the center of mass of the particle might be
erroneous.

Unlike the mass, the moment of inertia and the two re-
sponse times τt and τr are nonunique for aggregates and
depend on the orientation of the grains with respect to the
momentary velocity vector in translation and rotation. Al-
though the expected range of variation should not exceed a
factor of a few, due to the isotropy of Brownian motion, these
ambiguities might affect the ensemble fractal dimension in
an unknown way. It should also be noted that the determi-
nation of Brownian rotation, the orientation angles had to be
measured. Besides harsh sharpness criteria, our ellipse-fitting
routine required a certain amount of elongation of the dust
aggregates. This not only led to much fewer dust aggregates in
the rotational data set (65 particles in R1 versus 362 particles
in T1, see Fig. 23) but might also have imposed selection
effects with unknown consequences for the determination of
the fractal dimension.

We tried to identify noise effects that could lead to misin-
terpretations of the measured particle trajectories and found
that the corresponding noise levels are very small (see Ap-
pendix F). However, there might be undiscovered disturbances
during the rocket flight that might also affect the results. One
such effect might be the high mass loading of the particle
samples investigated in this paper. As shown in Sec. II, the
overall mass density of the grains exceeds the gas density by
a factor 15–30. This leads to the situation that the mean-free
path of the gas molecules (170 µm for the first dust injection)
is on the same order as the mean distance between the dust
particles (∼50 − 500 µm, depending on the aggregate mass).
Thus, a proper thermalization of the gas between collisions
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with nearby particles is not guaranteed. However, this effect
might be very small and restricted to ultrashort timescales
because the mean diffusion length of the gas molecules for
the shortest timescale of �t = 1 ms is ∼9 mm and thus much
larger than the other relevant length scales.

VI. CONCLUSIONS

With a unique experimental setup (see Sec. II), we were ca-
pable of studying the thermal motion of microscopic particles
under microgravity conditions at high spatial and temporal
resolution for extended periods of time. In this paper, we
presented the acquired data of the translational and rotational
Brownian motion of dust aggregates from the ballistic to
the diffusive limit in rarefied gas (Knudsen number Kn =
140 − 168 with respect to the monomer-grain radius). Our
data analysis shows that the particles follow the Ornstein-
Fürth relation [Eq. (2)] closely (see the top right in Figs. 3
and 5), which allowed us to determine the four individual
characteristic physical properties of a large number of dust
agglomerates, namely, their mass and their moment of inertia
as well as their translational and rotational response times.
The high mass loading of the rarefied gas (density ratio be-
tween solids and gas ∼15 − 30, see Sec. II) obviously has
no effect on the Brownian motion of individual particles. We
observed slight deviations from the one-dimensional Gaussian
displacement behavior in the ballistic limit, which we cannot
attribute to any possible noise source.

The translational friction falls into the expected range of
values τt = 4.8 − 15 ms, which can be determined by ap-
plying Eq. (22), valid for the free-molecular flow regime. A
surprising and somewhat unexpected result is that the rota-
tional response times of the dust aggregates seem to be on
average slightly smaller than their translational counterparts
(see Fig. 8). It still needs to be explained whether this finding
is real or an artifact of the data analysis.

The mass determination of the dust aggregates can be
performed in the ballistic limit, i.e., for all �t < τt , because
it then follows Eq. (3), which only has the mass of an ag-
glomerate as a free parameter, which is a unique property.
The relative error of the mass determination is approximately
±∼0.1 over the entire mass range (see Fig. 18 in Appendix C).
Nonunique are the moment of inertia, which can equivalently
be determined in the ballistic limit of the Brownian rotational
motion [see Eq. (4)] and the two friction times. For the de-
termination of the latter, the diffusive limits of the Brownian
translational and rotational motion have additionally to be
covered.

The relation between the moment of inertia and the mass
of an ensemble of dust aggregates is determined by the fractal
dimension, which is a characteristic property of the underlying
growth process [9]. Figure 9 shows that Eq. (12) is well
adopted by the ICAPS dust-aggregate ensemble and allowed
us to determine, according to Eqs. (31) and (32), the fractal
dimension to be df = 1.40+0.08

−0.07.
This paper shows that a proper high-resolution Brownian

motion analysis allows us to determine all basic properties of
dust particles. In our future work, we plan to study Brownian
motion for a wide range of particle sizes, materials, and shapes

and to correlate the fractal dimension of an ensemble of dust
aggregates to the underlying growth process.
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APPENDIX A: SINGLE-TRAJECTORY ANALYSIS
OF PARTICLE 1 IN FIG. 1

In this Appendix, we exemplify the analysis of the single-
particle translational and rotational trajectories by showing the
results for particle 1 in Fig. 1. The properties of this particular
dust aggregate are shown in Table I. Figure 10 displays the
two-dimensional trajectory of the particle across its observa-
tion time of ∼7 s and how it rotated during a segment of the
trajectory, amounting to ∼2 s, in which the particle was sharp
enough to enable orientation measurements. Figure 11 shows
snapshots of the particle with the fitted ellipses, used to derive
its orientation, drawn on top. Figure 12 shows the size-sorted
one-dimensional translational and rotational displacements of
the particle. Figure 13 shows the one-dimensional spacial
and angular mean square displacements of the particle as a
function of the sampling time, together with the best-fitting
function following Eq. (1) in the translational and Eq. (2)
in the rotational case, respectively, which yielded the mass,
moment of inertia and the translational and rotational friction
times of the particle (see Table I). Figure 14 shows how the
fit of a double-Gaussian, according to Eq. (B1), improves the
representation of the displacement data in translation and ro-
tation. Finally, Fig. 15 shows the spectral density distribution
of the trajectory of particle 1 in translation and rotation.

APPENDIX B: ALTERNATIVES TO PURE
GAUSSIAN DISPLACEMENT

Based on the kind of systematic deviations seen in Figs. 3
and 16, we tried, as an alternative to Eq. (16), to em-
pirically improve the representation of the one-dimensional
displacement data of the individual particle trajectories by two
additional mathematical descriptions.

(I) The sum of two Gaussians,


2(�x( j)) = 1 − ax( j)√
2πσ 2

x ( j)

∫ �x( j)

−∞
e
− (�x′ ( j)−δx ( j))2

2σx ( j)2 d�x′( j)

+ ax( j)√
2πw2

x ( j)

∫ �x( j)

−∞
e
− (�x′ ( j)−δx ( j))2

2wx ( j)2 d�x′( j),

(B1)
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FIG. 10. Left: Track of particle 1 from Fig. 1. Each dot represents one time step of 1 ms with some larger gaps at the beginning of the track.
The temporal evolution is shown through a color gradient from blue over red to yellow, and the dots are connected by a gray line in that order.
Right: Orientation track of the same particle, shown as a polar plot with time on the radial axis. The sharpness of the cropped particle images,
as described in Sec. II D, is represented in the color of the dots on an arbitrary scale from blue over red to yellow. Supplemental Material
movies of the translational and rotational Brownian motion of this particle are also provided [27].

with wx( j) and ax( j) being the width and amplitude of the
second Gaussian, respectively. The other parameters have the
same meaning as in Eq. (16).

(II) The sum of a Gaussian and an exponential function,


′
2(�x( j)) = 1 − ax( j)√

2πσ 2
x ( j)

∫ �x( j)

−∞
e
− (�x′ ( j)−δx ( j))2

2σx ( j)2 d�x′( j)

+ ax( j)

2λx( j)

∫ �x( j)

−∞
e− |(�x′ ( j)−δx ( j))|

λx ( j) d�x′( j),

(B2)

with λx( j) being the width of the exponential function. Fit-
ting both equations to our data sets showed that the sum
of two Gaussians [Eq. (B1)] can represent the data much

FIG. 11. Snapshots of the orientation of particle 1 from Fig. 1.
The ellipse fitted to its contour is shown in blue, as well as the
orientation of the semimajor (solid line) and semiminor (dashed line)
axis, respectively. The center of light extinction is denoted with a red
cross in each image .

better than the combination of a Gaussian with an exponential
function (see Table II). The overall improvement of the fit
quality by using the double-Gaussian recipe can be seen in
Fig. 14 in Appendix A for particle 1 in Fig. 1. The tails at
larger displacements are better represented by the double-
Gauss fit, but still the fit is not perfect. However, for the
purpose of determining the mean square displacement 〈x2〉,
the actual choice of a single-Gauss or a double-Gauss fit is
almost irrelevant (see vertical dash-dotted lines in Fig. 14 in
Appendix A).

As shown in Fig. 16, the need for a correction to the
single-Gauss solution decreases with increasing �t . This can
also be seen in Fig. 17, in which the width ratio of the
two Gauss functions in the double-Gauss fit (top row) and
the amplitudes of the two Gauss functions (middle row) are
plotted as a function of the improvement of the fit quality,
expressed by the ratio of the squared deviations in both cases,
RSSsingle

RSSdouble
, respectively. The bottom row additionally shows the

width ratio of the two Gauss functions as a function of the
amplitude of both Gauss functions. The tendency of the data
to concentrate at smaller values of RSSsingle

RSSdouble
with increasing �t

can be easily seen when comparing the left, middle, and right
columns of plots in Fig. 19. Thus, a considerable improvement
of the fit quality by introducing a second Gaussian can only
be achieved for small values of �t , but in these cases the
improvement can be up to a factor ∼30. As can be seen in
the top left panel of Fig. 19, the highest improvement in fit
quality corresponds to a width ratio of the two Gaussians of
∼2. In these cases, the amplitudes of the two Gauss functions
are not constrained (left column, middle panel). This can also
be seen in the bottom row of Fig. 19 where the width ratio of
the two Gauss functions is shown as a function of their ampli-
tudes. For higher width ratios, however, the amplitudes group
around values close to 0 and 1. This suggests that the formal
double-Gauss solutions are very close to the single-Gauss
case.
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FIG. 12. Left: Examples of the size-sorted �x( j) data for particle 1 in Fig. 1 from the trajectory displayed on the left of Fig. 10 for time
increments of �t = 1, 5, 10, 21, 35, 50 ms (data points). The solid curves show the best-fitting error integrals [Eq. (16)] from which the values
σ 2

x and δx were derived. The plots at the bottom of each panel show the residuals between the measurements and Eq. (16). Right: The equivalent
for the rotational case, showing the same data as displayed on the right of Fig. 10 and yielding σ 2

θ and δθ from the fits [analogous to Eq. (16)].

We then applied again both replacements for the rotational
equivalent of Eq. (16).

(I) The sum of two Gaussians, with wθ ( j) and aθ ( j) being
the width and amplitude of the second Gaussian, respectively.

(II) The sum of a Gaussian and an exponential function,
with λθ ( j) being the width of the exponential function.

APPENDIX C: ACCURACY AND ISOTROPY OF THE MASS
AND FRICTION TIME DETERMINATIONS

From the two physical quantities that can be derived from
the one-dimensional Brownian displacement data, namely, the
mass and the friction time of the particle, only the mass is

FIG. 13. Left: 〈�x( j)2〉 values as a function of �t ( j) (open and filled circles) for particle 1 in Fig. 1. The best fit function following
Eq. (1) is shown as a solid red curve. As the data are one-dimensional displacements in the x direction, the fit procedure yields the mass
mx = 2.4 × 10−13 kg and the translational friction time τt,x = 9.6 ms of the particle. The data points that were used in the fit are denoted by
the filled symbols. The dash-dotted line denotes the slope of a perfect ballistic trajectory [Eq. (3)], whereas the dashed line shows the diffusive
limit (slope and absolute value) of that particular particle [Eq. (7)]. Right: The equivalent for the rotational case. The best fit to Eq. (2) yields
the moment of inertia I = 1.5 × 10−23 kg m2 and the rotational friction time τr = 10.1 ms of this particle.
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FIG. 14. Size-sorted �x( j) (top) and �θ ( j) (bottom) data for
particle 1 from Fig. 1 for �t = 1 ms. The solid curves show the best-
fitting integrals, both for the single Gauss function [Eq. (16)], the sum
of two Gauss functions [Eq. (B1)], and the sum of a Gaussian and an
exponential function [Eq. (B2)]. The bottom segment of each plot
shows the corresponding residuals between the measurements and
the respective fit values. The dash-dotted lines mark the displacement
values corresponding to the 1σ range boundaries.

a unique property that does not depend on the orientation
of the aggregate relative to its direction of motion. The fric-
tion time, on the other hand, is actually a tensor with three
(possibly different) eigenvalues. For dust aggregates with low
fractal dimensions, D f � 2, the ratio of the one-dimensional
radii of gyration for two perpendicular spatial directions has
been shown to obtain maximum values of ∼2 [28]. Thus,
the friction time might also vary by about that much from
one spatial direction to the other (if Brownian rotation can
be neglected) or as a function of time (if Brownian rota-
tion is effective) in a single spatial direction. However, if
we compare the scatter of the mass and friction time data
in both spatial directions by evaluating (mx − my)/(mx + my)
and (τx − τy)/(τx + τy), respectively, their distributions are
indistinguishable (see Fig. 18, top right for mass and bottom
right for friction time). It should be noted that the data sets
for the mass (data set T1) and the friction time (data set T2)

FIG. 15. Spectral density distribution of the Brownian trajecto-
ries of particle 1 in Fig. 1 and comparison to the expected slope of
−2 (dashed lines, color online). Top: Translational Brownian motion
for both spatial directions, x (black dots) and y (gray dots). Bottom:
Rotational Brownian motion.

are different (see Fig. 23 in Appendix G), but the criteria for
the goodness of the Ornstein-Fürth fits were the same, namely,
�m/m � 0.1 and �τt/τt � 0.1, for each spatial direction in-
dependently. The FWHM of both histograms in Fig. 18 is
±0.1, which perfectly reflects the selection criteria.

It should also be noted that the determination of the in-
dividual aggregate masses does not require any knowledge
about the corresponding friction time, because for �t �
τt the Ornstein-Fürth relation [Eq. (1)] is approximated by
Eq. (3), whereas determining the friction time is impossible
without knowing the particle mass. Thus, any systematic error
in the mass determination will cause a systematic error in the
friction time, but not vice versa.

To control the consistency of the derived masses and re-
sponse times in the two spatial directions x and y, we also
show in Fig. 18 the relations between the masses mx and my

and translational response times τt,x and τt,y, respectively. The
correlation between the two individual mass measurements
is very close over about three orders of magnitude of mass
variations. A formal fit of my = amx + b yields a = 1.02 ±
0.02 and b = (0.5 ± 4.0) · 10−16 kg = (0.02 ± 0.12) m0, with
a Pearson correlation coefficient of 0.968. In contrast, the cor-
relation between τt,x and τt,y is rather weak, with a formal fit
of τt,y = cτt,x + d , yielding c = 0.87 ± 0.07 and d = (1.2 ±
0.5) ms, with a Pearson correlation coefficient of 0.882. How-
ever, this is mostly caused by the small range of values of τt ,
which span only a factor of about 3. As shown in Sec. IV A,
the relative uncertainties in the determination of masses and
response times are very similar.

Although the formal mass error is relatively small, we
cannot resolve the discretization of the masses in the lower
mass range (see inset of the top left of Fig. 18). This is mainly
due to the monomer-mass uncertainty (0.05 µm uncertainty
in radius, i.e., ±20% uncertainty in monomer mass) [9,29],
which leads to an overlap of the masses for neighboring mass
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FIG. 16. Left: Same as Fig. 12, but showing the one-dimensional displacement data for all particles of the data set T1 after normalization
following Eq. (17). The solid curves show the normalized error integrals [Eq. (18)]. Below each plot, the residuals are shown. Right: Rotational
equivalent of the left figure, showing the normalized angular displacement data for all particles of data set R1.

units. Moreover, due to the higher Brownian velocities for the
small masses, such particles move out of focus after a shorter
time than massive aggregates. Due to this shorter trajectory
length, the intrinsic uncertainty in the mass determination is
larger for small masses.

APPENDIX D: EXCLUSION OF A SYSTEMATIC
PARTICLE DRIFT

A possible systematic drift (parameters δx( j) in Eq. (16)
and δθ ( j) for the rotational equivalent) from the analysis of
the Brownian motion can either be real or an artifact of the
fitting procedure. To test which of the two dominates in our
data, we performed a statistical analysis of the parameters
δx( j) in Eq. (16) and δθ ( j) in the rotational equivalent, which
is shown in Fig. 19 as cumulative histograms for sampling
times of �t = 1 ms, 5 ms, 10 ms, and 50 ms, respectively. In
the top row of Fig. 19, we can see that the absolute drift in x
(left) and y directions (right) is almost symmetric to the zero
value, with a maximum median value of ∼0.25 µm in the x
direction for �t = 50 ms (see inset of Fig. 19), equivalent to
a median drift velocity of only ∼5 µm/s. However, the total
width of the distribution functions increases with increasing
sampling time, but less than linear. If the drift was system-
atic and constant over the observation time, a linear relation
between δ and �t would be expected. Thus, we hypothesize
that the drift is caused by the diffusion process itself. To test
this, we plotted in the second row of Fig. 19 a cumulative
normalized histogram of the values of (δ tobs)/(ldrift �t ). If the
drift was a fitting-procedure artifact of the Brownian motion

itself, we would expect that the average overall drift length
ldrift ≈ √

2Dttobs scales with the square root of the observa-
tion time. This relation should be valid as long as tobs � τt

and �t > τt . Here, Dt and tobs are the translational diffusion
constant [Eq. (9)] and the overall observation time of the
considered particle trajectory, respectively. We can see from
the second row of Fig. 19 that all data collapse onto a single
distribution function, regardless of the sampling time. Thus,
we can conclude that there is no discernible external drift
in the Brownian-motion data and that the small values of δ

are a result of fitting a Gaussian to the particle displacements
for trajectories whose end points do not coincide with their
starting positions.

In bottom row of Fig. 19, the same type of diagrams are
shown for the rotational Brownian motion. Here again, the
distribution of δθ values gets wider with increasing sampling
time, similar to the translational case (compare bottom left
plot to the top row of Fig. 19). However, normalizing the
rotational drift the same way as the translational shows that
the width of the distribution function even decreases with
increasing values of (δθ tobs)/(ldrift,θ �t ). This is due to the
rotational drift limit and the periodicity of the rotation angle,
so also in the rotational case, the drift value can be explained
by the Brownian motion itself.

APPENDIX E: DERIVING THE FRACTAL DIMENSION
FROM OPTICAL DATA

As mentioned in Sec. II D, the information extracted from
the images also include some data that are irrelevant to the
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FIG. 17. Comparison of single-Gauss and double-Gauss fits and parameter ranges for the double-Gauss fit results for three values of the
sampling time, �t = 1 ms (left column), �t = 5 ms (middle columns), and �t = 25 ms (right column), using data set T1. The top row shows
the width ratio of the two Gauss functions as a function of the RSS ratio for the two fit functions. The middle row displays the amplitudes of
the two Gauss functions as a function of the RSS ratio for the two fit functions. The bottom row shows width ratio of the two Gauss functions
as a function of their amplitudes.

Brownian motion analysis, namely, the two-dimensional ra-
dius of inertia and the total extinction, or optical mass, of a
particle. The benefit of these data lies in the fact that they do
not require the compensation of external drifts and are, thus,
available for all experimental phases of ICAPS. However, due
to image blurring, this data also requires careful calibration,
which can be achieved using the correlations between mass
and moment of inertia derived through Brownian motion anal-
ysis and those derived optically.

1. Mass correlation

On the left of Fig. 20, we show that, ignoring a few outliers,
a strong correlation between the optical mass μopt and the
mass derived from translational Brownian motion mBM can
be recognized. To account for a slight nonlinearity in light
extinction, we applied the relation

μopt = κ0

(
mBM

m0

)κ1

, (E1)

with m0 being the monomer mass (see Sec. II B), and expect
κ1 ≈ 1. After logarithmic fitting, we obtained the free param-
eters κ0 = 526.6 ± 1.0 and κ1 = 0.96 ± 0.01. The excellent
quality of the fit can be seen in Fig. 20 (left, solid red curve and
bottom residuals). By normalizing the aggregate mass to the
monomer mass [see Eq. (E1)], we also obtained the absorption
of a monomer grain μ0 = κ0.

A comparison to a linear fit, i.e., κ1 = 1 (see Fig. 20, left,
dashed blue curve and top residuals), shows that the nonlin-
earity is indeed small, with a maximum deviation between the
two fits curves of ± 10%.

2. Moment of inertia correlation

In contrast to the correlation between optical and Brown-
ian mass, which is independent of the optical resolution, the
optical moment of inertia suffers from finite-resolution and
diffraction effects. Thus, the optical image is always blurred
and, thus, slightly larger than the particle itself (see Fig. 20,
right). If we assume that the real aggregate radius r is enlarged
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FIG. 18. Accuracy of the determination of masses and friction times. Top left: The correlation between the two mass measurements, mx

and my, for each particle in data set T1. The dashed line denotes mx = my. The red dots in the inset denote the expected integer values of
monomers, dimers, etc. The orange circles represent the error with respect to the dispersion of monomer radii and the yellow circles denote the
doubled error. Top right: Histogram of the relative mass deviation between the x and y coordinates of the same particle. Bottom left: Response
times τt,y measured with the one-dimensional displacement data in y direction versus τt,x measured in x direction for every particle in data set
T2. The dashed line represents τt,x = τt,y. Bottom right: Histogram of the relative friction time deviation between the x and y coordinates of
the same particle.

through these effects by a constant offset δr, i.e., the optical
radius is ropt = r + δr, the optical moment of inertia can be
expressed by iopt ∝ m r2

opt ∝ m (r + δr)2. We can also assume
that the optical mass is not affected by this effect, i.e., can
be expressed by mopt ∝ IBM/r2, so we can relate the optical
and the Brownian moment of inertia by iopt ∝ IBM

r2 (r + δr)2 =
IBM (1 + δr

r )2. Finally, combining Eqs. (12) and (11) results in

r ∝ I
1

2+df
BM so we can apply the relation

iopt = λ0
IBM

I0

(
1 +

(
λ1

(IBM/I0)λ2

))2

, (E2)

including the normalization to the moment of inertia of the
monomers I0. As the fractal dimension and the radius enlarge-
ment are unknown quantities, we introduced free parameters.
Fitting Eq. (E2) to the moments of inertia determined through
optical and Brownian-rotation analysis, yields the three free
parameters λ0 = (0.2 ± 5.1) × 10−11 counts · m2, λ1 = 20 ±

229, and λ2 = 0.09 ± 0.13, respectively. Figure 20 (right,
solid curve and residuals) shows that Eq. (E2) fits the data
very well and that a linear relation between iopt and IBM is
inadequate see (Fig. 20, right, dash-dotted line). The inversion
of Eqs. (E1) and (E2) allows the determination of the real
masses and moments of inertia from their optical counterparts,
though the latter requires numerical inversion.

3. Determination of the optical fractal dimension

As discussed in Sec. IV C 2 and shown in Fig. 9, the
Brownian motion analysis yielded a fractal dimension of df =
1.40+0.08

−0.07. In comparison, the relation between the optical
moment of inertia and the optical mass results in a fractal
dimension of df = 1.94+0.12

−0.10. After applying the calibrations
through the Brownian-motion results [Eqs. (E1) and (E2)], the
value of the fractal dimension becomes df = 1.41+0.07

−0.06 (see
Fig. 21). This value is within the errors identical to the one
derived through the Brownian-motion data.
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FIG. 19. Analysis of the values of the fit parameters δx ( j), δy( j), and δθ ( j) in Eq. (16) for translation and its equivalent for rotation,
respectively. Top row: Cumulative normalized histograms of δx ( j) and δy( j) for four different sampling times, as indicated in the legend.
Second row: Cumulative normalized histograms of (δx ( j) tobs)/(ldrift,x �t ) and (δy( j) tobs )/(ldrift,y �t ), as described in the text. Bottom row:
Same as above, but for rotation.

APPENDIX F: NOISE ANALYSIS

As shown in Sec. III A, the displacement data for the low
�t values show some systematic deviations from a Gaussian.
In many cases, a combination of two Gaussians [see Eq. (B1)]
delivers a much better fit to the observed data. In the following
subsections, we seek for explanations of this unexpected be-
havior by identifying noise sources that can contribute to the
observed effect.

1. Influence of cloud manipulation on the particle trajectories

In the levitation mode, the CMS feedback loop updates
the Peltier control currents once per 20 ms. However, the
temperature variation rate is limited by the thermal inertia
of the Peltier elements. The measured response time of the
CMS hardware was about τCMS = 100 ms, so temperature
variations with frequencies higher than ∼1/τCMS = 10 Hz
were not present. From the housekeeping data of the CMS,
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FIG. 20. Calibration of the imaging properties through the physical properties determined by Brownian motion. Left: Aggregate mass. The
dashed blue line shows the best-fitting linear relation between the particle mass determined through the translational Brownian motion and
the maximum total particle extinction for all particles in data set T1 in both x and y directions. The solid red line represents the best-fitting
power law according to Eq. (E1). The two plots below represent the residuals. Right: Aggregate moment of inertia. The solid curve shows
the best-fitting relation between the optical moment of inertia iopt and the moment of inertia IBM determined through the rotational Brownian
motion for all particles in data set R1, according to Eq. (E2). For comparison, the dashed-dotted gray line marks a linear relation between iopt

and IBM.

we reconstructed the mean active cloud shift as a function of
time step �t , which is shown as the red band in Fig. 2.

Due to small differences between individual Peltier tem-
peratures for the same currents, the CMS caused a nonuniform
creep motion of the dust cloud with average velocity of
∼50 µm/s. This led to a cloud deformation with a timescale of
minutes, which makes the effect negligible for the Brownian
motion analysis.

FIG. 21. Determination of the ensemble fractal dimension of
data set R2, using optical data which was calibrated through their
Brownian counterparts (see Fig. 20). A power-law fit is shown by the
red line, yielding df = 1.41.

2. Correction of spatial and temporal brightness gradients in
the raw images

During a period spanning 43.6 s between the first and
second experiment runs, the dust cloud was lost with image
recordings still on. This offered abundant data for the anal-
ysis of noise (see Appendix F 3) as well as the creation of
a flat-field image, which is shown in the bottom of Fig. 22.
The background exhibits a static gradient with a decrease in
brightness from left to right and in a circular pattern, most
likely caused by the LDM lighting. There are also a few
dark patches, probably caused by contaminants in the optical
path of the LDM. By employing a flat-field correction, we
compensated these patterns and inverted the images. The top
of Fig. 22 also shows the temporal evolution of the mean gray
value across all pixels of each raw image. There is a shallow
incline for each experiment run, as well as an offset between
the two. During the period where the cloud was lost, the mean
stays rather constant, though noisy, at 190 ± 2 counts, where
the error denotes the maximum deviation.

The increase in brightness over time is due to a thinning of
the dust cloud and the offset between the two dust injections
is caused by an increase of dust contamination of the chamber
windows. The former is barely influenced by the particles
in view, which is supported by the fact that singular pixels
show the same trend in brightness, since the likelihood of
them being crossed by a particle is low. Two linear fits, one
for each experiment run, were then used to adjust the mean
brightness of the flat-field image before correction. Prior to the
localization of particles, however, we also set all gray values in
the corrected images below 4 to 0 counts to remove any noise
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FIG. 22. Shot noise analysis. Top: Mean brightness across all
pixels of each frame as a function of experiment time. Every ex-
periment phase is marked with a different vertical band in the
background. However, only the levitation phases were used for the
Brownian motion analysis. Bottom: An average image recorded
when the dust cloud was lost, which was then used as the flat-field
image.

in the space between particles (see Appendix F 3 for details
on the noise).

3. Influence of optical noise on the measured particle
positions and orientations

In any imaging system, there are sources of optical noise to
consider. One such source is the discretization due to the finite
distance between pixels. Also, the shot noise of the acquired
images and fluctuations of the LDM illumination were taken
into account here, which is not to say that there may not be
other optical noise sources.

Since the shot noise of the camera should average to zero
and the change in mean brightness, described in Appendix F 2
and shown in the top of Fig. 22, is spatially homogeneous,
the observed intensity noise (peaking at ± ∼ 2 counts) can
be attributed to fluctuations (flickering) in the brightness of
the LDM illumination. Analysis of the deviations from the

flat-field image (see bottom of Fig. 22) of each pixel in the
dust-free period yielded a standard deviation for this effect
of 0.63 counts. When adapting the mean brightness of the
flat-field image to the momentary mean brightness, i.e., the
flickering, before correcting the raw images (devoid of parti-
cles) with it, the remaining deviations can then be attributed to
the shot noise. This yields a standard deviation of 0.35 counts.

With these parameters, a Monte Carlo simulation was then
used to derive the offsets in the particle positions and ori-
entations caused by the brightness flickering as well as the
shot noise. For this, the respective Gaussian noise was applied
to single-particle images with 100 random variations of the
noise pattern per image. Following that, all relevant steps from
the image analysis were implemented (e.g., the thresholding
as described in Appendix F 2). However, to also account for
the aforementioned discretization noise, these images were
actually produced in a Monte Carlo ray tracing simulation of
artificial particles, which were grown in another simulation
(see Appendix F 4). Thus, the true center of mass was known
and could be compared to the measurements after all the noise
sources had been applied, which yielded the one-dimensional
spatial offset caused by the sum of the optical noises.

In the rotational case, however, the orientation of the arti-
ficial particles was not well-defined and it was not possible
to ensure high ellipticity (whose relevance is explained in
Sec. II D). Thus, for the analysis of the rotational offsets we
had to resort to particle images from the experiment, specif-
ically to all particles in data set R1. We therefore cannot say
how large the influence of the discretization is on the particle
orientation, although the positional offsets from this noise
seem to indicate that it is negligible. The other noise sources,
i.e., shot noise and illumination flickering, most likely play a
much greater role in the final rotational offsets. Since there
might be a dependency on particle size, the median square
absolute offsets were derived for each particle individually,
yielding the upper and lower bounds in the left and right of
Fig. 2 for translation and rotation, respectively.

4. Discretization noise induced by bright-field microscopy

Technically, the LDM used in this study for the determi-
nation of the particle properties is directly illuminated by the
light source. Thus, all images appear bright, but no pixel of the
CMOS sensor of the high-speed camera is saturated. When a
particle is inside the field of view and within the depth of focus
of the LDM, it appears darker than the background. Due to the
nature of the SiO2 particles used in this study, the darkening
effect is entirely by diffraction and not by absorption. To
simulate how stable the recorded center of extinction, which
we assign to the center of mass of the aggregate, is under
Brownian rotation of the aggregate around its center of mass
as well as under random translational positioning of the pixel
discretization grid, we performed Monte Carlo ray-tracing
simulations.

In our ray tracing calculations, however, we modeled the
extinction of light by assuming that the monomers were non-
diffracting (n = 1.0) perfect spheres with a length absorption
coefficient of 0.1 r−1

0 , with r0 being the monomer radius,
which results in an effective extinction probability of 12 % for
a ray randomly hitting a monomer. This effective extinction
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FIG. 23. Visualization of the data-analysis routines. On the left-hand side, the translational and on the right-hand side, the rotational
Brownian motion analysis is shown. The number of remaining particles after each analysis step can be found in the blue ellipses.

probability is not based on data, but guessed, but we consider
this setup sufficiently representative for the experiment, be-
cause light, when it interacts with a particle, has a certain
probability to not impinge the CMOS sensor of the high-speed
camera, depending on the amount of monomers it interacted
with. Replacing nonabsorbing real by nonscattering simulated

particles has no effect on the outcome, but eases the Monte
Carlo simulations quite considerably.

We assume the particles to be illuminated by light rays
traveling in the z direction and starting at a random x, y po-
sition within a pixel. The number of starting rays per pixel
is 190 counts, corresponding to the mean pixel brightness of
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white images without particles observed in the experiment
(see also Fig. 22, top). The light rays are then traced through
the particle, where they can be extinguished according to the
length absorption coefficient. Rays that did not get absorbed
are counted behind the simulated particle, resulting in an
image of pixel counts, just like in the experiment.

We calculated images of simulated BCCA particles (utiliz-
ing code by Bentley [26]) made of 21 to 29 (i.e., 2 to 512)
monomers and random rotation axes around their centers of
mass as a function of rotation angle in 1◦ steps. For each
rotation step, the pixel grid behind the particle was placed
with a random offset in x and y directions between zero and
one pixel diameter to account for the translational motion of
the particle. These ray tracing generated images as well as the
particles’ known centers of mass were then used for further
noise analysis described in Appendix F 3.

5. Noise in the recording frequency of the high-speed camera

Although the internal clock of the high-speed camera is
quartz driven, small frequency changes might occur. How-
ever, if this was the cause for the deviation from the perfect
Gaussian in the one-dimensional Brownian motion, low-mass
aggregates should, due to their higher Brownian velocities in
the ballistic regime, exhibit a higher noise level than high-
mass aggregates. This pattern was not found in the noise data,
so we can exclude this noise source.

6. Rocket vibrations

In several previous microgravity experiments, particles
exhibited substantial irregular non-Brownian displacements
which were attributed to vibrations of the experimental
chamber. The inertial random walk coefficient was intro-
duced by Ilyukhin et al. [30] and the model was verified
in ground-based experiments on ferromagnetic particles in
the state of neutral buoyancy [31]. We investigated the im-
portance of this phenomenon in the ICAPS experiment. The
housekeeping data from the Texus-56 rocket showed that
RMS vibrations were below 10−3 m s−2, measured at a fre-
quency of 40 Hz. We estimated the random-walk coefficient,
the analogy of the Brownian diffusion coefficient, caused
by these external vibrations, following the Rice method of
spectral expansion from Langevin’s equation [32] and as-
suming a constant gas-grain coupling time of τt ≈ 10 ms for
all particles. This resulted in an upper limit of vibration-
induced mean-squared displacements at all sampling times
of 〈�x2〉 = 1.6 × 10−15 m2, lower than the measured signal
(see Fig. 2).

APPENDIX G: FLOWCHART OF THE DATA ANALYSIS

Figure 23 provides a graphical overview of the data analy-
sis applied to the ICAPS particles. For details, refer to Sec. II.
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