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Recent wildfire prevalence and destruction have led to new initiatives in the search for better land management
techniques and prescriptions for controlled burns. With limited data on low-intensity prescribed burns, finding
models that can represent fire behavior is of great importance to learning how to control fires with more accuracy
while also maintaining the purpose for the burn, be it reducing fuels or managing the ecosystem. Here we use a
data set of infrared temperatures collected in the New Jersey Pine Barrens from 2017 through 2020 to develop
a model for very fine-scale fire behavior (*0.05 m?). The model uses distributions from the data set to define
five stages in fire behavior in a cellular automata framework. For each cell, the transition between each stage
is probabilistically driven based on the radiant temperature values of the cell and its immediate neighbors in a
coupled map lattice. With five distinct initial conditions, we performed 100 simulations and used the parameters
derived from the data set to develop metrics for model verification. To validate the model, we also expanded it
to include variables not in the data set that are important for fire behavior, e.g., fuel moisture levels and spotting
ignitions. The model matches several metrics compared to the observational data set and exhibits behavioral
characteristics expected from low-intensity wildfire behavior including a long and varied burn time for each cell

after initial ignition, and lingering embers in the burn zone.
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I. INTRODUCTION

Recent changes in weather and vegetation patterns have led
wildfires to emerge as one of the biggest threats to human life
and property in many parts of the world [1,2]. According to
the National Interagency Fire Center website, the total number
of acres burned in the United States has more than doubled
from an average of 3.32 million acres per year between 1985
and 1990 to an average of 7.82 million acres per year between
2015 and 2020 [3]. The expansion of the wildland-urban inter-
face increases the proximity of human structures and land to
forest areas, raising the likelihood of humans being affected
by these wildfires. In recent years, this expansion has led to
an increase in wildfire destruction [4—6]. Furthermore, several
decades of suppressing fires in these areas have also resulted
in a negative effect on the fire-dependent ecosystems and the
build-up of dry fuel on the ground [7,8].

To combat the devastation caused by these natural disas-
ters, prescribed fires are an effective land management tool,
provided we apply the correct prescription [9-12]. Currently,
practiced fire experts rely on observation and experience for
devising these prescriptions, but unforeseen circumstances
can have disastrous results [13,14]. A rapid increase in techno-
logical tools since the early 1990s has given us a new way of
fighting fires with information before a wildfire occurrence.
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This information can be used to train new firefighters in the
field and devise prescriptions for controlled burns that may
mitigate the damage caused.

Process-based models such as FIRETEC, developed at the
Los Alamos National Laboratory [15-17], or WFDS, devel-
oped in association with the National Institute of Standards
and Technology [18,19], can offer us the opportunity to test
various parameters for prescribed fires numerically, without
the possibility of an escaping fire. These advanced tools also
allow us to collect data on the simulations that would be
challenging to gather in real-life fires [20]. These models
are highly precise but require significant computing resources
due to the use of computational fluid dynamics [17] and
substantial technical manpower for their management. There
exists a paramount need for low-complexity models which can
provide reliable data to researchers and fire practitioners in
real time.

As an alternative to these highly complex models, cellular
automata (CA) models reduce the computational expense by
discretizing time and space, reducing the model to a collection
of basic equations applied to each cell during a single time
step. Physicists often utilize the cellular automaton framework
for representing geophysical processes that adhere to some
basic physical laws in which the new value for a particular
spatial location at time ¢ depends on the spatial neighborhood
at previous time steps [21-23]. From snow avalanche models
[24] to lava flows [25] to porous media [26], CA models
are popular among fluid flow modelers. The discretization
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process resembles the act of using Reimann sums to calcu-
late integral approximations. While some information may
be lost in the estimation, the results can be close enough
to be valuable depending on how and for what purpose you
use the integral or model. CA models also often allow for
the possibility of “self-reproduction” in that a neighboring
state will directly reproduce itself in adjacent cells [21], a
quality common in chaotic systems and fractals. Mathematical
models are inherently approximations of the processes they
represent, in which error estimates are used for validation
purposes [27,28].

Most wildfire behavior CA models produce results that
track the fire line and create images with limited information.
They use information regarding the surrounding topography
and wind data, seeking to predict the area burnt over time. The
typical resulting graphs focus on either contours of the fireline
in time increments as in Refs. [29-32] or they represent the
shape of the resulting burnt area as in Refs. [5,33-35] or both
[36]. These models take advantage of the discrete outputs in
the CA framework, but this limits the information that can be
obtained.

Our solution is to add an underlying coupled map lattice
(CML) model to the CA framework. This additional step
allows for more information to be collected than with typical
CA models that only produce a finite amount of discrete
output values. In this paper, we present a spatially extended
radiant heat fire model (SERF), a CA model built from arrays
with infrared radiant heat values recorded during a selection
of small-scale prescribed fires. Using these infrared data, we
determined the main characteristics of the radiant heat ema-
nating from these fires and created a CML for simulating the
fire behavior. We then used this CML to define five states of
fire behavior of a CA model, creating a spatially extended
discrete dynamical systems-based model whose parameters
we determined from empirical data.

There have been many attempts at cellular automata mod-
els of fire behavior [5,31,35,37-39], but this is the first to
incorporate a data set from prescribed fires performed outside
of a laboratory. Using this data set, we determine the model’s
parameters, along with a targeted approach for the output,
and validate the model’s accuracy. The spread of the fire and
radiant temperature are represented using probability distribu-
tions for various characteristics taken from the data set. The
rest of this paper describes the model in Sec. II, the data set
and parameters in Sec. III, and then the output and results in
Sec. IV. Section V includes a summary and a description of
future work.

II. DESCRIPTION OF THE MODEL

SERF defines T, (i, j), the radiant heat temperature at time
step n for cell location (i, j), in five discrete stages. Using
the CML framework, an equation defines the behavior of the
radiant temperature for each stage, with parameter thresholds
marking the transition from one stage to the next. These
five stages represent the life cycle of radiant temperature
for an area that burns. Figure 1 shows a schematic of the
five stages and each are explained in detail in the following
sections.

Stage 1:

Stage 2: Stage 3:
Warming Rising
Heat has Cell has
not been begun to ignited and reached gone out
affected by affect cell temps are max temp and is
heat rising and is cooling
falling

Stage 4:
Falling

Stage 5:
Cooling

Cell has Cell has

Stable
Cell has

FIG. 1. A schematic of the five stages that make up the life cycle
of a burning cell; a definition of the five cellular automata output
states.

A. The model

All cells begin in stage one, stable, in which the heat from
the oncoming fire has not yet reached this cell. Once that heat
affects the cell, it transitions into the warming stage, and when
the heat rises sufficiently for ignition, it transitions into stage
three, rising. The heat then rises as the fuel is consumed until
it reaches its maximum temperature, Ty, (i, j), after which it
transitions into stage four, falling, when the radiant heat re-
duces as the fuel consumption completes. Once the fuel is
gone, the flame ceases, and the cell transitions into stage five,
cooling, in which the ground beneath the fire cools back to
equilibrium with the ambient temperature of the area.

The parameters in SERF unique to each simulation are
the domain size in two dimensions and the overall moisture
content for the area, m.. The parameters unique to each cell
per simulation are the maximum radiant temperature Ty, (i, j),
the heat transfer coefficient for the fuel k(Z, j), and the time
required to rise to and fall from Ty, (i, j), R(i, j), and F (i, j),
respectively. Each of these parameters are generated from a
probability distribution built from the data set described in
Sec. IITA.

1. Algorithm structure and boundary conditions

The algorithm loops through each coordinate in the lattice,
(i, j), defined by a domain size of I x J to calculate the
radiant temperature and assign the discrete stage number to
the cell. The first two stages calculate the radiant temperature
of a particular cell using the temperatures of the surrounding
neighbors. For this process, we use the Moore neighborhood
defined for coordinate (i, j) as

Nj=(G+a j+bl—-1<ab<liabeZ. (1)

In the event that a particular coordinate (i, j) lies on the
boundary of the domain, we only consider those coordinates
defined within the domain as part of the equations. Meaning,
if we are calculating the ambient temperature of the corner
coordinate (1,1), then we would only consider the three exist-
ing neighbors, (2, 1), (2, 2), and (1,2) in the calculation. For
more information regarding the ambient temperature function,
please see Sec. II A 2 and Eq. (3).

2. Stages one and two: Stability and warming

To begin, we initialize the entire domain as the base tem-
perature for the day on which the burn is to take place, Tp,
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which we define as stage one, stable. To start the fire, we
synthetically raise the temperature to ignition for a chosen
group of cells and set them to stage three, rising. As the heat
from these initialized cells approaches the neighbors, radiant
and convective heat transfer causes the temperature to rise and
results in the transition into stage two. For stages one and
two, we use a modified Newton’s law of cooling equation to
represent how the radiant temperature at time step n + 1 is
affected by the ambient temperature of the neighboring area
at time step n,

T (i, j) = Tu(i, J) 4 kG DIAG, ) = TaG, 1. (2)

Here A, (i, j) is the ambient temperature calculated from the
neighboring cells with a weighting function W(i, j) at the
previous time step as follows:

1 1
Aio )= > W(i+a j+bTLi+a j+b). (3)

a=—1b=-1

If coordinate (i, j) is in stage one along with all of its neigh-
bors, then we have T,(N; ;) = Tz and W (i, j) = 1/N for all
i, j, where N = {N, ;} is the total number of cells in the
calculation. This along with (3) leads to A, (i, j) = T,(i, j)
when all neighbors are of equal temperature. From (2), we
therefore have T, (i, j) = T,(i, j) and the temperature does
not change. In stage two, since heat is present, we apply a
multiplicative factor of 1.2 to W (i, j), which represents the
addition of convective heat transfer as the flames encroach
on the area while the radiant temperature increases. Once the
temperature rises to inside the bounds of the ignition interval
such that 7,,(i, j) € [Inmin, Imax], a cell can undergo one of three
options: (i) remain in stage two, warming; (ii) transition into
stage three, rising; or (iii) transition into stage five, cooling. If
T.(i, j) € (Imin, Imax ), using the moisture content, m,, then the
cell attempts to ignite between Dy, and Dy, times, based on
a uniformly distributed parameter delay matrix, D, which will
be explained in detail in Sec. III C. If the attempt fails, then
the cell remains in stage two. If the attempt succeeds, then
the cell transitions into stage three. If we have 7,,(i, j) > Inax,
then the cell automatically transitions into stage three, rising.
If all attempts fail, then the cell transitions into stage five. A
transition from stage two to stage five represents a cell that
will not ignite due to the chemical structure of the fuel in that
cell. For instance, this could represent a rock that will heat up
but never ignite. Figure 2 shows how a particular cell might
move through stages two to five, each of which is described in
the subsequent subsections.

3. Stages three and four: Rising and falling

If the cell ignites, then the chemical and physical character-
istics of the fuel become the driving forces in how the radiant
heat rises and falls. Since the fuel is now being consumed, the
area begins to generate its own heat. Thus, for stages three and
four, we move away from Newton’s law of cooling and define
two linear functions for how the heat changes from one time
step to the next. For stage three, rising, we have:

R, j)

L1 G, j) = Ts(, j) + [n—SG )l 4

Stage 2:
Warming
Stages 3-4: Stage 5:
Burning Cooling

S
=
>

Temperature
variables

R(i, )

AR

S@@,j) MG, j)

E(i./)  Time Variables

FIG. 2. Representation of how the radiant temperature changes
in a specific cell over time beginning in stage two, warming, where
Newton’s law of cooling is applied, moving through the linear equa-
tions developed for stages three (rising) and four (falling) and ending
in stage five, cooling; example of CML output for a single cell.

and for stage four, falling, we have:

Tu(, j) — Ts(, j)
F@, j)

L1 G, ) =Tu(, j) — [n — M@, j)].

(&)
For simplicity, stages three and four are defined as linear
functions in which the cell rises to its maximum tempera-
ture, Ty, (i, j) over R(i, j) time steps, and falls from Ty, (i, j)
over F(i, j) time steps. Since the temperature at which the
transition into stage three occurs is not set but determined
through the use of the delay matrix, D(i, j) interacting with
the ignition interval (inin, Imax ), We define Ts(i, j) to be the
ignition temperature for location (i, j) and S(i, j) to be the
time step at which the transition occurs. Then M(i, j) is the
time step at which the maximum temperature is achieved.
During stage four, once the cell reduces in heat back down
to the ignition interval, [Inin, Imax], the cell is again tested to
see if it has extinguished. The temperature at which the cell
extinguishes is defined as T (i, j) at time step E (i, j), and we
transition into stage five.

4. Stage five: Cooling

This stage represents the time when the fuel has been
consumed, and the ground beneath the fuel is cooling off back
down to equilibrium with the area’s temperature, 7g. We use
an exponential function to show how the heat dissipates after
the fire has moved through the area:

EG, j)—n

To1, j) =1Te(, j) — Tl exp [m

] + Tz. (6)
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FIG. 3. Truss setup in the New Jersey Pine Barrens for the cre-
ation of the data set; (a) before the burn; (b) after burn was initialized
(photos courtesy of Dr. Robert Kremens, Chester F. Carlson Center
for Imaging Science, Rochester Institute of Technology (RIT); credit:
USDA Forest Service Northern Research Station).

This is the last stage of the process. Once the cell reduces back
down to T, it is considered to be burnt and is no longer subject
to any temperature changes.

III. MODEL PARAMETERS AND THE DATASET

SERF was built from a large data set developed in the New
Jersey Pine Barrens from 2017 through 2021 during several
controlled burns, under a grant from Strategic Environmental
Research and Development Program, within the Department
of Defense. The data was collected by the Northern Re-
search Station of the United States Department of Agriculture
(USDA) Forest Service [40]. In this section, we describe the
extent of the data set and how we incorporated this data into
the model.

A. The data set

There were two types of fires that were burned under this
grant: square fires with 12-m length sides and 30-acre fires.
Both were prescribed and kept under tight surveillance. The
12-m fires were outfitted with a truss at 6 feet over the burning
zone containing 16 equally spaced data collection devices
in a 4-by-4 grid (see Fig. 3). Each device housed a FLIR

400 ‘
>
& 200
=
0 . ‘
8000 12000 16000
1

FIG. 4. Calibration graph for relating infrared output data to ra-
diant temperature values from observations using a black box unit
with the FLIR Lepton 1.5 camera.

Lepton 1.5 that recorded infrared information and a digital
camera along with various other data collection devices. The
fuel below the cameras for the 12-m burns was collected,
weighed, and evenly distributed throughout the burn zone.
For the 30-acre fires, the devices were distributed randomly
throughout the burn zone.

All of the cameras were initiated simultaneously and began
taking snapshots of the area at 1-s intervals. The FLIR Lepton
1.5 recorded the infrared radiant output (from 8 to 14 microns)
emanating from each cell in the viewing range and outputted
a numerical array with values ranging from approximately
8000 to 16000. The prescribed fires were ignited below the
cameras and allowed to burn through the area underneath [40].
For the 12-m burns, the viewing area for each camera was
approximately 3 m square, but the resulting numerical array
was presented as 60 x 80 cells. Figure 3 shows the setup for
the data set collection. Please note that, due to the Covid-19
crisis, we could not perform the necessary experiments to
determine the exact spatial region captured by each camera
by calibrating the digital and infrared cameras together; this
should be done in the future.

Since each segment of ground was individually recorded,
we first found all of the arrays related to a particular fire in a
given section and stacked the arrays on top of one another in
a three-dimensional time-sequential tensor (dimensions being
x and y spatial dimensions with time as the third). Of 3.1
million files, we could find 74 successful fire visualizations
that did not have any deformities. We denote these 74 fire
visualizations using the symbol f,,, where m is the fire index
that goes from 1 to 74, that is the set { fm}zn“=1 represents these
74 successful fire visualizations.

From laboratory experiments performed with the Lepton
camera, the infrared values were found to correspond to a ra-
diant temperature flux range of approximately 22 °C to 400 °C
[41]. For the interpolation scheme, we first attempted a cubic
spline interpolation but the results were similar to the linear
interpolation, and thus the linear was chosen for simplicity.
Note the sudden increase toward the top right of the graph in
Fig. 4 that indicates the temperature data may not be entirely
accurate toward the upper bound for the range of temperatures
recorded. This is reflected in the maximum temperatures for
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the power flux being capped at 7j; = 400 °C. This anomaly
was adjusted in the model so that some of the maximum
temperatures can be above this value, but without accurate
data for that range, it is possible that the resulting maximum
radiant temperature estimations may be lower than the true
values.

B. Data-driven parameters

From the data set, we obtained several parameters for
SERF including two global parameters: the ignition interval,
[Imins Imax], and the unburnt proportion of land U(f,) for
a fire instance f;,, and four cell-dependent input parameter
matrices: the maximum temperatures, Ty, the rise and fall
times, R and F, and the heat coefficients, k. Each of the
input parameter matrices used in the model is defined using
a probability distribution taken from all of the cells in the
data-set fires. We experimented with fitting several different
probability distributions to the data. Since we cannot assume
that our data parameters adhere to any specific distribution, we
chose the kernel distribution since it led to the most accurate
model outputs compared to the observational data.

For R, F, Ty, and k, SERF builds the input matrices by
assigning values to a subset of cells through sampling the
corresponding distribution defined by the data set and then
“smoothing” these numbers to increase realistic stability in the
model. For R and F', a random number between 50% and 70%
of the cells are assigned a value with the rest equal to 1. For
k and Tjy, all cells are assigned a value from their respective
probability distributions.

The smoothing process for each of the four parameter
matrices is performed by finding the sum of each cell and its
immediate neighbors and then multiplying that by a random
number chosen from a normal distribution:

1 1
PG, jy=p) Y Pli+a, j+b), (7)

a=—1b=—1

where P € {R, F, k, Ty} and p ~ N(u = 1,0 = 0.04). This
process is repeated twice for R, F, and k and 10 times for 7).
Then the values are normalized back to the original interval by
finding the maximum value of the original matrix, max(P),
and dividing that by the maximum value of the new matrix
max(P'):

P, j) = P, D) ®)
i, j)=P(3, j)———.

J ) nax (P’

Figure 5 shows a sample 7j; matrix, where Fig. 5(a) shows
the initial sample matrix and Fig. 5(b) shows the matrix after
smoothing.

1. The ignition interval: [Lyin, Imax]

The fuel for the 12-m? prescribed burns was a mixture of
live and dead needles, leaves, and brush and was gathered
from the area designated for the fire, weighed, and then dis-
persed as evenly as possible throughout all 16 sections of each
burn zone [40]. The 30-acre fires held a mixture of the same
but more heterogeneously distributed. As ignition tempera-
tures vary widely for these different fuels, we needed to find

300
7C¢C)
200

100

FIG. 5. A representive sample of 7) matrix and a smoothed
version used in SERF: (a) initial 7}, matrix with values sampled
from the distribution for maximum temperatures; (b) 7), matrix after
smoothing.

a reasonable interval, [Iin, Imax], fOr ignition temperatures
represented in these fires, {f,,}/%,

Since we had chosen the set of fires to be those known
to ignite, we could estimate the second of ignition to be the
time step at which the fire entered the field of view. Using
visualizations of the infrared value tensors, we came up with
an equation for the average temperature of the cells based
on the maximum and minimum radiant temperature of each
fire, fiu:

Im(fm) = |O-2[Imax(fm) - ]min(fm)]l + Imin(fm)~ (9)

The equation was developed by finding the range of tem-
peratures recorded in each fire f,;, [Lnin(fin), Imax(fin)], and
determining the ignition point for that fire to be approximately
20% of that range above I, (fn)- Then we found the greatest
and least value for all ignition temperatures and that defined
the ignition interval for SERF. Figure 6 shows the various
temperatures for each fire in the data set.

From Fig. 6 we found that the minimum and maximum val-
ues for threshold for each of these fires to be I, &~ 90 °C and
Imax =~ 150°C. Note that Fig. 6 also shows the upper bound
on the recording device at 400 °C as described previously in
Sec. IIT A.

400 000 T

Og 55,g8569,85 060" % o078 eS%agy o8 = R L M
] %a o o %,

v vv
v W%VWVVV
0 1 1
0 35 70

Fire index

@ Calculated Threshold Temperature per fire
© Maximum Temperature per fire

v Minimum Temperature per fire
— -Threshold Maximum

—Threshold Minimum

WVVVVV W VVVVvv

FIG. 6. Maximum, minimum, and threshold temperatures for
each fire in degrees Celsius and the top and bottom of the threshold
interval.
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FIG. 7. Recorded maximum temperatures for 355,200 cells from
all fires in the data set; histogram and fitted kernel distribution (red
line).

2. Maximum temperatures

A kernel distribution was fitted to a histogram of the max-
imum radiant temperatures achieved for each cell in all of
the fire tensors for a total of 355,200 cells. Figure 7 shows
the maximum temperatures for each cell across all fires and
the estimated distribution for these quantities. The majority of
the fires had a large variance in temperatures across cells, re-
sulting in various local maxima in the distribution. Moreover,
there were some fires in which the entire area was engulfed in
flames that all burned at the upper bound of the Lepton device.
The tall bar at the right end of this graph in Fig. 7 represents
these high-intensity fires. A large number of cells reached
around 200°, indicating that most of the cells caught fire
but did not release significant heat energy. The smaller local
maxima around 300° indicates that certain fires maintained a
higher temperature than average but did not reach the upper
bound. In short, the variety of different fires begot various
maximum temperatures.

This kernel distribution was then sampled to initialize all
cells in the Ty, parameter matrix. The “smoothing” process
was then applied as described in Sec. III B. Each cell was
“smoothed” to allow for more even heating temperatures in
neighboring cells.

3. Rise (R) and fall (F) times distributions

Using the ignition temperature defined for each fire (see
Sec. III B 1), we measured the number of time steps, R(i, j),
required for the temperature in each cell to go from the starting
ignition temperature, 75(7, j), up to maximum temperature
Ty (i, j) and the number of time steps F (i, j) to fall from
Tu (i, j) back to the ignition temperature. Figure 8 shows the
distribution of R and F derived from the data. The red lines in
this figure are the corresponding kernel density estimate. We
experimented with various probability distributions including
joint distributions for these parameters and found that the ker-
nel distribution with each R and F value sampled separately
produced results that most closely matched the data-set fires.

The average rise time, (R) = 26 s, and the average fall time
(F') = 58 s. These histograms indicate a strong likelihood that

0.4/ ,
(@)

0\ I I
0 75 150

Rise Time R (s)

0 150 300
Fall Time F (s)

FIG. 8. Rise (a) and fall (b) time value histograms and kernel
distributions from the data set.

the rise and fall times would be relatively low, although it is
possible to have a long tail during the cooling stage.

4. Heat coefficient array (k-matrix)

The heat coefficient for a given material is typically deter-
mined as the likelihood of a given substance to transfer heat
to a neighboring material. Sometimes referred to as “conduc-
tance,” it is the primary parameter in Newton’s law of cooling
which was used for the rising of the temperature during stages
one and two and the transition into stage three. We determined
the probability distribution of these coefficients from the data
set by finding the global maximum temperature achieved for
all cells in a given fire and then estimating the ratio of the max-
imum temperature for each cell to that global value. This gave
us a number between 0 and 1 that we used to represent the
“burnability” of that particular cell. We created a histogram
and fitted a kernel distribution to the data. Figure 9 shows the
results of that distribution.

We note that the majority of the calculations of k lie
between 0.7 and 0.95, which implies that the radiant tempera-
tures for each cell were relatively close to the global maximum
for that fire. This accounts for an approximate mean of 0.0855
for the unburnt proportion of land, U, and also indicates that
most of the cells reached temperatures above I,.x. The values
for the k parameter matrix are sampled from this probability
distribution for each cell in the domain. The matrix is then
“smoothed” according to the method described at the start of
Sec. IITB. As with the other cell-specific parameter matrices
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FIG. 9. Heat coefficient histogram with kernel distribution;
found largest temperature value in the maximum temperature matrix
for each fire and the proportion of that maximum reached by each
cell.

(R, F, and Ty), we experimented with various probability dis-
tributions for these values but found the kernel distribution to
represent the heat coefficients most accurately in comparison
with the data set.

5. Initial conditions

From the visualizations of the data-set fires, we found four
initial conditions represented: corner, side, chunk, and double
chunk. Figure 10 shows examples of these initial conditions
from the simulations alongside data-set representations of
each type (the left images are from SERF simulations and the
right from the data set). It should be noted that the orientation
of the cameras was not standardized when they were placed
along the truss, which means that the fire traveled in several
directions on camera. For SERF, the fires all move in the same
direction with a standardized trajectory of west to east or south
to north within the view frame.

We also incorporated an initial condition that was not
represented in the data set. It is widely known that spotting
occurrences in wildfires can accelerate the spread of the fire
[42,43], and understanding this phenomenon is an important
part of keeping prescribed fires under control. Therefore, we
added more simulations with a fifth initial condition of spot-
ting, where we ignited three spots in the middle of the domain
(see Fig. 11).

As described in Sec. II A 2, these initial conditions were
used to synthetically raise the temperature of a particular set
of cells at the start of the simulation. Each of these cells were
raised to Inax for the CML model and the stages set to three in
the CA model. The Appendix has examples of each ignition
type from the data set and the simulations, including a set of
images from the spotting ignition. Of note in these images are
that the timing varied greatly for the length of the fires within
the viewing area, but the simulation versus the data-set image
sets are quite similar in structure.

6. Distribution for unburnt area

For verification purposes, we used the unburnt proportion
of land in each fire from the data set, U(f,,), by determining

PHYSICAL REVIEW E 107, 034133 (2023)
(b) Data Corner

(a) Sim Corner
h i

(g) Sim Double Chunk (h) Data Double Chunk

FIG. 10. Initial conditions: (a) corner from {S,,}, (b) corner from
{fu}, (c) side from {S,,}, (d) side from {f,,}, (¢) chunk from {S,,}, ()
chunk from {f,,}, (g) double chunk from {S,,}, and (h) double chunk
from {f,,}.

Spot Ignition

FIG. 11. Spotting initial condition added to the simulations to
analyze fires beyond what was represented in the data set.
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0.6

0 0.2 0.4 0.6
Unburnt Proportion of Land U

FIG. 12. Histogram of the proportion of cells that did not burn in
each fire from the data set (U). The exponential curve fitted to the
histogram shown here in red has a mean of (U (f,,)) = 0.0855.

the mean, (U (f;,)), of this parameter (the mean is taken over
{ fm}Zf:] , the fire instances). To find the proportion of cells that
did not ignite and therefore did not burn, we used the ignition
values represented in Fig. 6 and described in Sec. III B 1 and
defined each of the cells as burnt if they achieved the ignition
temperature for that particular fire or unburnt if they did not.
We counted the number of cells whose final state was burnt of
the total number of cells in each fire and created a matching
exponential distribution. Figure 12 shows the histogram with
the fitted exponential. When we fit the curve for the proportion
of land that did not burn, we found that (U (f,,)) = 0.0855.

C. Non-data-driven parameter: Moisture content, m,

Although moisture information was not available for the
data set, fuel moisture levels have a major impact on fire
behavior [44,45]. To appropriately use the moisture content
in the simulations, we needed to associate that value, m,., with
whether the cell would ignite. To do this, we use this moisture
level as a threshold to decide if the temperature will change
for that cell for a given time step. For each cell, we randomly
generate a uniformly distributed number between 0 and 1 and
if the number is below m,, then we set T,.1(i, j) = T,(i, j)
and the algorithm skips to the next cell. This allows for a
slower rate of spread when the moisture level is higher.

When testing the effect of the moisture content in the
simulations, we found that while this random uniform number
had an effect, the speed of the fires in the data set were
still slower than those achieved with m.. Thus, to accentuate
the effect of m,, we created a parameter matrix to delay the
ignition, D(i, j), in which each cell was assigned an integer
between 1 and 10 from a uniform distribution for how many
times SERF attempts to ignite that particular cell. The matrix
was then smoothed using the method described in Sec. III B
and returned to integers. This delay value is used to test the
transition from stage two to stage three. If the cell does not
ignite within D(i, j) attempts at ignition, then the cell is con-
sidered nonflammable and the algorithm transitions that cell
from stage two directly into stage five, cooling. As with the
other parameter matrices, this matrix was built by assigning

values as described above to all of the cells in each simulation
and then “smoothing” the values across the domain.

IV. RESULTS AND DISCUSSION

We performed a total of 100 SERF simulations, {S,,}!%,
with 20 of each initial conditions described in Sec. Il B 5. A
simulation begins with a synthetic rising of the temperature
to Inax and setting the cell stage to three for a collection of
cells. A simulation is considered complete when all cells have
reached stage five. We collected the fire simulation tensors,
parameter matrices, and a variety of other useful information
from each simulation so that we could analyze the results.
Since the data set was collected at 1-s intervals, each I x J
matrix produced from the algorithm is considered to be 1 s in
the life of the fire.

To verify SERF, we compared several metrics from the
model simulations to the data set, including the likelihood of
transition between stages, burning potential for each cell, the
proportion of land that remained unburnt, and two timing met-
rics for spread rates. Each is described in detail in Sec. IV A.

To validate SERF, we compared the output to a typical
CA model without the underlying CML model to show the
strengths of adding the ability to achieve a continuous set of
outputs for determining the states of the system. The results
of these tests are described in detail in Sec. IV B.

A. Model verification

The combination of all of the probabilistic parameter in-
puts with the smoothing function described in Sec. III B, the
uniformly distributed moisture content and delay matrix, and
the stochastic values generated in the algorithm makes SERF
inherently probabilistic. Thus, we were able to use several
input parameter distributions as metrics to calibrate and verify
the model. We ran several sets of simulations and compared
the outputs to these parameters as metrics derived from the
observational data. In particular, we compared unburnt areas
U (fn) for each fire in {f,, Zle, the distribution of maximum
temperatures, and the distributions of rising and fall times.

1. Transition matrices

To test the overall effectiveness of the CA model, we devel-
oped a transition matrix for the data-set fires { f,,,}Zf:l and the
SERF simulations {S,,}1%, showing the probability of moving
from one stage to another, calculated and averaged over all
cells in the fires and simulations separately. The transition
matrices were then created for the fires and SERF. Figure 13
shows the difference between the transition probabilities for
the fires and the SERF simulations.

Due to the probabilistic nature of the algorithm, each set of
simulation results were unique in their comparison to the data
set. Using the parameter values and ranges we chose, the re-
sulting differences ranged from a maximum difference of 11%
to 12% in transition from stages two to three. We have chosen
to show a matrix representing an 11.76% maximum difference
in Fig. 13. The rest of the differences were less than 3%
for all sets of simulations indicating that SERF successfully
captured the transition probabilities for each stage. Other met-
rics that were compared with the data set including unburnt
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FIG. 13. Percentage differences in stage transition probabilities
for the SERF simulations versus the data set. The simulations repro-
duce the transition probabilities with an error of less than 3% for all
cases except the stage two to three transition where the error is 12%.

proportion of land and the heat coefficient ranges showed no
major changes between the various simulation runs.

2. Heat coefficients vegetation burning potential

The heat coefficients assigned to each cell represent the
likelihood of the fuel burning. A low heat coefficient indicates
a low probability of ignition, as in the case of a cell that
is dominated by the presence of a rock or dirt, as opposed
to leaves or branches, which would represent a higher heat
coefficient. Initialized using the distribution from the data set
as defined in Sec. III B 4, the final heat coefficients were also
affected by the moisture content, m,, and the delay matrix, D.
Figure 14 shows the heat coefficients of each cell from every
simulation in comparison to those determined from the data
sets.

The mean of the heat coefficients for SERF is approx-
imately 0.8351 and the mean for the data set is 0.8264, a
difference of 0.0087. In Fig. 14, we observe that the variance
of the simulations and data set are relatively close, and the me-
dian values represented by the red lines are 0.8325 and 0.8347

1 ;
‘ —
| I
| |
0.9 ‘ |
|
< 0.8+ u
] |
| i
0.7 ¢ |
|
L
0.6¢ ‘ ‘
Dataset Simulations

FIG. 14. Box plot comparing the heat coefficients in the SERF
simulations and the data set; the red line in the middle of the boxes
indicates median values. Observe the relative similarity between & in
the data set and SERF simulations.

0.3

0.2

U/3.(U)

Dataset Simulations

FIG. 15. Box plot showing the unburnt proportion of land in the
SERF simulations compared to the data set. Observe the relative
similarity between U in the data set and simulations.

for the data set and simulations respectively, which indicates
a difference of only 0.0022 and a successful representation of
the heat coefficients for the data set in the model.

3. Unburnt proportion of land

Another metric we used to determine the success of SERF
was to see if the unburnt proportion of land (U) was similar
between the simulations and the data set. Figure 15 shows a
box plot that exhibits the success of this metric. For SERF, we
estimated U by finding the proportion of cells that transitioned
from stage two to stage five without ignition. Ty, M, D, and k
influenced U.

The mean of U in the SERF simulations is 0.0865, and in
the data set 0.0867, for a difference of 0.0002. The medians
(represented as the red line in the box plot) are 0.0293 and
0.0125 for the data set and simulations, respectively, which
exhibits a difference of only 1.68%. The variance of U dif-
fered, with the simulations creating slightly more variance
than the data set.

4. Lingering embers

Often in a fire, particular spots continue to burn long after
the bulk of the fire has dissipated. This phenomenon has to do
with the density and moisture level of the fuel on the ground.
A more moisture-rich fuel takes longer to burn because the
water must be evaporated off before the fuel can be consumed,
and a denser area lacks the ability to draw in the oxygen as
freely so the combustion process slows. Understanding the
length of time embers may linger during a prescribed burn
could inhibit the introduction of firebrands into the surround-
ing foliage long after the area has burnt. In the data set, 29
of the 74 fires showed obvious evidence of lingering embers.
However, many of the data-set visualizations were cut short
from the full length of the fire if the embers burned at a low
temperature, so some lingering embers may have been lost.

Figures 16(a) and 16(b) shows some images from the data-
set fires representing this phenomenon and Figs. 16(c) and
16(d) shows the same behavior from the simulations. In the
SERF simulations, this originates from the probabilistically
determined rise and fall times of each cell in conjunction with
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(a) Fire Data 1 (b) Fire Data 2

(c) Simulation 71 (d) Simulation 93

©

FIG. 16. Lingering embers in the simulations and fire data sets;
(a) fs, second 500 of 1100; (b) f50, second 2550 of 2894; (¢) S71,
second 2000 of 2310; (d) So3, second 900 of 1241.

the varying start time for the ignitions. Some of those values
add up to a long burn for a particular group of cells.

5. Cell rise and fall relationship with fireline

Many CA models focus on the speed of the fireline as it
moves through the area because that gives an indication of
how quickly it will take over a given area outside of the burn
zone. However, the time the fire spends in any given area can
also make a huge difference to fire practitioners because of the
likelihood of firebrand transport, lingering embers, and smoke
production. SERF accurately represents the variance in how
long the fire spends in any given area. Figure 17 displays some
stills from SERF simulation number 30 that exhibit the length
of time the fire spends in the domain.

B. Model validation: Comparison to basic CA

To validate mathematical models, we compare the model
output against known fire behavior and analyze any similari-
ties or differences. For SERF, we made a direct comparison to

60

(a) Timestep 30 (b), Timestep 50 -(c{:l’imeétep 100
K3 ]t »

LR 300

\ 200

0 200 (e) Timestep400, + T
T T

100

40 80

FIG. 17. Successful representation of the lingering heat after the
fireline moves through the area; images from SERF simulation num-
ber 30; (a) time step 30; (b) time step 50; (c) time step 100; (d) time
step 200; (e) time step 400; and (f) time step 700.

~ @ (b) ©

© ®
150 b '

300" " J oL " | , -~ J
0 150 3000 150 3000 150 3000 150 300

D Unburnt . Burning . Burnt

FIG. 18. The 300 x 300 grid for a basic CA model with prob-
ability of spread weighted by wind; [(a)—(d)] northern winds at
15 mph; (a) time step 5; (b) time step 75; (c) time step 150; (d) time
step 250; [(e)—(h)] no winds; (e) time step 5; (f) time step 20; (g) time
step 80; and (h) time step 150.

a much lower complexity CA model. We began this project
by constructing our own basic square-cell CA model. For
this basic model, each cell is in one of three states: burned,
unburnt, or burning, so that B, (i, j) € {0, 1, 2}, respectively,
for each cell, (i, j), and time step n. The only parameter
represented in this basic CA model is a heat coefficient for
each cell uniformly distributed between 0.5 and 1 such that
Y@, j), k@, j) ~U.5, 1).

All cells are initialized with a value of unburnt,
Y(i, j), Bo(i, j) = 1. We “ignite” a fire by assigning a selec-
tion of cells to the burning stage, such that By(i, j) = 2 for
those cells. With each time step in the loop, each cell that is
currently burning may cause a neighboring cell to transition
into the burning stage by a factor that is based on wind di-
rection and speed. With wind speed W = 0 m/s, the factor
governing any of the eight neighboring cells transitioning to
burning is 0.5. With a wind speed greater than 0O, the factor
increases by 0.4 x W/5 in the direction of the wind, and
0.3 x W/5 for the neighboring cells to the wind direction,
and reduces by 0.4 x W/5 in the opposite direction from the
wind and 0.3 x W/5 for the neighboring cells in opposition
to the wind direction. The cells perpendicular to the wind
direction remain with a transition factor of 0.5. The 5 in the
denominator for each of these values minimizes the effect of
the wind for slower wind speeds below 5 m per second. For
instance, if we set the wind direction to NW (meaning the
wind is coming from the NW) and the wind speed to 5, then
we have the following factor matrix for the neighboring cells
of a particular cell B, (a, b) transitioning into the burning state:

if By(a,b)=2
(a—1,b+1) (a,b+1) (a+1,b+1)
F| (a—-1,b) (a, b) (a+1,b)
a@a—1,b—1) (a,b—1) (a+1,b—1)
0.1 02 05
—102 0 o08]. (10)
05 08 09
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The new values of the cells are then calculated as the sum
of the originally assigned heat coefficient value described in
the first paragraph with these factors above, and then we use
the ceiling function to define the current state of cell (i, j) as
1 (unburnt) or 2 (burning):

B, (i, j) = [k(i, j) + F (. j)1. (1)

If the cell value is unburnt (B, (i, j) = 1), then the cell remains
available for this transition in subsequent time steps. If the
cell is burning, (B,(i, j) = 2), then the cell will transition to 0
in the next time step and remain at O from there on. Thus, in
each time step, each cell will achieve one of only three distinct
states: 0,1, or 2. Once a cell has transitioned into burning, or
state 2, the next time step transitions the cell into the burnt
state, 0. Therefore, no cell remains burning for longer than
one time step. The simulation ends when no cell values are
equal to 2 or V(i, j), B, (i, j) € {0, 1}.

For comparison to SERF, Figs. 18(a)—18(d) shows different
time steps from that basic model using a 300 x 300 grid with
winds from the north at 5 mph, and Figs. 18(e)—18(h) showing
the same domain with no winds.

From these figures, the fireline clearly defines the next
movements through the field of view, and the presence of
heavy winds adjusts the fireline significantly. With no winds,
this basic CA model represents the elliptical shape of the
fireline with concentric contours as portrayed in the other
papers [5,29-36,46]. The main difference between this type
of CA model and SERF is that the underlying CML model
gives us more information regarding parameters other than
the location of the fireline. SERF offers an opportunity to
potentially learn about how the heat transfers from one area to
the next and includes the time delay between when the fireline
crosses through the area and when the fire is completed. These
are important features of a prescribed fire to study in order to
mitigate the potential for firebrands to be blown outside of the
burn zone.

V. CONCLUSION

This paper describes and analyzes a SERF, combining a
CA and CML framework, modeling radiant temperatures with
data-driven parameters for fine-scale prescribed fire spread.
Using a data set created in the New Jersey Pine Barrens over
the course of 5 years, we built a cellular automata model using
probability distributions for several parameters derived from
the data set. The use of the data set is unique to SERF and
helps to validate the accuracy of the model and simulations.

SERF uses a five-stage approach to how the radiant tem-
perature changes through the life cycle of a given fuel cell.
Stage one, stable, occurs before any temperature changes in
the cell, and stage two represents the warming of each cell
based on the radiant temperature of the surrounding eight
cells. After ignition, stage three represents the rising of the
radiant heat in the cell and stage four represents the falling
of the heat after the fuel has been mostly consumed. The
final stage represents the cooling off of the cell back to base
temperature. This approach offers the opportunity to simplify
the physical processes of fire behavior to save computational
time while maintaining the relationships between stages of the
burning process.

The significant contribution of this work is a data-driven
cellular automata model supported by a coupled map lattice
model that can accurately represent the speed of the fire as
it moves through the area. Moreover, it can accurately cap-
ture the unburnt proportion of land in the SERF simulations,
the presence of lingering embers, the heat coefficients of the
fuel on the ground, and the probability of transition between
stages.

While SERF has shown excellent performance in reproduc-
ing many of the features of prescribed fires, and it is one of the
first nonlaboratory data-driven cellular automata models for
prescribed fires, some parts of the model still need refinement.
In future work, we plan to explore a variety of modifications
to the model to increase its accuracy, as it under-performed in
some critical parameter settings. We will perform a more ad-
vanced analysis of the SERF simulation outputs to assess how
various parameters affect the model’s accuracy. Furthermore,
we will study the statistical properties of the spatial features
of fire.
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APPENDIX: OUTPUT IMAGES

Figures for each of the five ignition types are listed below.
Figure 19 shows stills of the SERF simulations with a side
ignition and Fig. 20 shows the side ignition from the data set.
Figure 21 shows the SERF corner ignition and Fig. 22 shows
the corner ignition from the data set. Figure 23 represents
the chunk ignition from SERF with Fig. 24 showing the data
set chunk ignition. Figures 25 and 26 show the double chunk
ignition from SERF and the data set, respectively. Figure 27
shows the spotting ignition from the SERF simulations. Each
set of images from the data represents six particular time steps
from the fire data. Each set of images from the simulations

240

(@) Timestep 30

180

(d) Tifhestep 400 120

0 40 80 40 80 40 80

FIG. 19. Sideignition: Simulation 4; (a) time step 5; (b) time step
200; (c) time step 400; (d) time step 700; (e) time step 1000; and (f)
time step 1300.
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represents six time steps from the simulation. Of note within
these images is the similarity between the data set and sim-
ulation ignition types. Although the timing of each varied
greatly, looking at the images clearly shows the successful
representation of this data set through this model.

(c) Timestep 950

(a) Timestep 200 (b) Timestep 221

300

240

40 80

FIG. 20. Side ignition: Dataset Fire 120; (a) time step 200;
(b) time step 220; (c) time step 250; (d) time step 300; (e) time step
400; and(f) time step 500.
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NN
300

240
180
120

60
80

FIG. 21. Corner ignition: Simulation 25; (a) time step 75;
(b) time step 150; (c) time step 300; (d) time step 500; (e) time step
900; and (f) time step 1300.
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FIG. 22. Corner ignition: Dataset Fire 25; (a) time step 65;
(b) time step 80; (c) time step 100; (d) time step 150; (e) time step
180; and (f) time step 250.
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FIG. 23. Chunk ignition: Simulation 45; (a) time step 30;
(b) time step 70; (c) time step 200; (d) time step 300; (e) time step
500; and (f) time step 700.
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FIG. 24. Chunk ignition: Dataset Fire 145; (a) time step 5;
(b) time step 15; (c) time step 30; (d) time step 60; (e) time step
100; and (f) time step 300.
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FIG. 25. Double Chunk ignition: Simulation 90; (a) time step 30;
(b) time step 50; (c) time step 90; (d) time step 200; (e) time step 500;
and (f) time step 800.
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FIG. 26. Double Chunk ignition: Dataset Fire 3; (a) time step 5;
(b) time step 20; (c) time step 40; (d) time step 70; (e) time step 100;
and (f) time step 160.
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FIG. 27. Spotting ignition: Simulation 63; (a) time step 10;
(b) time step 20; (c) time step 50; (d) time step 100; (e) time step
300; and (f) time step 600.
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