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We consider the kinetics of the imperfect narrow escape problem, i.e., the time it takes for a particle diffusing
in a confined medium of generic shape to reach and to be adsorbed by a small, imperfectly reactive patch
embedded in the boundary of the domain, in two or three dimensions. Imperfect reactivity is modeled by an
intrinsic surface reactivity κ of the patch, giving rise to Robin boundary conditions. We present a formalism to
calculate the exact asymptotics of the mean reaction time in the limit of large volume of the confining domain.
We obtain exact explicit results in the two limits of large and small reactivities of the reactive patch, and a
semianalytical expression in the general case. Our approach reveals an anomalous scaling of the mean reaction
time as the inverse square root of the reactivity in the large-reactivity limit, valid for an initial position near
the extremity of the reactive patch. We compare our exact results with those obtained within the “constant flux
approximation”; we show that this approximation turns out to give exactly the next-to-leading-order term of the
small-reactivity limit, and provides a good approximation of the reaction time far from the reactive patch for all
reactivities, but not in the vicinity of the boundary of the reactive patch due to the above-mentioned anomalous
scaling. These results thus provide a general framework to quantify the mean reaction times for the imperfect
narrow escape problem.
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I. INTRODUCTION

How much time does it take for a random walker to reach
a target point? The answer to this question has received a lot
of attention in the last decade in the physics literature [1–9].
First passage problems appear in various areas of biologi-
cal and soft matter physics and are in particular relevant to
the problem of reaction kinetics, since two reactants have to
meet before being able to react [10,11]. When the reaction
is “perfect,” i.e., when it occurs instantaneously upon each
encounter, its kinetics is controlled by the first passage statis-
tics of one reactant molecule, seen as a random walker, to the
second reactant, seen as a “target.” However, many reactions
do not occur at first contact between the random walker and
the targets, leading to imperfect reactivity. Imperfect reactivity
can have diverse origins at the microscopic scale, such as
orientational constraints on the reactive particles [11], the fact
that the surface of the reactive particles is not entirely covered
by reactive patches (such as in the chemoreception problem
[12]), the need to overcome an energetic [13] (or entropic
[14]) activation barrier before reaction, the presence of a gate
that can be randomly closed or opened when the reactant
meets the target [15,16], etc. (see Ref. [17] and references
therein for a recent review on imperfect reactivity).

Imperfect reactivity was early investigated for molecules
diffusing in infinite space [11,18–20] (with an imposed con-
centration at infinity). The search problem for a single random
walker moving in a confining volume for an imperfect tar-
get, initially considered in Ref. [21] for centered spheres,
has also attracted recent attention, and several asymptotic re-
sults for imperfect search kinetics have been derived [22–30].

Recently, explicit asymptotics of the reaction time statistics
have been obtained for general Markovian random walks [31].
Besides the case of reactive targets located in the bulk of a
confining domain, the narrow escape problem (NEP) consists
in calculating the escape time of a random walker out of a
confining domain, through a small window at the boundary of
the domain [see Fig. 1(a)]. While the NEP is now well charac-
terized for perfect reactions, for spherical domains [8,32–35]
and large domains of arbitrary shapes [36], fewer results are
available for imperfect reactions (i.e., for a partially adsorbing
patch). The imperfect narrow escape problem has been in-
vestigated for particular geometries in cylindrical [37,38] and
spherical domains [39,40], in which case the analysis depends
on the eigenfunctions of the particular confining volume that
is considered and relies on the so-called uniform flux approx-
imation introduced in Ref. [20].

The aim of the present paper is to apply the formalism
introduced in Ref. [31] to cover the case of the imper-
fect narrow escape problem in a domain of generic shape.
Our formalism is asymptotically exact in the limit of large
confining volume—it does not involve the constant flux
approximation—and provides explicit results in regimes of
both small and large reactivity. Of particular interest for im-
perfect reaction problems is the mean reaction time when the
initial position is located on the reactive patch; this time is
exactly zero for perfect reactions and scales as 1/κ for targets
in the interior of the volume. We identify a region for which
the reaction time behaves anomalously with the reactivity
κ . This region, which does not exist for targets in the bulk
of the confining domain, is located at the boundary of the
imperfectly reactive patch. While one would naively expect
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this time to be inversely proportional to κ , we find instead
that when the initial position is at the boundary of the reactive
domain, the mean reaction time 〈T 〉 is actually anomalously
high (∝ κ−1/2) and follows the exact asymptotics

〈T 〉 ∼
κ→∞

V

(d − 1)(2π κDa)1/2ad−2
. (1)

Here, d = 2 or d = 3 is the spatial dimension, D is the dif-
fusion coefficient, a is the radius of the reactive patch, and
V is the volume of the confining domain. Here, we assume
that the confining volume is taken large enough, and the patch
small enough, so that the confining boundaries at the vicinity
of the target can be considered as a flat wall in which the
reactive patch is embedded, the latter being considered as a
line segment of length 2a in d = 2 or as a flat disk of radius
a in d = 3. We show below how to obtain this anomalous
scaling relation by solving a Wiener-Hopf integral equation.
We will also show how this “anomalous” behavior (1) of 〈T 〉
with κ can be related to the divergence of fields in Laplacian
problems near surfaces presenting asperities, as occurs in
electrostatics near conducting edges [41] or in the coffee ring
effect [42].

More generally, we show that the mean escape time for an
arbitrary initial position far from the target, and for any finite
reactivity κ , satisfies the following exact asymptotics:

〈T 〉/V ∼
r�a

{
1

πD ln(r/a) + C∞ (d = 2)

− 1
2πDr + C∞ (d = 3),

(2)

where C∞ is independent of the initial distance r from the
target. For finite values of the reactivity κ , we show that C∞
can be obtained through a semianalytical procedure. In the
limit of large reactivity, we show that C∞ can be determined
explicitly and is given by

C∞ ∼
κa�D

{
ln 2
πD + 1

π2κa

(
ln 8κa

D + γe + 1
)

(d = 2)
1

4Da + 1
4πκa2

(
ln 2κa

D + γe + 1
)

(d = 3),
(3)

where γe is Euler’s constant. This expression is understood
as the first two terms in the expansion of C∞ in powers of
1/κ . Interestingly, this result shows that the term C∞ is not
analytic in powers of κ , which originates from the anomalous
scaling (1). Finally, we also give exact results in the small-
reactivity limit, which will be found to be exactly the same (at
first order) as the results obtained within the self-consistent
“constant flux approximation” that has been invoked to study
the imperfect narrow escape in the literature [20,37,39,40]. It
is found that far from the reactive patch this approximation
is very accurate (for any reactivity), while it fails for initial
positions close to the reactive patch, and in particular does not
predict the behavior (1) near the boundary of the patch.

The outline of the paper is as follows. First, we recall the
formalism of Ref. [31] in the particular case of the imper-
fect narrow escape problem for diffusing particles to obtain
equations for the mean escape time in the large-volume limit
(Sec. II A). We show how the formalism can be presented
under the form of an integral equation that is suitable for
studying the large- and small-reactivity limits in Sec. II B. The
large-reactivity limit is investigated in Sec. III where Eqs. (1)
and (3) are derived. In this section, we also give a simple scal-
ing argument that relates the anomalous behavior of 〈T 〉 near

(a) (b)

z

r

FIG. 1. (a) Illustration of the imperfect narrow escape problem.
A partially reactive patch (thick red line) is embedded in the bound-
ary of a confining domain. A random walker, starting from the
initial position (red sphere), diffuses in the domain and is eventually
adsorbed on the patch. (b) Magnification of the portion of space
delimited by the dashed blue lines around the reactive patch.

the extremity of the patch to the divergence of electric fields
near the edges of conducting objects. The small-reactivity
limit is examined in Sec. IV. Last, we study briefly how the
constant flux approximation can be implemented within our
formalism in Sec. V. An exact but formal solution for any
reactivity parameter (that requires numerical tools, however)
is presented in Appendix A.

II. FORMALISM FOR THE IMPERFECT NARROW
ESCAPE PROBLEM IN THE LARGE-VOLUME LIMIT

A. General formalism

We consider the stochastic motion of an overdamped parti-
cle moving with diffusion coefficient D in a confining volume
�. The boundary of the volume is ∂� and contains a small
window Sr which is partially reactive; the rest of the confining
boundary is assumed to be smooth and perfectly reflecting
[see Fig. 1(a)]. We assume that Sr is formed by the region
of the surface at geodesic distance less than a from the center,
and a is called the radius of the patch Sr . The Fokker-Planck
equation for the probability density p(r, t ) to observe the
particle at position r and time t is

∂t p = D ∇2 p (r ∈ �), (4)

n · ∇p = 0 (r ∈ ∂�\Sr ), (5)

D n · ∇p + κ p = 0 (r ∈ Sr ), (6)

where n is the unit vector normal to the surface, pointing to
the exterior of the volume. For a partially reactive surface, the
reactivity parameter κ is defined in such a way that the prob-
ability that the particle is absorbed by an infinitesimal surface
element dS located around rs during dt is κ p(rs, t )dS dt . We
assume that the space dimension is d = 2 (two dimensions)
or d = 3 (three dimensions). It is very well known that an
equation for the mean first passage time can be obtained by
identifying the adjoint transport operator [1], which in our
case leads to the following equation for the mean reaction time
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〈T 〉(r) to the target, where r now represents the initial position
of the particle:

D∇2〈T 〉 = −1 (r ∈ �), (7)

n · ∇〈T 〉 = 0 (r ∈ ∂�\Sr ), (8)

D n · ∇〈T 〉 + κ〈T 〉 = 0 (r ∈ Sr ). (9)

Integrating Eq. (7) over the whole volume, and using the
divergence formula and the boundary conditions, leads to the
exact integral relation

κ

∫
Sr

dS(r)〈T 〉 = V, (10)

where V = |�| is the volume of the domain. Now, we consider
the large-volume limit, which is obtained when the confining
volume extends without changing its shape, keeping constant
the size of the target and the initial distance to the target. We
define the rescaled mean escape time � by

�(r) = lim
V →∞

〈T (r)〉/V. (11)

In the large-volume limit, the boundary at the vicinity of the
reactive target becomes increasingly similar to a flat surface
in which the reactive patch is a flat disk of radius a in three
dimensions (or a flat segment of length 2a in two dimensions).
Here, we denote the distance to the reflecting surface con-
taining reactive patch as z [see Fig. 1(b)]. With this in mind,
inserting the Ansatz (11) into the above equations yields a
closed system of equations in the large-volume limit:

∇2� = 0 (if z > 0), (12)

κ

∫
Sr

dS(r)� = 1, (13)

D∂z� =
{

0 (if z = 0, |r| > a)

κ� (if z = 0, |r| < a).
(14)

Importantly, we see that in the large-volume limit, Eq. (11),
the obtained equations are independent of the shape of the
confining volume, which is present only though the scale
factor V in the definition of �. We have directly controlled
this aspect by performing numerical stochastic simulations of
trajectories in the confined domain. The results of such sim-
ulations are shown in Fig. 2 and confirm that our formalism
correctly predicts the mean reaction time in the large-volume
limit, independently of the shape of the confining domain.

Equations (12)–(14) generalize the formalism of Ref. [36]
to the case of imperfect reactions. The fact that the mean first
reaction time scales with the volume is actually more general
than the specific diffusive walk that we have considered here
[31]. To solve the above equations, we may be tempted to
use spheroidal coordinates, which can be used to solve the
problem for either infinite or vanishing reactivity. For finite
reactivity, however, the resulting equations in such coordi-
nates involve Robin conditions with nonuniform coefficients,
so that the mean reaction time can be obtained only in terms
of the solution of an infinite linear system. This procedure is
described in Appendix A, and it indeed leads to a generic
numerical solution that will be useful to test our analytical

(a)

(b)

(c)

FIG. 2. (a) Geometry of the confining domains (called A and B)
that are considered for stochastic simulations. In two dimensions,
these domains are defined in polar coordinates by r(θ ) = R f (θ ) with
f = 1.6(1 + 0.5 cos2 θ ) for domain A and f = 1.6(1 + 0.1 sin θ +
0.3 sin 3θ ) for domain B. Domains in three dimensions are obtained
by considering revolution of two-dimensional (2D) curves around
the vertical dashed line. The reactive patch is indicated by a thick
red line, and the initial position is taken at a distance r from the
center of the patch along the black dashed line. In the figure, we have
used R = 6a. [(b), (c)] Results of Brownian dynamics simulations for
the mean reaction time in two and three dimensions (parameters are
indicated in the legend) compared to general theoretical expressions
as obtained in Appendix A. In all simulations, we used a time step
	t = 10−4a2/D. Boundary conditions are implemented as follows:
if, at the end of a time step, the random walker falls outside the do-
main, then if it is “behind” a reflecting wall it is reflected with respect
to this wall, and if it falls “behind” the reactive patch, it is absorbed
with probability Pa = κ

√
πdt/D (in which case the trajectory ends)

and it is reflected with probability 1 − Pa (see Ref. [43]).
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insights in this paper. However, it is not suitable for analytical
calculations. For this reason, we adopt a different approach,
consisting in deriving an integral equation satisfied by � on
the reactive patch.

B. Obtaining an integral equation for the mean reaction time

Let us first characterize the large-distance behavior of the
rescaled mean first reaction time �. Condition (13), combined
with the boundary condition at z = 0, implies that∫

S0

dSn · ∇� = 1/D, (15)

for any surface S0 whose intercept with the plane z = 0 en-
closes the reactive patch. Taking such surface S0 to be a half
disk of radius R (in two dimensions) or a half sphere (in three
dimensions), we see that

∂r� ∼
r→∞

{
1/[πDr] (d = 2)

1/[2πDr2] (d = 3),
(16)

where r is the distance to the center of the reactive patch.
Hence, the behavior of � for large r takes the form

�(r) ∼
|r|→∞

{
1

πD ln |r| + C∞ + o(1) (d = 2)

− 1
2πDr + C∞ + o(1) (d = 3),

(17)

where C∞ does not depend on r. The quantity C∞ thus char-
acterizes the behavior of the mean reaction time far from the
target; it could be used in matched asymptotics expansions if
one aims to identify the first passage time distributions, as in
Ref. [22] (which deals with interior targets).

Let us now introduce the Green’s function GN for the
Laplace problem with Neumann boundary conditions at z = 0
(including on the reactive region). Such a Green’s function
satisfies

∇2GN (r|r0) = −δ(r − r0), (18)

n · ∇GN (r|r0) = 0 (z = 0). (19)

The expression of GN is easily found by using the image
method [44]:

GN (r|r0) =
{− 1

2π
[ln |r − r0| + ln |r − r∗

0|] (d = 2)
1

4π

[
1

|r−r0| + 1
|r−r∗

0 |
]

(d = 3),

(20)

where r∗
0 represents the symmetric image of r0 with respect to

the plane z = 0. We note that the large-r behavior of GN is

GN (r|r0) =
|r|→∞

{− 1
π

ln |r| + o(1/r) (d = 2)
1

2πr + o(1/r2) (d = 3).
(21)

We now use manipulations that are standard in Green’s
function problems [44] to put the problem for � in the form
of an integral equation. Using Eq. (18) and ∇2� = 0 we see
that the following equality holds:

�(r0) =
∫

z�0
dr

[
GN (r|r0)∇2

r � − �(r)∇2
r GN (r|r0)

]
. (22)

Using the divergence formula, we obtain

�(r0) =
∫

S
dS(r)n · [GN (r|r0)∇r�(r)

− �(r)∇rGN (r|r0)], (23)

where S is any closed surface in the half space z � 0. Taking
this surface to be a half circle (or half sphere in three dimen-
sions) of radius R joined with a segment of size 2R on the axis
z = 0, we see that in the limit R → ∞

�(r0) = C∞ − κ

D

∫
Sr

dS(rs)�(rs)GN (rs|r0), (24)

where we have used Eqs. (17), (21), (19), and (14) to sim-
plify the integrals over the surfaces in Eq. (23). The above
equation means that �(r) can be constructed for any position
as soon as one knows its value on the reactive patch. Taking
r0 to be on the reactive patch yields an integral equation for
�s, defined to be the value of � on the reactive patch.
Since the above equation involves an unknown constant C∞
it must be accompanied by a supplementary condition, which
is provided by relation (13). Let us finally write explicitly the
integral equations for � for the 2D and the three dimensional
(3D) cases. For d = 2, we obtain

�s(x0) = C∞ + κ

Dπ

∫ a

−a
dx �s(x) ln |x − x0|, (25)

∫ a

−a
dx �s(x) = 1/κ. (26)

In the case d = 3, we note that �s(r) depends only on the
radial distance to the disk center, �s(r) = �s(r). The kernel
of the integral equation can be simplified after a few algebraic
manipulations detailed in Appendix B, leading to

�s(r0) = C∞ − κ

D

∫ a

0
dr

2 r �s(r)

π (r + r0)
K

(
2
√

rr0

r + r0

)
, (27)

2π

∫ a

0
drr�s(r) = 1/κ, (28)

where K (k) is the complete elliptic integral of the first kind,
defined as K (k) = ∫ 1

0 dt[(1 − t2)(1 − k2t2)]−1/2 with k the
elliptic modulus (to be distinguished from the parameter m =
k2). These integral equations admit no known analytical so-
lution in general. In the next sections, we focus on their
asymptotic study. From now on, without loss of generality, we
set the units of length and time so that a = 1 and D/a2 = 1.
The remaining parameter κ then represents κa/D in full units.

III. THE LIMIT OF LARGE REACTIVITY

A. A scaling argument for the anomalous behavior
of the mean reaction time for large reactivity

Here we present a brief scaling argument that leads to the
anomalous scaling (1). In the case of perfect reactions κ = ∞,
it is clear from Eqs. (12), (14), and (15) that � can be seen
as the electrostatic potential generated by a charged conduct-
ing disk that is embedded in an insulating surface, with the
prescription that � = 0 on this disk. In fact, using the image
methods, it is easy to show that � is also the electrostatic
potential in infinite space generated by an infinitely thin disk.
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It is well known [41] that, for this electrostatic problem, the
“electric field” −∇� diverges near the edge as 1/ρ1/2, where
ρ is the distance from the disk extremity. Therefore, at a
distance ρ 
 a from the edges, � ∝ ρ1/2. In the case that κ

is large but finite, since the natural length scale associated to
finite reactivity is �∗ = D/κ [17], we may therefore assume
that the mean reaction time is comparable to the mean first
passage time when the starting position is located at a distance
�∗ from the reactive patch. In this condition, with ρ = �∗ we
obtain the anomalous scaling � ∝ 1/

√
κ , as announced in

Eq. (1). In what follows, we show how to rigorously derive
this scaling law, with the prefactor.

B. Two-dimensional case

1. Leading order

Consider now the limit κ → ∞ in the case d = 2. Since
this situation corresponds to a first passage problem, we know
that the asymptotic value of C∞ does not depend on κ . The
fact that �s vanishes in the large-κ limit leads us to postulate
in line with Eqs. (25) and (26) that

�s(x0) ∼
κ→∞

1

κ
�1(x0), C∞ ∼

κ→∞ C1, (29)

where C1 and �1 do not depend on κ . Inserting this Ansatz into
the integral Eq. (25) and the normalization condition (26), we
obtain ∫ 1

−1
dx�1(x) ln |x − x0| = −πC1, (30)∫ 1

−1
dx�1(x) = 1. (31)

The integral Eq. (30) for �1(x) is known as Carleman’s
equation and its analytical solution is known explicitly [45].
Using also the normalization condition, we obtain the final
expression for C1 and �1:

C1 = ln 2

π
, �1(x) = 1

π
√

1 − x2
. (32)

2. Boundary layer near the extremities of the reactive patch

We now note that �1(x) is formally infinite at x = ±1, i.e.,
near the boundary of the reactive patch. This means that our
expansion (29) is not valid near these points, suggesting a be-
havior similar to those obtained for boundary layer problems.
Since the reaction length [17] is 1/κ in our units, we expect
processes happening at such scales. Therefore, we assume the
behavior

�s(x) = καψ ((1 − |x|)κ ), (1 − |x|) 
 1, (33)

with ψ a scaling function. The exponent α will be set such
that the behavior of � in the boundary layer matches with that
far from the boundary layer. Namely, the compatibility of the
above Ansatz with Eq. (32) imposes the choice

α = −1/2, ψ (X ) ∼
X→∞

1

π
√

2X
. (34)

Hence, the structure of the solution in the limit κ → ∞ is

�s(x) =
{

κ−1�1(x) + · · · (1 − |x|) � 1/κ

κ−1/2ψ ((1 − |x|)κ ) + · · · (1 − |x|) 
 1

(35)

and condition (34) ensures that these two expressions
give the same result in their common validity regime
κ−1 
 1 − |x| 
 1. A key point here is that the mean return
time, starting from the boundary of the reactive region, scales
as 1/κ1/2 and is thus infinitely larger than the mean return
time starting from the center of the target, which scales as 1/κ .
This suggests to set C∞ = C1 + C1/2/

√
κ + · · · in the limit of

large reactivity (even though the constant C1/2 will turn out to
vanish).

Let us now find the set of equations satisfied by ψ . First,
we consider the normalization condition (26), which we write
under the form ∫ 1

−1
dx

[
�s(x) − �1(x)

κ

]
= 0. (36)

Here we remark that the integrand in the above integral is
maximal near x = ±1. Let us define an intermediate length
scale � such that

1/κ 
 � 
 1. (37)

We will keep this notation in the whole paper. We write
Eq. (36) by separating the integral into two regions: when
(1 − |x|) > � then we approximate �s(x) by the first line of
Eq. (35) and if (1 − |x|) < � we use the expressions on the
second line of Eq. (35) for �s and we approximate by its
behavior near x = ±1, which reads �1 � 1/[π

√
2(1 − |x|)].

This leads to

0 =
∫ −1+�

−1
dx

[
ψ ((1 − |x|)κ )√

κ
− 1

κπ
√

2(1 − |x|)
]

+
∫ 1

1−�

dx

[
ψ ((1 − |x|)κ )√

κ
− 1

κπ
√

2(1 − |x|)
]
.

Setting X = (1 − |x|)κ , and using �κ � 1, we obtain∫ ∞

0
dX

[
ψ (X ) − 1

π
√

2X

]
= 0. (38)

In order to find the equation satisfied by ψ it is useful to
write the difference between the general Eq. (25) and the
equation satisfied by �1, to find

�s(x0) = C∞ − C1 + κ

π

∫ 1

−1
dx

[
�s(x) − �1(x)

κ

]
ln |x − x0|.

(39)

This leads to

�s(x0) = C∞ − C1

+ κ

π

∫ −1+�

−1
dx

[
ψ ((1 − |x|)κ )√

κ
−�1(x)

κ

]
ln |x−x0|

+ κ

π

∫ 1

1−�

dx

[
ψ ((1 − |x|)κ )√

κ
−�1(x)

κ

]
ln |x−x0|.

(40)
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For x0 = 1 − X0/κ , if we set X = (1 − |x|)κ , this yields

ψ (X0) = C1/2 +
∫ �κ

0

dX

π

[
ψ (X ) − 1

π
√

2X

]
ln

|X − X0|
κ

+ 1

π

∫ �κ

0
dX

[
ψ (X ) − 1

π
√

2X

]
ln

∣∣∣∣2 − X + X0

κ

∣∣∣∣.
(41)

Now, in the limit κ → ∞, noting that �κ → ∞ [by definition
of �; see Eq. (37)] and using the previously found condition
(38), we obtain

ψ (X0) = C1/2 +
∫ ∞

0
dX

[
ψ (X ) − 1

π
√

2X

]
ln |X − X0|

π
.

(42)

This is a Wiener-Hopf integral equation for the unknown
function ψ (X ). We solve it in the next section.

3. Solution of the Wiener-Hopf equation (42)

We solve the Wiener-Hopf integral equation with Carle-
man’s method, as described in Ref. [45]. We note that a similar
equation has appeared in viscous flow theory [46–48] but the
difference between our equation and the equation studied in
these references justifies the fact that we solve it here in detail.
First, let us introduce the following notations. We denote by
f+(X ) all functions (depending on the real variable X ) that
vanish for all X < 0, and f−(X ) all functions that vanish for
X > 0. For any function f (X ) one can write f (X ) = f+(X ) +
f−(X ), with f+(X ) = f (X )θ (X ) and f−(X ) = f (X )θ (−X ),
where θ is the Heaviside step function. We introduce the
complex Fourier transform and its inverse:

f̂ (z) =
∫ ∞

−∞
dX f (X )e−izX , (43)

f (X ) = 1

2π

∫ ∞

−∞
du f̂ (u)e+iuX , (44)

where z represents a complex number and u a real number.
We denote f̂+(z) the Fourier transform of the function f+(X ),
and f̂−(z) the Fourier transform of f−(z). Typically, Fourier
transforms of the form f̂+(z) are defined in the lower complex
half plane Im(z) � 0, and Fourier transforms of the form
f̂−(z) are defined in the upper complex half plane Im(z) � 0
[as long as f±(x) does not diverge exponentially at x → ±∞].
Now, we can define ψ+(X ) ≡ ψ (X )θ (X ), and we introduce

K (X ) = 1

π
ln |X |, χ+(X ) = 1

π
√

2X
θ (X ). (45)

The integral equation (42) can be generalized for negative X0

by writing

ψ+(X0) =
∫ ∞

0
dX [ψ+(X ) − χ+(X )]

× K (X − X0) + y−(X0), (46)

where the only remarkable property of y−(X0) is that it van-
ishes for positive X0. Note that we have assumed that C1/2 =
0; this will be justified at the end of the calculation by the fact
that the obtained solution satisfies the normalization condition

(38) for this value of C1/2. Taking the Fourier transform of the
above equation, we obtain

ψ̂+(u) = [ψ̂+(u) − χ̂+(u)]K̂ (u) + ŷ−(u). (47)

Calculating the Fourier transforms leads to

ψ̂+(u)

(
1 + 1

|u|
)

= −1 − i sign(u)

2
√

π |u|3/2
+ ŷ−(u), (48)

where sign(u) = θ (u) − θ (−u) is the sign function. This
equation can be considerably simplified by introducing an
auxiliary function S−(X ) defined by

S−(X ) = θ (−X )

√
2|X |
π

, Ŝ−(u) = 1 − i sign(u)

2
√

π |u|3/2 , (49)

so that the Wiener-Hopf equation can be written as

ψ̂+(u)

(
1 + 1

|u|
)

= −Ŝ−(u) + ŷ−(u) = f̂−(u), (50)

where f̂−(u) is the Fourier transform of another unknown
function f−(X ), whose only remarkable property is to van-
ish for positive X . This kind of equation is known as
a homogeneous Wiener-Hopf equation, and the method to
solve it consists in obtaining a factorization of the form
ψ̂+(u)ĝ+(u) = ĝ−(u). To this end, we write the Wiener-Hopf
equation under the form

ψ̂+(u)eŴ (u) = f̂−(u), (51)

with

Ŵ (u) = ln[1 + 1/|u|], (52)

and we seek a factorization Ŵ (u) = Ŵ+(u) + Ŵ−(u). This can
be done by calculating its inverse Fourier transform:

W (X ) = cos(X )[2 Si(|X |) − π ] + π

2π |X | − Ci(|X |) sin(X )

πX
,

(53)

where Ci and Si are the integral cosine and integral sine
functions

Ci(X ) = −
∫ ∞

X
dt

cos(t )

t
, Si(X ) =

∫ X

0
dt

sin(t )

t
. (54)

A factorization may thus be obtained by setting
W (x) = W+(x) + W−(x), i.e., W+(x) = W (x)θ (x) and
W−(x) = W (x)θ (−x). Now, we write Eq. (51) as

ψ̂+(u)eŴ+(u) = f̂−(u)e−Ŵ−(u). (55)

We are now in the favorable case: the terms on left-hand side
are analytic functions in the upper complex plane, those on
the right are analytic in the lower complex plane except for
one pole at z = 0, and these terms are equal on the real axis.
According to the theorem of analytic continuation, combined
with the Cauchy theorem, we conclude that both terms are
equal to a constant plus a 1/z term on the whole complex plane
[45]. We thus have

ψ̂+(u)eŴ+(u) = a0 + a1

u
, (56)

where the constants a0, a1 will be found by requiring that
ψ (X ) is a solution to our problem. Since Ŵ+(z) is defined

034134-6



IMPERFECT NARROW ESCAPE PROBLEM PHYSICAL REVIEW E 107, 034134 (2023)

on the lower complex plane, we may consider the above equa-
tions on the lower imaginary axis u = −is, in which case the
above equality can be written in terms of Laplace transforms,
with the usual notation f̃+(s) = ∫ ∞

0 dte−st f+(t ) = f̂+(−is):

ψ̃+(s) =
(

a0 + i a1

s

)
e−W̃ +(s). (57)

The Laplace transform W̃ +(s) can be identified by calculating
its derivative, i.e., the Laplace transform of −xW (x), and then
by integrating over s; this leads to

W̃ +(s) = 1

4
ln

1 + s2

s2
+ m(s), (58)

with

m(s) = −
∫ s

0

dw ln w

π (1 + w2)
. (59)

We know that the behavior of ψ for large arguments is given
by the matching condition in Eq. (34), which translates to the
small-s behavior:

ψ̃+(s) ∼
s→0

1√
2πs

. (60)

Inserting Eq. (58) into Eq. (57) and taking the small-s limit,
we see that the above behavior is obtained for ia1 = 1/

√
2π .

Next, the value of a0 is found by requiring that ψ (0) is finite,
so that ψ̃ (s) vanishes in the limit s → ∞; this leads to a0 = 0.
Hence, the final expression for the function ψ is given in the
Laplace domain by

ψ̃+(s) = 1√
2πs(1 + s2)1/4

e−m(s). (61)

Finally, we must check that the normalization condition (38)
holds, which is readily done by noting that ψ̃ (s) − 1/

√
2πs =

O(
√

s ln s) vanishes for small s. This justifies our hypothesis
C1/2 = 0. Unfortunately, the Laplace inversion cannot be per-
formed so we know only ψ (X ) in closed form; however, we
can easily derive the asymptotic behavior of ψ (X ) for small
and large arguments. The study of the asymptotic behavior of
ψ̃ (s) for large s leads readily to the initial value of ψ (X ):

ψ (0) = lim
s→∞ sψ̃ (s) = 1√

2π
, (62)

which justifies the previously announced result (1). The large-
X behavior can be computed by noting that the Laplace
transform of Xψ (X ) is dψ̃/ds and by expanding this one for
small s, with the result

ψ (X ) �
X→∞

1√
2Xπ

+ ln(4X ) + γe − 1

π2(2X )3/2
+ · · · , (63)

with γe the Euler-Mascheroni constant. A formula for ψ (X )
can be obtained by considering the inverse Laplace transform
of ψ̃ (s) with the Mellin inverse formula, by using a contour
that follows the negative real axis (above and below); such
Laplace inversion is obtained in Appendix 4 of Ref. [48]:

ψ (X ) = 1

π

∫ ∞

0
d p

e−pX+m(p)

√
2π p(1 + p2)3/4

. (64)

FIG. 3. Behavior of the mean first reaction time near the extrem-
ities of the reactive patch. Symbols: exact general solution obtained
numerically in Appendix A in two (upper symbols) and three dimen-
sions (lower symbols). We also represent the values of ψ and ψ3d

obtained from Eqs. (64) and (78).

In summary, here we have obtained an analytic expression
in Laplace space for the scaling function ψ (X ) which char-
acterizes the behavior of the mean first passage time near
the extremities of the reactive patch in two dimensions. The
validity of our approach is checked in Fig. 3 by comparing
with exact numerical results obtained from the general form
of the solution.

4. Next-to-leading-order expansion

Up to now, the constant C∞, which characterizes the be-
havior of the mean reaction time when the initial position is
far from the target, has been obtained at leading order only in
the large-reactivity limit, with the same result as in the case
of a perfectly reactive patch. Here we show how to obtain the
first nontrivial correction for C∞ for large reactivity, with the
result that C∞(κ ) is not analytic in κ . First, we note that when
1/κ 
 1 − |x| 
 1, Eqs. (63) and (35) indicate that

�s(x) � 1

κπ
√

2(1 − |x|) + ln[4(1 − |x|)κ] + γe − 1

κ2π2[2(1 − |x|)]3/2
+ · · · .

(65)

This suggests that, outside the boundary layer, the next-to-
leading-order behavior of �s reads

�s(x) = �1

κ
+ �∗

2 ln κ + �2

κ2
+ · · · , (66)

because this expression can be matched with Eq. (65) by
imposing that

�∗
2(x) � 1

π2[2(1 − |x|)]3/2
(x → ±1), (67)

�2(x) � ln[4(1 − |x|)] + γe − 1

π2[2(1 − |x|)]3/2
(x → ±1). (68)
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FIG. 4. Comparison of the values of C∞ obtained numerically
(symbols; see Appendix A for details), with the analytical predictions
in Eqs. (72) and (81) (black lines), for the (a) two-dimensional and
(b) three-dimensional domains.

These expansions also lead us to assume that, for large reac-
tivity, the constant C∞ behaves as

C∞ = C1 + C2 + C∗
2 ln κ

κ
+ · · · (κ → ∞). (69)

The equation for �2 and �∗
2 can be identified as follows.

We consider again the intermediate length scale � satisfying
Eq. (37), and we start from the integral Eq. (39), which we
write as∫ 1−�

−1+�

dx

[
�∗

2(x) ln κ + �2(x)

κ

]
ln |x − x0|

= −π
C2 + C∗

2 ln κ

κ
+ π�1(x0)

κ
+ B(x0) + B(−x0),

(70)

where B contains all the terms which appear due to the fact
that the integral over �2 in the above equation is evaluated
over a truncated interval ] − 1 + �; 1 + �[ instead of ]−1; 1[,
so that

B =
∫ �κ

0

dX√
κ

(
1

π
√

2X
− ψ (X )

)
ln

(
1 − x0 − X

κ

)
. (71)

To proceed further, we consider Eq. (70) as an integral
equation for �2 + ln κ�∗

2 over the truncated interval ] − 1 +
�; 1 + �[. Its solution is analytically known and we identify
the constants C2 and C∗

2 by requiring that the normalization
condition is satisfied at this order of κ . This procedure re-
quires to evaluate B in the limit � → 0 without assuming that
� 
 1 − |x0|, and it turns out to be relatively tedious. The
calculation is described in Appendix C 1, and leads to the
explicit results

C∗
2 = 1

π2
, C2 = 1 + γe + ln 8

π2
. (72)

These values of C2 and C∗
2 are in excellent agreement with

the exact solution for �s obtained numerically, as shown in
Fig. 4(a).

C. Three-dimensional case

We now adapt the approach to the 3D case. It turns out
that the solution admits the same scaling behaviors as in two

dimensions:

�s(r) =
⎧⎨
⎩

�1(r)
κ

+ �∗
2 (r) ln κ+�2(r)

κ2 , (1 − r) � 1/κ

1√
κ
ψ3d ((1 − r)κ ), (1 − r) 
 1,

(73)

where the first line is the expansion of �s(r) in powers of κ

at fixed r, and the second line the expansion of � in powers
of κ at fixed X = (1 − r)

√
κ . At leading order, the integral

equation for �1 reads

0 = C1 −
∫ 1

0
dr

2r

π (r + r0)
K

(
2
√

rr0

r + r0

)
�1(r), (74)

2π

∫ 1

0
dr r �1(r) = 1. (75)

The solution of the above integral equation [where r �1(r) is
considered to be the unknown function] is known [45] and this
leads to the solution

�1(r) = 1

2π
√

1 − r2
, C1 = 1

4
. (76)

We thus note that

�1(r → 1) ∼ 1

2π
√

2(1 − r)
. (77)

In the boundary layer near r = 1, we set r = 1 − X/κ , r0 =
1 − X0/κ , and �s(r) = 1/

√
κψ (X ). With these scalings we

can expand integral equation (27) with the result that ψ3d sat-
isfies exactly the same equation as in two dimensions; the only
difference is that it has to match with ψ3d (X ) ∼ 1/(2π

√
2X )

for large X [due to Eq. (77)] and there is thus a factor of 2 that
arises when we compare to the 2D case:

ψ3d (X ) = 1
2ψ (X ). (78)

This relation is checked in Fig. 3. Let us now identify the next-
order terms in three dimensions. Inserting Ansatz (73) into
integral Eq. (27) and expanding at second order, we obtain∫ 1−�

0

drr

r + r0
K

(
2
√

rr0

r + r0

)
[�2(r) + �∗

2(r) ln κ]

= −π�1

2
+ π

2
[C∗

2 ln κ + C2] + B, (79)

where the term B compensates for the fact that the above
integrals are evaluated over the truncated interval [0; 1 − �[,
so that

B(r0, �) = −√
κ

∫ 1

1−�

dr r

r + r0
K

(
2
√

rr0

r + r0

)

×
[
ψ3d ((1 − r)κ ) − 1

2π
√

2(1 − r)κ

]
. (80)

As in the 2D situation, we consider Eq. (79) as an integral
equation for which the solution is analytically known, and we
then choose C2 and C∗

2 so that the normalization condition for
�s holds at all orders of κ , see Appendix C 2. The final result
is

C∗
2 = 1

4π
, C2 = γe + 1 + ln(2)

4π
, (81)

and it agrees perfectly with numerical solutions, as shown in
Fig. 4(b).

034134-8



IMPERFECT NARROW ESCAPE PROBLEM PHYSICAL REVIEW E 107, 034134 (2023)

IV. THE LIMIT OF SMALL REACTIVITY

Let us now consider the limit κ → 0. At leading order, the
mean reaction time is homogeneous. We seek a solution under
the form

�s(x) = 1

κ

∑
n�0

fn(x)κn, C∞ = 1

κ

∑
n�0

cnκ
n. (82)

At leading order, we obtain

f0 = c0 = 1/|Sr |, (83)

where Sr is the length (in two dimensions) or the area (in three
dimensions) of the reactive patch. Furthermore, next orders
can be found iteratively by using

fn(r) = cn − 1

D

∫
Sr

dS(r′) fn−1(r′)GN (r|r′) (84)

with the condition for n � 1:∫
Sr

dS fn = 0. (85)

For d = 2, the explicit computations can be done for the
first orders, and we find

c0 = 1/2, c1 = 3 − ln 4

2π
, c2 = 2

9
− 7

3π2
. (86)

In the 3D situation, the leading order is simply

f0 = c0 = 1/π, (87)

and the recurrence relation is

fn(x) = cn − 2

π

∫ 1

0
dy fn−1(y)

y

x + y
K

(
2
√

xy

x + y

)
. (88)

Unfortunately, it seems very difficult to calculate these in-
tegrals, and even at first order the coefficient c1 can be
calculated only numerically:

c1 = 4

π2

∫ 1

0
dx

∫ 1

0
dy

xy

x + y
K

(
2
√

xy

x + y

)
� 0.27. (89)

V. COMPARISON WITH THE CONSTANT FLUX
APPROXIMATION

The constant flux approximation (CFA) [20] has been used
in many recent studies [37,39,40] on imperfect reactivity in
confinement, and here we consider how this approximation
compares to the exact results in our formalism. First, we
need to adapt this approximation to our situation of the large-
volume limit. In the CFA, one replaces the Robin condition
(14) by inhomogeneous Neumann conditions:

D∂z� =
{

0 (z = 0, r > a)
−Q (z = 0, r < a), (90)

where the flux Q is assumed to be constant on the reactive
patch and will be determined self-consistently with a closure
relation. A natural choice of closure relation is to impose that
the Robin condition is satisfied on average, hence

Q = κ

∫
Sr

dS �s, (91)

FIG. 5. Values of C∞ in (a) two and (b) three dimensions, as
found from the exact numerical solution compared to the exact large
and small reactivity asymptotics. Note that the constant flux approxi-
mation (CFA) is exactly equivalent to the first-order expansion in the
limit of low reactivity. Here we use the units so that D = 1, a = 1.

but we also have the normalization condition (13), so that

Q = 1. (92)

Now, inserting Eqs. (90) into Eq. (23) leads directly to a
solution for � within the CFA:

�(r0) = C∞ + Q

D

∫
Sr

dS(rs)GN (rs|r0). (93)

Integrating over S and using Eqs. (92) and (91), we obtain the
CFA value of C∞:

Ccfa
∞ = 1

κSr

(
1 − κ

D

∫
Sr

dS(r)
∫

Sr

dS(r0)GN (r|r0)

)
. (94)

Comparing with the results of Sec. IV, we see that in the CFA,
C∞ is exactly the same as the next-to-leading-order expansion
of C∞ in the limit of low reactivity, i.e.,

Ccfa
∞ = c0

κ
+ c1. (95)

It may be therefore surprising that the CFA works for C∞ even
for rather large values of the reactivity (Fig. 5), but this comes
from the fact that the value of c1 turns out to be extremely
close to the exact value of C∞(κ = ∞) (the difference is of the
order of a few percent). This might be the reason why the CFA
approach can be implemented to yield accurate results in other
contexts. However, the value of the mean first passage time
near the extremity of the reactive patch is not well captured
by this approximation, since it is obvious in Eq. (93) that it
does not scale as 1/

√
κ for large κ , contrary to what we have

found.

VI. CONCLUSION

In this paper we have considered the imperfect narrow
escape problem for diffusive particles in confinement. We
have established a general formalism which provides the
mean reaction time in the large-volume limit for any value
of the reactivity parameter. We have obtained explicit results
in d = 2 and d = 3 in the respective limits of low and large
reactivity parameter. Our most surprising result is the scaling
of the mean reaction time when the initial position is at the
extremity of the imperfect patch; this mean return time scales
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as κ−1/2 and is thus much larger than the naively expected
scaling 1/κ . Interestingly, we have shown that this anomalous
scaling is closely related to the divergence of the electric field
near corners and edges of conducting objects [41], which is
also responsible for the existence of coffee rings [42] or the
crispiness of the extremities of cooked potatoes [49]. We have
explicitly identified the prefactor of this scaling law by solving
a Wiener-Hopf equation. We have also identified a nonanalytic
behavior for the capacitances of the imperfect patches as a
function of the reactivity. We note that we have restricted our-
selves to the case of circular patches, but we believe that for
the more general patches with a smooth boundary the asymp-
totic scaling laws should remain unchanged. Finally, we have
made a link between the results obtained within the constant
flux approximation (CFA) and the low-reactivity limit. It turns
out that the CFA gives very accurate predictions of the mean
reaction time when the initial position is far from the target,
but fails to predict the correct behavior of the mean return
times when the initial position is on the reactive patch. In the
future, one could adapt our formalism to multiple targets, for
example, to generalize the classical calculation [12] of the
absorption time by a sphere covered by reactive patches to
imperfect patches. Our results provide a general framework
to quantify the mean reaction times for the imperfect narrow
escape problem.
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APPENDIX A: EXACT GENERAL FORM
OF THE SOLUTION �(r)

1. Imperfect narrow escape problem in two dimensions

Here we describe a way to obtain the general solution of
the problem formed by Eqs. (12)–(14). It consists in writing
the equations in a set of orthogonal coordinates and using the
standard method of separation of variables. We first describe
this approach in the 2D case, for which we use the elliptic
coordinates μ, ν defined as

x = a ch(μ) cos(ν), y = a sh(μ) sin(ν). (A1)

We calculate the scale factors hi = |∂ir| with i ∈ {μ, ν}:

hμ = hν = a
√

ch2(μ) − cos2 ν. (A2)

The Laplace equation satisfied by � and the reflecting bound-
ary conditions outside the reactive patch are written in this
coordinate system as

∂2
ν � + ∂2

μ� = 0, ∂ν�|ν=0 = ∂ν�|ν=π/2 = 0. (A3)

The general solution for these equations can be written by
using the method of separation of variables, which leads to

� = Bμ +
∞∑

n=0

φne−2nμ cos(2nν). (A4)

Furthermore, the normalization condition (13) can also be
written D

∫
dS∂n� = 1 for any surface surrounding the target.

Far from the target, this means that ∂r� = 1/(πrD). Noting
that μ � ln(2r/a) for large r, we thus find

B = 1/(πD). (A5)

We also note that the quantity C∞ is given, in this mode
decomposition, by

C∞ = ln 2

πD
+ �0. (A6)

Finally, the Robin condition at the target surface reads

D∂n� + κ� =
(

− D

hμ

∂μ� + κ�

)
μ=0

= 0, (A7)

so that

D∂μ�|μ=0 = κ a sin ν �|μ=0. (A8)

Using this condition and the form of the general solution (A4),
we find that the coefficients φn are solutions of the infinite
linear system

πmφm + κa

D

∞∑
n=0

Amnφn = δm,0, (A9)

which is satisfied for all positive integers m, with

Anm =
∫ π

0
dν sin ν cos(2mν) cos(2nν)

= 2[1 − 4(m2 + n2)]

16(m4 + n4) + 1 − 8(m2 + n2) − 32m2n2
. (A10)

In practice, this linear system (A9) can be solved numerically
by taking into account only a finite number of modes, N , and
checking that the obtained quantities do not depend on N for
large N . Note also that C∞ can be directly calculated by using
Eq. (A6).

2. Three-dimensional case

This approach can be adapted to the 3D case, for which we
use orthogonal coordinates defined as

x = a
√

(1 + α2)(1 − β2) cos ϕ, (A11)

y = a
√

(1 + α2)(1 − β2) sin ϕ, (A12)

z = aαβ, (A13)

where ϕ is the azimuthal angle. Note that α > 0 and β ∈
[0; 1] are related to the standard oblate spheroidal coordinates
(μ, ν, ϕ) by α = sinh(μ) and β = sin(ν). Inversion formulas
read

α =

√√√√(
r
a

)2 − 1 +
√

1 + (
r
a

)4 + 2
(

r
a

)2
cos(2θ )

2
, (A14)

β =

√√√√1 − (
r
a

)2 +
√

1 + (
r
a

)4 + 2
(

r
a

)2
cos(2θ )

2
, (A15)
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with (r, θ, ϕ) the usual spherical coordinates. It is useful to
calculate the scale factors hi = |∂r/∂i|, with i = {α, β, ϕ}:

hα = a

(
α2 + β2

1 + α2

)1/2

, hβ = a

(
α2 + β2

1 − β2

)1/2

,

hϕ = a[(1 + α2)(1 − β2)]1/2. (A16)

For axisymmetric functions, the Laplacian reads in these or-
thogonal coordinates

∇2� = 1

hαhβhϕ

(
∂

∂α

hβhϕ

hα

∂�

∂α
+ ∂

∂β

hαhϕ

hβ

∂�

∂β
,

)
, (A17)

so that � satisfies the equation

∂

∂α
(1 + α2)

∂�

∂α
+ ∂

∂β
(1 − β2)

∂�

∂β
= 0. (A18)

We impose Neumann conditions for β = 0 and β = 1, at
which ∂β� = 0. With these conditions, the general solution
can be found by the method of separation of variables, which
leads to

�(α, β ) = �∞ +
∞∑

q=0

aq gq(α) P2q(β ), (A19)

where P2q are even Legendre polynomials (satisfying both
Neumann conditions at β = 0 and β = 1), and

gq(α) = 1

i
Q2q(iα) − π

2
P2q(iα), (A20)

where i2 = −1 and Q2q are Legendre functions of the second
kind. Let us give here additional details on the function gq. To
see that gq is real it is useful to write Q2q as [50]

Q2q(x) = P2q(x)

2
ln

1 + x

1 − x
− W2q−1(x), (A21)

where W is the polynomial

W2q−1(x) =
q∑

m=1

4q − (1 + 4(m − 1))

(2m − 1)(2q − m + 1)
P2q−(2m−1)(x).

(A22)

For purely imaginary arguments x = iα, we have

Q2q(iα) = iP2q(iα) arctan(x) − W2q−1(iα), (A23)

and we thus see that

gq(α) = P2q(iα) arctan(α) − W2q−1(iα)

i
− π

2
P2q(iα).

(A24)

Using the parity of P and W , it becomes clear that gq is real.
Furthermore, it can be checked that it decreases to zero at
infinity (and g0 ∼ 1/α for large α).

Now, the equation satisfied by the coefficients aq is iden-
tified by using the Robin condition. In these coordinates, the
partially absorbing disk corresponds to α = 0, and the Robin
conditions can be deduced from ∂n� = −(h−1

α ∂α�)α=0 so that
the boundary conditions read

(D∂α� − aβκ�)α=0 = 0. (A25)

Inserting the general solution (A19) into the above boundary
condition, multiplying by P2k (β ), and integrating, we obtain
the linear system

∞∑
q=0

aqg′
q(0)

∫ 1

0
dβP2q(β )P2k (β )

= κ�∞
∫ 1

0
dββP2k (β ) + κ

∞∑
q=0

aqgq(0)

×
∫ 1

0
dββP2q(β )P2k (β ), (A26)

for all positive integers k. Finally, we calculate the surface
element at α = 0, dSα = hϕhβdϕdβ so that the normalization
condition reads

2πκa2
∫ 1

0
�(0, β )βdβ = 1, (A27)

which leads to the equation

κa2π�∞ + 2πκa2
∞∑

q=0

aqgq(0)
∫ 1

0
dββP2q(β ) = 1. (A28)

A numerical solution for �∞ can thus be found by solving
the linear system (A26) for the coefficients aq (completed by
the above normalization condition). Note also that C∞ = �∞.

APPENDIX B: IDENTIFICATION OF THE INTEGRAL
EQUATION (27) IN THREE DIMENSIONS

Here we briefly show how to obtain the integral equa-
tion (27). Using Eq. (20) for d = 3, we see that Eq. (24) is
written

�(r0) = C∞ − κ

D

∫ a

0
drK (r, r0)�(r), (B1)

with

K (r, r0) = 1

2π

∫ 2π

0

r dθ√
r2 + r2

0 − 2rr0 cos θ

. (B2)

The quantity K (r, r0) can be simplified as follows:

K (r, r0) = 1

π

∫ π

0

r dθ√
r2 + r2

0 − 2rr0 cos θ

= 2r

π

∫ π/2

0

du√
r2 + r2

0 − 2rr0 cos(2u)

= 2r

π

∫ π/2

0

du√
r2 + r2

0 − 2rr0[2 cos2 u − 1]

= 2r

π (r + r0)

∫ π/2

0

du√
1 − 4rr0

(r+r0 )2 cos2 u

= 2r

π (r + r0)
K

(
2
√

rr0

r + r0

)
, (B3)
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where u = θ/2 and in the last line we have recognized the
definition of the elliptic function K . Inserting the above result
into Eq. (B1) finally leads to Eq. (27).

APPENDIX C: CALCULATION DETAILS
FOR THE IDENTIFICATION OF C2 AND C∗

2

1. Two-dimensional situation

Here we describe the details of calculations leading to the
identification of the constants C2 and C∗

2 in the 2D situation.
Let us first evaluate the term B in Eq. (71):

B � − 1√
κ

∫ �κ

0
dX

(
ψ (X ) − 1

π
√

2X

)
ln(1 − x0)

−
∫ �κ

0

dX√
κ

(
ψ (X ) − 1

π
√

2X

)
ln

1 − x0 − X/κ

1 − x0
. (C1)

Here we have only assumed that one can use the leading order
of the scaling form for the solution � for arguments lower
than �. Now, to evaluate the first line we use the normalization
condition (38), and to evaluate the terms on the second line,
we change variable X = uκ�:

B � 1√
κ

∫ ∞

�κ

dX

(
ψ (X ) − 1

π
√

2X

)
ln(1 − x0)

− √
κ�

∫ 1

0
du

(
ψ (κu�) − 1

π
√

2κu�

)
ln

1 − x0 − u�

1 − x0
.

(C2)

Using Eq. (63), we can write B under the form

B � f ∗
2 (x0) ln κ + f2(x0)

κ
, (C3)

with

f ∗
2 (x0) = ln(1 − x0)√

�
√

2π2
−

∫ 1

0

du �

π2(2u�)
3
2

ln
1 − x0 − u�

1 − x0
, (C4)

f2(x0) = ln(4�) + γe + 1√
2�π2

ln(1 − x0)

− �

∫ 1

0
du

ln(4u�) + γe − 1

π2(2u�)3/2
ln

1 − x0 − u�

1 − x0
. (C5)

Let us specify a few properties of f ∗
2 (similar properties hold

for f2). In the limit � → 0 at fixed x0, we see that

f ∗
2 (x0) ∼

�→0

ln(1 − x0)√
�
√

2π2
. (C6)

Near the extremity of the patch, we set x0 = 1 − v� to de-
termine the behavior of f ∗

2 . In the limit � → 0 at fixed v =
(1 − x0)/�, we obtain

f ∗
2 (x0 = 1 − v�) ∼

�→0

ln(v�)√
�
√

2π2
−

∫ 1

0

du �

π2(2u�)
3
2

ln
v − u

v
.

(C7)

Collecting the terms O(ln κ/κ ) in the integral Eq. (70)
leads to ∫ 1−�

−1+�

dx �∗
2(x) ln |x − x0| = F ∗

2 (x0), (C8)

F ∗
2 (x0) = −πC∗

2 + f ∗
2 (x0) + f ∗

2 (−x0). (C9)

We consider this equation as an integral equation over the
interval [−1 + �; 1 − �], for which the solution is analytically
known [45]:

�∗
2(x) = 1

π2
√

b2 − x2

[ ∫ b

−b
dt

√
b2 − t2∂t F ∗

2 (t )

t − x

+ 1

ln[b/2]

∫ b

−b
dt

F ∗
2 (t )√

b2 − t2

]
, (C10)

where we have set b = 1 − �. As a consequence, the integral
of �∗

2 over the truncated interval ]−b; b[ reads

I∗
2 (�) =

∫ b

−b
dx �∗

2(x) = 1

π ln[b/2]

∫ b

−b

dx F ∗
2 (x)√

b2 − x2
. (C11)

When � → 0, the behavior of I∗
2 (�) is obtained by inserting

the small-� limit of f ∗
2 (x0) at fixed x0 given by Eq. (C6)

into Eq. (C9) and inserting the result into the above equation,
leading to

I∗
2 (�) �

�→0

(−1)

π ln 2

∫ 1

−1

dt ln(1 − t2)√
2π2

√
�
√

1 − t2
=

√
2

π2
√

�
. (C12)

This result is consistent with the fact that the behavior of
�∗

2 near x = ±1 is given by Eq. (67). Now, the fact that the
normalization condition (26) holds at all powers of κ implies
that

lim
�→0

[
I∗
2 (�) −

√
2

π2
√

�

]
= 0. (C13)

We thus evaluate

	I∗
2 (�) = I∗

2 (�) −
√

2

π2
√

�

� (−1)

π ln 2

∫ 1

−1
dt

[
F ∗

2 (t )θ (b − |t |)√
b2 − t2

− ln
(
1 − t2

)
π2

√
2�(1 − t2)

]
.

(C14)

The contributions of f ∗
2 (t ) in this integral are negligible ex-

cept for x0 at the vicinity of 1. Thus, we set t = 1 − v� to
evaluate the above integral, and the integral can be evaluated
by integrating v over [0,∞] (except for the term C∗

2 which
is evaluated without this change of variable). Using Eq. (C7)
yields

	I∗
2 (�) � (−1)

π ln 2

[∫ 1

−1
dt

−πC∗
2√

1 − t2

+ 2

π2
√

2

∫ ∞

0
dv ln(2v�)

(
θ (v − 1)√
2(v − 1)

− 1√
2v

)

−
∫ ∞

1
dv

∫ 1

0
du

2

π2(2u)3/2
√

2(v − 1)
ln

v − u

v

]
.

(C15)

All the integrals appearing in the above equations can be
evaluated. Imposing 	I∗

2 (�) = 0 then leads to

C∗
2 = 1/π2. (C16)
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To identify C2 we proceed in the same way. The integral
equation is ∫ 1−�

−1+�

dx �2(x) ln |x − x0| = F2(x), (C17)

F2(x) = −πC2 + πφ1 + f2(x0) + f2(−x0), (C18)

so that

I2(�) =
∫ b

−b
dx �2(x) = 1

π ln(b/2)

∫ b

−b

dt F2(t )√
b2 − t2

. (C19)

As before we need to evaluate the behavior of F2(x, �) for
small �:

F2(x) ∼
�→0

ln(4�) + γ + 1√
2�π2

ln(1 − x2
0 ) = F 0

2 (x)√
�

. (C20)

At leading order for small � we obtain

I2(�) ∼
�→0

1

π ln(1/2)

∫ 1

−1
dt

F 0
2 (t )√

�
√

1 − t2
= I0

2√
�
. (C21)

The next-to-leading order is

I2 − I0
2√
�

� (−1)

π ln 2

∫ 1

−1
dt

[
F2(t )θ (b − |t |)√

b2 − t2
− F 0

2 (t )√
�(1 − t2)

]
.

(C22)

Again, we evaluate it by setting t = 1 − v� and taking the
small-� limit of the obtained integrand at fixed v, leading to

I2(�) − I0
2 (�)

� (−1)

π ln 2

{ ∫ b

−b
dx

−πC2 + �1(x)√
b2 − x2

+ 2
∫ ∞

0
dv

ln(4�) + γ + 1√
2π2

ln(2v�)

[
θ (v − 1)√
2(v − 1)

− 1√
2v

]

− 2
∫ ∞

1
dv

∫ ∞

0
du

ln(4u�) + γe − 1

π2(2u)3/2
√

2(v − 1)
ln

v − u

v

}
.

(C23)

To evaluate the term involving �1 we introduce a variable ε

so that � 
 ε 
 1 and we calculate∫ b

−b
dx

�1(x)√
b2 − x2

=
∫ b

−b

dx

π
√

1 − x2
√

b2 − x2

�
∫ 1−ε

−1+ε

dx

π (1 − x2)
+

∫ ε/�

1

2� dv

2π
√

v(v − 1

� ln(8/�)

π
, (C24)

where the last equality follows from the evaluation of the
integrals with � 
 ε 
 1. Finally, evaluating all terms in
Eq. (C23) and requiring that the I2(�) − I0

2 (�) → 0 for small
�, we obtain

C2 = 1 + γe + ln 8

π2
, (C25)

as announced in the main text.

2. Second-order calculation in the limit of large reactivity
in three dimensions

We evaluate the term B in Eq. (80) by writing

B(r0, �) � √
κ

K
(

2
√

r0

1+r0

)
(1 + r0)

∫ ∞

�κ

dX

[
ψ (X ) − 1

2π
√

2X

]

− �

∫ 1

0

du√
κ (1 + r0)

[
ψ (u�κ ) − 1

2π
√

2u�κ

]

×
[

K

(
2
√

(1 − u�)r0

1 − u� + r0

)
− K

(
2
√

r0

1 + r0

)]
. (C26)

Hence

B(r0, �) =
K

(
2
√

r0

1+r0

)
(1 + r0)

1 + γe + ln(4�κ )

2
√

2�π2

− �

∫ 1

0
du

[−1 + γe + ln(4u�κ )]

2π2(2u�)3/2(1 + r0)

×
[

K

(
2
√

(1 − u�)r0

1 − u� + r0

)
− K

(
2
√

r0

1 + r0

)]
. (C27)

Note that here, for conciseness we will treat ln κ as being of
order 1 in powers of κ; the result will be exactly the same as
in the case where one separates the ln κ terms and the O(1)
terms.

In the small-� limit at fixed r0 we obtain

B(r0, �) ∼
�→0

K
( 2

√
r0

1+r0

)
1 + r0

1 + γe + ln(4�κ )

2
√

2�π2
= B0(r0, �)√

�
, (C28)

whereas if we set r0 = 1 − �v, in the limit � → 0 at fixed v

we obtain

B(1 − v�, �) ∼
�→0

1

8

1 + γe + ln(4�κ )√
2�π2

ln
82

(v�)2

−
∫ 1

0
du

[−1 + γe + ln(4�κu)]

4π2(2u)3/2
ln

v

v − u
,

(C29)

where we have used K (1 − y) � 1
2 ln(8/y) for small y. Let us

write the integral Eq. (79) under the form∫ 1−�

0

dr r �̃2(r)

r + r0
K

(
2
√

rr0

r + r0

)
= π [C̃2 − �1]

2
+ B (C30)

with �̃2 = �2(r) + �∗
2(r) ln κ , C̃2 = C∗

2 ln κ + C2. Let us de-
fine

I2(r, �) =
∫ 1−�

0
dr r �̃2(r). (C31)

Using the analytically known solution [45] of the integral
equation (C30), we obtain

I2(�) = 4

π2

∫ 1−�

0
ds

s
(

π
2 (C2 − �1) + B(s, �)

)
√

(1 − �)2 − s2
. (C32)

When � → 0 we obtain at leading order

I2(r, �) ∼
�→0

4

π2
√

�

∫ 1

0
ds

s√
1 − s2

B0(s, �) (C33)

034134-13



T. GUÉRIN et al. PHYSICAL REVIEW E 107, 034134 (2023)

and this integral diverges for � → 0, as it should due to the
known behavior for �̃2(r) when r approaches 1. At next-to-
leading order, we evaluate the terms involving B by setting
s = 1 − v� and take the small-� limit at fixed v, so that we
can use Eq. (C29):

I2(�) − 4

π2
√

�

∫ 1

0

ds sB0

√
1 − s2

� 4

π2

{∫ 1

0

ds s√
1 − s2

π

2
C2

−
∫ ∞

1
dv

∫ 1

0
du

[−1 + γe + ln(4�κu)]

4π2(2u)3/2
√

2(v − 1)
ln

v

v − u

+
∫ ∞

0
dv

1 + γe + ln(4�κ )

4
√

2π2
ln

8

v�

(
θ (v − 1)√
2(v − 1)

− 1√
2v

)

+
∫ 1−�

0
ds

sπ�1(s)

2
√

(1 − �)2 − s2

}
. (C34)

To evaluate the term containing �1 defined in Eq. (76)
we can use again a trick where we use a variable ε with
� 
 ε 
 1:

∫ 1−�

0

dr r �1(r)√
(1 − �)2 − r2

=
∫ 1−ε

0
dr

r�1(r)√
1 − r2

+
∫ ε/�

1

dv �

4π
√

v(v − 1
= ln(2/�)

4π
.

(C35)

Finally, all the integrals in Eq. (C34) can be evaluated; requir-
ing that it vanishes for small � leads to

C̃2 = γe + 1 + ln(2κ )

4π
, (C36)

which is exactly Eq. (81).
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