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The critical behavior of the Ising model on a fractal lattice, which has the Hausdorff dimension log4 12 ≈
1.792, is investigated using a modified higher-order tensor renormalization group algorithm supplemented
with automatic differentiation to compute relevant derivatives efficiently and accurately. The complete set
of critical exponents characteristic of a second-order phase transition was obtained. Correlations near the
critical temperature were analyzed through two impurity tensors inserted into the system, which allowed us
to obtain the correlation lengths and calculate the critical exponent ν. The critical exponent α was found to
be negative, consistent with the observation that the specific heat does not diverge at the critical temperature.
The extracted exponents satisfy the known relations given by various scaling assumptions within reasonable
accuracy. Perhaps most interestingly, the hyperscaling relation, which contains the spatial dimension, is satisfied
very well, assuming the Hausdorff dimension takes the place of the spatial dimension. Moreover, using automatic
differentiation, we have extracted four critical exponents (α, β, γ , and δ) globally by differentiating the free
energy. Surprisingly, the global exponents differ from those obtained locally by the technique of the impurity
tensors; however, the scaling relations remain satisfied even in the case of the global exponents.
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I. INTRODUCTION

The phase transition and critical phenomena are prominent
topics in condensed matter physics [1]. The scaling behavior
of physical quantities, such as the magnetic susceptibility
and specific heat, is characterized by the critical exponents
when approaching the critical temperature [2]. Various scaling
assumptions give the relations between the critical exponents.
One of such relations derived from the hyperscaling hypoth-
esis, which is expected to be valid for d � 4, involves the
system dimension d . An intriguing question is the validity
of the hyperscaling hypothesis in the case of noninteger di-
mensional systems such as fractals, where critical phenomena
remain understudied.

To some extent, the hyperscaling relation expressed in
terms of the ratios of the critical exponents β/ν and γ /ν has
already been considered in the literature,

deff = 2
β

ν
+ γ

ν
, (1)

where deff is the effective dimension that controls hyper-
scaling. Nevertheless, the question of whether the effective
dimension deff is the same as the Hausdorff dimension dH

remains open for debate.
The validity of the hyperscaling relation was mostly

tested in the case of Sierpiński carpets. The Ising model
on Sierpinski carpets SC(3, 1) of Hausdorff dimension dH =
ln 8/ ln 3 ≈ 1.8927 and SC(4, 2) of Hausdorff dimension
dH = ln 12/ ln 4 ≈ 1.7924 was studied using Monte Carlo in
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conjunction with the finite-size scaling method in Ref. [3].
The existence of an order-disorder transition at finite tem-
perature was clearly shown in both cases, and the critical
exponents, including their errors, were estimated. In this case,
the hyperscaling relation holds if one assumes that the ef-
fective dimension is the Hausdorff dimension. In case of
SC(3, 1), the exponent α, for which the hyperscaling rela-
tion reads νdH = 2 − α, was found to be negative. Consistent
with the previous conclusions is a newer Monte Carlo study
with finite-size scaling analysis in Ref. [4] where the authors
studied four different Sierpinski carpets with the Hausdorff
dimension dH between 1.9746 and 1.7227, namely SC(5, 1),
SC(3, 1), SC(4, 2), and SC(5, 3). In the case of SC(3,1), the
authors found deff to be only slightly smaller than dH. In
Ref. [5], the short-time dynamic evolution of an Ising model
on Sierpinski carpet SC(3, 1) was studied using the Monte
Carlo method. The authors concluded that the effective di-
mension for the second-order phase transition is noticeably
smaller than the Hausdorff dimension deff ∼ 1.77 < dH. An-
other short-time critical dynamic scaling study in the case of
various infinitely ramified fractals with Hausdorff dimension
within the interval 1.67 � dH � 1.98 can be found in Ref. [6].
Their results are consistent with the convergence of the lower-
critical dimension toward d = 1 for fractal substrates and
suggest that the Hausdorff dimension may differ from the ef-
fective dimension. The values for the different sets of fractals
depart from deff = dH for dH � 1.85. However, due to large
error bars, the authors cannot state a definitive conclusion on
the actual dependence of deff on dH.

The Ising model on a fractal lattice with Hausdorff di-
mension dH = ln 12/ ln 4 ≈ 1.792 [which is different from
SC(4, 2) of the same dH] depicted in Fig. 1 was already
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FIG. 1. The layout of the fractal lattice after three extension
steps, n = 3. Tiny circles represent the two-state Ising spins. The
horizontal and vertical lines represent the spin-spin interactions. The
number of sites grows as 12n with the number of extension steps n,
whereas the number of outgoing bonds grows as 2n+2.

probed by two different adaptations of the higher-order tensor
renormalization group (HOTRG, introduced in Ref. [7]): (1)
genuine fractal representation (with no structure filling the
gaps) [8,9] and (2) J1-J2 (“tunable”) fractal constructed on a
square-lattice frame with two types of couplings, J1 and J2

[10]. Geometrically, these two methods constitute the same
fractal when (J1, J2) = (1, 0) albeit represented differently.
Two critical exponents, β and δ, were extracted in both cases
using the technique of local impurity tensors. There is a slight
discrepancy between the values of the exponents between the
two methods, which can be attributed to the difference in the
details of the calculation of the local magnetization rather than
the model representation. The magnetization in (1) is calcu-
lated on a single site located far from the system’s external
boundary, whereas in (2), a partial average over central sites
is employed. This discrepancy is interesting since it indicates
that there is a positional dependency, at least in the case of
local magnetization. Another interesting finding is that the
specific heat does not exhibit singular behavior around its
maximum; however, a sharp peak was observed in a numerical
derivative of the specific heat at the critical temperature. The
question about the value of the critical exponent α associated
with the specific heat has remained open until now.

The position dependence of local thermodynamic func-
tions was studied in Ref. [11], where HOTRG was adapted to
the classical Ising model on SC(3, 1). The critical temperature
Tc was found to be positionally independent, whereas the
(local) critical exponent β was found to vary by two orders
of magnitude depending on lattice location.

Let us mention that the Monte Carlo studies achieve only
a relatively modest maximal value of the segmentation steps

k � 8. In contrast, in the case of the HOTRG method used
in the study of SC(3, 1) in Ref. [11], numerical convergence
of the physical observables is achieved at k ∼ 35 iterative
extensions (generations) of the system.

In Ref. [12], the quantum phase transition of the transverse-
field Ising model on the Sierpiński fractal with the Hausdorff
dimension log2 3 ≈ 1.585 was studied by a modified HOTRG
method. Ground-state energy and order parameter were cal-
culated and analyzed. The system was found to exhibit a
second-order phase transition. From the order parameter, the
critical exponents β and δ were estimated.

Recently it was shown that the higher-order derivatives for
the tensor network algorithms could be calculated accurately
and efficiently using the technique of automatic differentia-
tion [13,14], which emerged from deep learning. Automatic
differentiation is based on the concept of the computation
graph, which is a directed acyclic graph composed of ele-
mentary computation steps. This technology propagates the
gradients through the whole computation process with ma-
chine precision. In the case of the tensor network algorithms,
an essential technical ingredient is to implement numerically
stable differentiation through linear algebra operations such
as the singular value decomposition (SVD). Applying the
automatic differentiation on our tensor network fractal, we
can now calculate specific heat very accurately as the first
derivative of the bond energy with respect to temperature
or as a second derivative of the free energy with respect to
temperature without introducing numerical errors due to the
finite step as in the case of numerical derivatives. With such
an accurate method to obtain the specific heat, it should be
possible to extract the associated critical exponent α finally.
Similarly, the magnetic susceptibility can now be calculated
as a first derivative of the spontaneous magnetization with
respect to the external field or as a second derivative of the free
energy with respect to the external field. Having calculated the
magnetic susceptibility, one can extract the critical exponent
γ . Finally, let us emphasize, that differentiation of the free
energy would yield global thermodynamic quantities, which
were not calculated before.

A question of high interest is to numerically estimate the
critical exponent ν, which appears in the hyperscaling relation
together with the spatial dimension d . The critical exponent
ν can be extracted from the correlation length, which can
be obtained from the correlation function. The method for
calculation of the correlation function using the tensor renor-
malization group (TRG) method was introduced in Ref. [15].
This method was implemented and tested in the case of the
square lattice Ising model in Ref. [16]. A similar approach is
conceivable in the case of the HOTRG method; therefore, it
can be used on the fractal lattice under study.

In this study, we have extracted the remaining four criti-
cal exponents from our HOTRG calculations with the local
impurity tensors by calculating the correlation function for
obtaining the exponents ν and η and by augmenting our com-
putations with the automatic differentiation for α and γ . The
critical exponent α was found to be negative (α ≈ −0.87),
which is consistent with the observation that the specific heat
does not diverge at the critical temperature. The exponents
we extracted satisfy the known relations given by various
scaling assumptions with reasonable accuracy. Perhaps most
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interestingly, the hyperscaling relation, which contains the
spatial dimension, is satisfied very well, assuming the Haus-
dorff dimension takes the place of the spatial dimension.
Moreover, using automatic differentiation, we have extracted
four critical exponents (α, β, γ , and δ) globally by differen-
tiating the free energy. Surprisingly, the global exponents are
very different from those obtained locally by the technique
of the impurity tensors (for example, the global exponent β

is more than five times larger than the local β); however, the
scaling relations remain satisfied even in the case of the global
exponents.

II. MODEL REPRESENTATION

We consider the nearest-neighbors fractal-lattice Ising
model with the Hamiltonian

H = −J
∑
〈i j〉

σiσ j − h
∑

i

σi, (2)

where J > 0 is the ferromagnetic coupling, and h is the uni-
form magnetic field. At each site i, the Ising variable σi takes
only two values, +1 or −1. For brevity, we set J = 1 and
h = 0 in the following. The partition function of the Ising
model defined on the fractal lattice can be expressed in terms
of tensor network states defined by four types of local tensors
represented by T , X , Y , and Q,

(3)

(4)

(5)

(6)

where W is a 2 × 2 matrix determined by the bond weight
factorization. While the choice for W is arbitrary to a certain
degree, here we choose an asymmetric factorization

W =
(√

cosh 1/T
√

sinh 1/T√
cosh 1/T −√

sinh 1/T

)
, (7)

where T is the temperature. Notice that when two local tensors
are contracted via nonphysical (auxiliary) index x, the bond
weight WB(σi, σ j ) = exp (σiσ j/T ) is correctly re-expressed

WB(σi, σ j ) =
1∑

x=0

WξixWξ j x, (8)

where the first matrix index ξi = (1 − σi )/2 takes values of 0
and 1 when σi = 1 and σi = −1, respectively.

The coarse-graining renormalization procedure introduced
in Refs. [8,9] is used to calculate the partition function. We
start counting the iteration steps from zero; therefore, we de-
note the initial tensors in Eqs. (3)–(6) as T (n=0) = T , X (n=0) =

X , Y (n=0) = Y , and Q(n=0) = Q. At each iterative step n, the
new tensors T (n+1), X (n+1), Y (n+1), and Q(n+1) are created
from the previous-iteration tensors T (n), X (n), Y (n), and Q(n),
according to the following extension relations:

(9)

(10)

(11)

(12)

The partition function Zn(T ) of the system after n extensions
is evaluated as

Zn(T ) =
∑

i j

T (n)
ii j j , (13)

where we impose the periodic boundary conditions.

A. Renormalization transformation

At each iteration step, the bond dimension increases
quadratically. Therefore, a renormalization transformation
is employed to limit the degrees of freedom kept at
each tensor index. We update the local tensors by insert-
ing horizontal (depicted by red dashed lines) and vertical
projectors (depicted by blue dashed lines) into the extension
relations

(14)
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(15)

(16)

(17)

The horizontal projector UX is obtained from the higher-order
singular value decomposition [17] applied to

M (n)
xx′yy′ =

∑
s

T (n)
x1x′

1ysT
(n)

x2x′
2sy′ , (18)

where x = x1 ⊗ x2 and x′ = x′
1 ⊗ x′

2. Alternatively, we define
the matrix unfolding M ′

x, (x′yy′ ) = M (n)
xx′yy′ by regrouping the in-

dices and then we perform an SVD

M ′ = UX ωXV †
X , (19)

where UX and V †
X are unitary matrices, and ωX is a matrix

with the singular values as its diagonal entries ordered in
decreasing order by convention. The second index dimension
of UX is truncated down to the D, where D is the dimension
threshold of the truncated tensor dimension. Next, we will
obtain the vertical projector UY . To do that, we first prepare
a truncated tensor

M̃xx′yy′ =
∑

i j

(UX )ixM (n)
i jyy′ (UX ) jx′ . (20)

By contracting two tensors M̃ along the x axis, we define

Nxx′yy′ =
∑

s

M̃xsy1y′
1
M̃sx′y2y′

2
, (21)

where y = y1 ⊗ y2 and y′ = y′
1 ⊗ y′

2. We finally obtain the
vertical projector UY when applying the SVD to the matrix
unfolding N ′

y, (y′xx′ ) = Nxx′yy′

N ′ = UY ωY V †
Y . (22)

Last, the second index dimension of UY is truncated down to
the D.

III. NUMERICAL RESULTS

To study the critical behavior of the fractal Ising model in
Fig. 1, we analyze the physical quantities of interest obtained
locally by the technique of impurity tensor in Sec. III A and
globally by differentiating the free energy per site in Sec. III C.

The technique of impurity tensors is also used for obtaining
the two-point correlation function in Sec. III B.

The impurity tensor is a particular local tensor containing a
local observable such as the Ising variable σi at site i. Since the
fractal lattice is a nonhomogeneous system, one might expect
a position dependence of the observation. The site’s location
i within the system is determined by the series of extensions
of the impurity tensor. In our calculations, we aim to keep the
observation site i far from the “outer” boundary of the system.
More specifically, at each extension step, we insert a single
impurity tensor alternatively to the upper left and the lower
right site in the four sites in the center of the 12-cluster defined
by Eq. (9).

The complete information on the global behavior of the
system is captured by the free energy

Fn = −kBT ln Zn. (23)

where kB is the Boltzmann constant, which we set to one in
the calculations kB = 1. Numerically, the convergence (i.e.,
the thermodynamic limit) of the free energy per site

f = lim
n→∞

Fn

Nn
, (24)

for the fractal lattice under study is already achieved for
n ∼ 20 as the number of sites grows exponentially as Nn =
12n.

For convenience, let us list the most commonly used ther-
modynamic functions derived from f . The first derivative of
the free energy with respect to temperature T results in the
internal energy,

u = −T 2 ∂ ( f /T )

∂T
. (25)

The consequent temperature derivative of the internal energy
yields the specific heat,

c = ∂u

∂T
= −T

∂2 f

∂T 2
, (26)

which has a nonanalytic behavior at a phase transition. Anal-
ogously, the first derivative of the free energy with respect to
an external field h results in the spontaneous magnetization,

m = − ∂ f (h, T )

∂h

∣∣∣∣
h→0

, (27)

and the second derivative of the free energy specifies the
magnetic susceptibility,

χ = ∂m

∂h

∣∣∣∣
h→0

. (28)

The application of automatic differentiation to a tensor
network program for a fractal lattice is conceptually identical
to the case of a square lattice as developed in Ref. [13]. In both
cases, the computation process, including the tensor network
contractions, is represented as a directed acyclic graph, com-
monly referred to as a computation graph. In their pioneering
work, which is reported in Ref. [13], the authors showcase
the effectiveness of the differentiable programming tensor
network approach through two applications: (1) computation
of higher-order derivatives of the free energy and (2) gradient-
based optimization of iPEPS. The first application is relevant
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to our study as our focus is on obtaining derivatives of the
partition function. The primary technical distinction between
our study and the techniques presented in Ref. [13] lies in
our usage of the HOTRG algorithm, specifically adapted for
a fractal lattice, whereas Ref. [13] employs TRG on a square
lattice. The use of HOTRG is deemed more suitable for the
fractal lattice under investigation. However, both HOTRG and
TRG increase the lattice size exponentially, utilizing similar
basic operations, including tensor index permutation, trun-
cated singular value decomposition, and tensor contractions.
Like Ref. [13], we adopt the reverse-mode automatic differ-
entiation technique and incorporate the temperature T as an
input parameter. Furthermore, we include the external field
h as another input parameter. To enhance numerical stability,
we employ a custom linear algebra automatic differentiation
library for truncated SVD, as described in Ref. [13].

A. Local impurities

1. Exponent α

The specific heat c(T ) does not diverge at the critical tem-
perature Tc as shown in Refs. [8,10]. Instead, c(T ) exhibits
a weak nonanalytic behavior at T ≈ Tc with its broadened
maximum shifted to T > Tc. However, a numerical derivative
of c(T ) with respect to temperature has a sharp peak at Tc, i.e.,
Tc = maxT {dc(T )/dT }.

Here the specific heat c was obtained by automatic differ-
entiation from the (local) bond energy c = ∂u/∂T , where u is
calculated using impurity tensor which contains a single bond
spin-spin correlation term σiσ j of two neighboring sites i and j
located somewhere far from the external surface of the fractal
lattice. Fitting the data points in the vicinity of Tc (as estimated
from the spontaneous magnetization) to the form

c(T ) ∝ |T − Tc|−α, (29)

we obtained the value of the critical exponent α ≈ −0.87
and Tc ≈ 1.3171715 using the bond dimension D = 24, see
Fig. 2. The relative difference in the estimate of α between the
numerical result with D = 16 and D = 24 is less than 0.1%.
The precision of the estimate of the exponent α can be also
judged from a tiny deviation from the linear dependence (the
dashed lines) in |c(T ) − c(Tc)|−1/α near Tc, see Fig. 3; setting
the value of the exponent α slightly below or slightly above
the value α = −0.87 results in a visibly nonlinear behavior of
|c(T ) − c(Tc)|−1/α near Tc.

2. Exponent β

Local magnetization m was already calculated using the
technique of impurity tensor inserted somewhere far from the
external surface on the fractal lattice [8,9]. Fitting the data
points at T � Tc according to

m(T ) ∝ (Tc − T )β, (30)

β was found to be β ≈ 0.01388 and Tc ≈ 1.31717 with
D = 32 in Ref. [9]. Our new estimate, obtained by fitting the
magnetization calculated very close to Tc with a very fine
step (T = 5 × 10−6), is β ≈ 0.01383 and Tc = 1.3171724
with D = 24. The numerical results do not change much when
increasing the bond dimension above D = 16; we checked the

FIG. 2. Specific heat c(T ) as a function of temperature calculated
from the (local) bond energy u in the close vicinity of Tc. Specific
heat c was obtained by automatic differentiation as a first derivative
of u with respect to the temperature T . Data points with the bond
dimension D = 16 and D = 24 are depicted as smaller blue circles
and bigger black circles, respectively, whereas the fitting curve for
D = 24 is depicted as a red line. Fitting yielded α ≈ −0.87 and Tc ≈
1.3171715 (with D = 24). A vertical dotted line indicates the critical
temperature Tc.

relative difference in the estimate of β between D = 16 and
D = 24 is less than 0.1%.

3. Exponent γ

Magnetic susceptibility χ was obtained by automatic dif-
ferentiation as a derivative of local magnetization m with
respect to the global field h, i.e., χ = ∂m/∂h. Fitting the data

FIG. 3. The detail view of the linear dependence of |c(T ) −
c(Tc )|−1/α with respect to the temperature near Tc, where c is the
local specific heat. Three values of α are presented: (1) α = −0.88
(smaller than our estimate of α, shown as squares), (2) α = −0.87
(corresponding to our estimate, show as circles), and (3) α = −0.86
(larger than our estimate of α, show as diamonds). Data points with
the bond dimension D = 16 and D = 24 are depicted as smaller blue
and bigger black shapes, respectively, whereas the fitting curve for
D = 24 is depicted as a red line.

034131-5



JOZEF GENZOR PHYSICAL REVIEW E 107, 034131 (2023)

FIG. 4. Magnetic susceptibility χ (T ) as a function of temper-
ature T in the vicinity of the critical temperature Tc. Magnetic
susceptibility χ was obtained by automatic differentiation as the first
derivative of (local) magnetization m with respect to the global field
h. Data points with the bond dimension D = 16 and D = 24 are
depicted as smaller blue circles and bigger black circles, respectively,
whereas the fitting curve for D = 24 is depicted as a red line. Inset:
The linear dependence of χ (T )−1/γ above Tc.

points (with D = 24) around Tc according to

χ (T ) ∝ |T − Tc|−γ , (31)

we obtained Tc ≈ 1.3171723 and slightly different values of
γ below and above Tc, namely γ − ≈ 2.797 and γ + ≈ 2.826,
respectively. We consider γ + to be more accurate than γ −
since the power-law behavior appears to be more reliable
above Tc. Thus, we assume γ = γ +. The relative difference in
γ + between D = 16 and D = 24 is less than 0.1%, whereas
the relative difference in γ − between D = 16 and D = 24 is
around 0.5%. Magnetic susceptibility χ with D = 16 and D =
24 is presented in Fig. 4, where the inset clearly shows the
linear dependence of χ (T )−1/γ when T � Tc. Four data points
very close to Tc were excluded from the numerical analysis
since there is a visible difference in the magnetic susceptibility
between D = 16 and D = 24, see Fig. 4 (namely we excluded
T = {1.317165, 1.317170, 1.317175, 1.317180}).

4. Exponent δ

The magnetic field response at the critical temperature
T = Tc

m(h, T = Tc) ∝ h1/δ as h → 0, (32)

was analyzed in Ref. [9], where the associated critical expo-
nent δ was found to be δ ≈ 206 with a relatively low value
of the bond dimension D = 12. To determine the critical
exponent δ more accurately, we reproduced the previous cal-
culations of the local magnetization as a function of (small)
global magnetic field h (2 × 10−8 � h � 5 × 10−7) at the
critical point T = Tc = 1.3171724 using larger bond dimen-
sion. Our new and much more reliable estimate is δ ≈ 204.93
with D = 24; the difference in δ between D = 16 and D = 24
was negligible.

B. Two-point correlation function and critical exponents ν and η

Here we calculate the correlation between two (equivalent)
spin variables s0 and sr as a function of the distance r

G(r) = 〈s0sr〉, (33)

where the distance r grows exponentially as r =
{40, 41, 42, 43, . . . , 4n} with the number of the iteration steps
n due to the fixed growth process of the fractal lattice. We
calculate the correlation G(r) using the technique of impurity
tensor in three steps. (1) We start with the single-point
impurity (the same as when calculating local magnetization),
which is extended up to the required size. (2) Next, we merge
two single-point impurities into one two-point impurity.
The distance r is given by the location of the spin variables
s0 and sr at the merge step. (3) Finally, we simply extend
the two-point impurity tensor until the correlation G(r)
converges numerically. Our technique is an adaptation of
the technique based on TRG proposed in Ref. [15] for
translationally invariant systems. The numerical calculations
of the correlation function for the two-dimensional classical
Ising model using TRG were performed in Ref. [16].

It is expected that near the critical temperature T ≈ Tc, the
correlation function

�(r) = 〈s0sr〉 − 〈s0〉〈sr〉 (34)

decays exponentially with the distance r (for r → ∞)

�(r) ∝ r−E e−r/ξ , (35)

where ξ is the correlation length and E is some number which
is equal to (d − 2 + η) at the critical temperature T = Tc (d
being the spatial dimension and η is the critical exponent as-
sociated with the correlation function). Therefore, we assume
the fitting function to be of the form

G(r) = C2 + A

rE
exp(−r/ξ ), (36)

where A, C, E , and ξ are the fitting parameters we want to
estimate at each temperature independently. Comparing the
last four equations, one can see that C is the magnetization,
and this observation is indeed consistent with our numerical
results.

The correlation G(r) as a function of the distance r is pre-
sented in Fig. 5 in the case of three temperature regimes: (1)
below Tc at T = 1.317, (2) very close to the critical tempera-
ture Tc at T = 1.31718, and (3) above Tc at T = 1.31736. In
our numerical calculations of G(r), the bond dimension D was
implemented adaptively where the normalized singular values
smaller than a certain threshold were discarded (we used
as the threshold ε = 10−14), which significantly reduced the
computational time; however, the results are indistinguishable
from faithful fixed-bond dimension calculations. The maximal
(unbounded) adaptive dimension achieved was D = 23, which
we denote as Dmax. To verify the convergence with respect to
the bond dimension cut, we compare the data points obtained
for Dmax and D = 16 in Fig. 5, which we depict as black
and blue symbols, respectively. The fitting curves according
to Eq. (36) were obtained with Dmax and are depicted by red
lines. The values of the correlation lengths ξ for T = 1.31718
and T = 1.31736 are indicated by full and dashed line, re-
spectively. Data points for small values of r (i.e., r < 1024)
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FIG. 5. The correlation G(r) as a function of distance r. The
correlation G(r) for three different temperatures is shown: (1) T =
1.317 (below Tc), (2) T = 1.31718 (very close to Tc), and (3) T =
1.31736 (above Tc). Here, the bond dimension was implemented
adaptively where the normalized singular values smaller than 10−14

were discarded. Dmax denotes the maximal (unbounded) adaptive
dimension (in practice Dmax � 23). We present data points calculated
with Dmax and D = 16, which we depict as black and blue symbols,
respectively. The fitting curves Eq. (36) were obtained for Dmax and
are depicted by red lines. The values of the correlation lengths ξ for
T = 1.31718 and T = 1.31736 are indicated by full and dashed line,
respectively. The numerical analysis did not include data points for
r < 1024.

were not included in the numerical analysis as we care for
large values of r only (r → ∞). For concreteness, as for this
particular example, we obtained the following values with the
bond dimension Dmax: (1) E ≈ 0.369, ξ ≈ 3.61 × 104, C ≈
0.91 for T = 1.31700, (2) E ≈ 0.02, ξ ≈ 1.237 × 108, C ≈
0.03 for T = 1.31718, and (3) E ≈ 0.024, ξ ≈ 7.173 × 105,
C ≈ 0.016 for T = 1.31736.

1. Exponent ν

The critical exponent ν and the critical temperature Tc can
be obtained by fitting the correlation length ξ (T ) as a function
of temperature in the vicinity of Tc according to (see Fig. 6)

ξ (T ) ∝ |T − Tc|−ν . (37)

The data points ξ (T ) were obtained by fitting the correlation
G(r) for r � 1024 according to the Eq. (36) for each tem-
perature T separately. The correlation length ξ (T ) below Tc

exhibits a slightly unstable scaling behavior; therefore, we
will omit the numerical analysis below Tc here. The fitting
curve obtained for Dmax is depicted by a red line in Fig. 6. The
resulting value of ν was found to be approximately ν ≈ 1.60
and Tc ≈ 1.3171723 (both values being independent of D).
The precision of the estimate of ν can be assessed from a
tiny deviation from the linear dependence (the dashed lines)
in ξ (T )−1/ν near Tc, see inset of Fig. 6; setting the value of the
exponent ν slightly below or slightly above the value ν = 1.60
results in a visibly nonlinear behavior.

FIG. 6. The correlation length ξ as a function of temperature T
above Tc. The data points were obtained by fitting the correlation
function G(r) for r � 1024 at each temperature T separately. The
fitting curve was obtained for Dmax and is depicted by a red line.
The resulting value of exponent ν was found to be ν ≈ 1.60 and
Tc ≈ 1.3171723. Inset: Critical scaling of ξ (T )ν

−1
above the critical

temperature Tc.

2. Exponent η

Let us now turn our attention to the exponent E , which
appears in the Eqs. (35) and (36). At the critical temperature
Tc, we know that E can be expressed as a sum of the spatial
dimension d and the critical exponent η, i.e., E = d − 2 + η.
Of course, calculating G(r) directly at Tc and then estimating
the value of E (Tc) would be heavily affected by the trunca-
tion error. Luckily, it seems that E (T ) is nearly stable for
T � Tc taking the value E ≈ 0.02, see Fig. 7. We consider
as our effective estimate of E (Tc) to be the first point above
true Tc where E [D=16](T ) ≈ E (T )[D=Dmax] (which is found
to be around T = 1.317175). Below Tc, the value of E (T )
changes more rapidly; however, it seems to decay to the value

FIG. 7. A detailed view of the exponent E (T ) and the correlation
length ξ (T ) as functions of temperature T in the vicinity of Tc. The
correlation length ξ (T ) is presented here to indicate the location of
the critical temperature Tc. The value of the exponent E (T ) seems to
be nearly constant (indicated by a dotted horizontal line) in the right
vicinity of Tc, where we observed E (T ) ≈ 0.02.
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FIG. 8. A detailed view of the global specific heat c(T ) in the
vicinity of the critical temperature Tc. Global specific heat c(T ) is
calculated as a second derivative of the free energy per site f (T )
with respect to the temperature by the automatic differentiation. Data
points for the bond dimension D = 24 are depicted as big black cir-
cles, whereas for D = 16 as smaller blue circles. The fitting curve is
obtained for D = 24 and is shown as a thick red line. For D = 24, the
fitting yielded α = −0.824 and Tc = 1.3171725. A vertical dotted
line indicates the location of the critical temperature Tc.

E ≈ 0.02 observed above Tc. As one can expect, there are
significant differences in the estimates of ξ and E between
D = 16 and Dmax at T ≈ Tc due to the finite bond dimension
cut, see Fig. 7; however, these differences become negligible
when moving away from Tc by a tiny step.

C. Global behavior

1. Exponent α

The global specific heat c was obtained from the free
energy per site f by automatic differentiation as a sec-
ond derivative with respect to the temperature, i.e., c =
−T ∂2 f /∂T 2 (while keeping the magnetic field constant h =
0). Fitting the data points in the vicinity of the critical temper-
ature Tc, we obtained the value of the global critical exponent
α ≈ −0.824 and Tc ≈ 1.3171725 with D = 24, see Fig. 8. As
there is very good agreement between D = 16 and D = 24, no
data points were excluded from the numerical analysis. The
relative difference in the estimate of α between D = 16 and
D = 24 is even smaller than in the case of the local exponent
α extracted from the local impurities. The precision of the
estimate of the exponent α can be also assessed from a tiny
deviation from the linear dependence (the dashed lines) in
|c(T ) − c(Tc)|−1/α near Tc, see Fig. 9.

2. Exponent β

The global magnetization m was calculated by the auto-
matic differentiation as a first derivative of the free energy
per site f (h, T ) with respect to the external field h (at exactly
h = 0), i.e., m = −∂ f (h, T )/∂h. The numerical analysis was
performed up to the temperature T � 1.31717 (including)
since the magnetization for D = 16 and D = 24 is nearly in-
distinguishable up to that point. For D = 24, the fitting yields

FIG. 9. The detail view of the linear dependence of |c(T ) −
c(Tc )|−1/α with respect to the temperature near Tc, where c is the
global specific heat. Three values of α are compared: (1) α = −0.834
(smaller than our estimate of α, shown as squares), (2) α = −0.824
(corresponding to our estimate, shown as circles), and (3) α =
−0.814 (larger than our estimate of α, shown as diamonds). Data
points with the bond dimension D = 16 and D = 24 are depicted as
smaller blue and bigger black shapes, respectively, whereas the fitting
curve for D = 24 is depicted as a red line.

β = 0.0629 and Tc = 1.3171724, see Fig. 10. The numerical
results do not change much when increasing the bond di-
mension above D = 16; the relative difference in the estimate
of β between D = 16 and D = 24 is negligible. The linear
dependence of m(T )β

−1
below the critical temperature Tc is

shown in the inset of Fig. 10.

FIG. 10. A detailed view of the global spontaneous magnetiza-
tion per site m(T ) in the vicinity of the critical temperature Tc. The
global spontaneous magnetization per site m(T ) is calculated as a
first derivative of the free energy f (h, T ) per site with respect to
the external field h using the automatic differentiation. The data
points for the bond dimension D = 24 and D = 16 are depicted as
big black circles and smaller blue circles, respectively. The fitting
curve is obtained for D = 24 and is shown as a thick red line here.
For D = 24, the fitting yields β = 0.0629 and Tc = 1.3171724. Inset:
Critical scaling of m(T )β

−1
below the critical temperature Tc.
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FIG. 11. A detailed view of the global magnetic susceptibility
per site χ (T ). The global magnetic susceptibility per site χ (T ) is
calculated as a second derivative of the free energy per site f (h, T )
with respect to the external field h using automatic differentiation.
The data points for the bond dimension D = 24 and D = 16 are
depicted as big black circles and smaller blue circles, respectively.
The fitting curve is obtained for D = 24 and is shown as a thick
red line here. For D = 24, the fitting yields Tc = 1.3171724 and
γ = 2.764. A vertical dotted line indicates the location of the critical
temperature Tc. Inset: Critical scaling of χ (T )−γ −1

above the critical
temperature Tc.

3. Exponent γ

The global magnetic susceptibility per site χ (T ) is calcu-
lated as a second derivative of the free energy per site f (h, T )
with respect to the external field h using the automatic dif-
ferentiation (at exactly h = 0), i.e., χ (T ) = −∂2 f (h, T )/∂h2.
The numerical analysis was performed only above Tc, because
the second derivative below Tc was unstable, and we also
excluded the data points for T � 1.31718 to avoid fitting too
close to Tc. For D = 24, the fitting yields γ = 2.764 and Tc =
1.3171724, see Fig. 11. The relative difference in γ between
D = 16 and D = 24 is less than 0.1%. The linear dependence
of χ (T )−γ −1

above the critical temperature Tc is shown in the
inset of Fig. 11.

4. Exponent δ

To extract the global critical exponent δ, we calcu-
late the magnetization at the critical temperature T = Tc =
1.3171724 as a function of the external field h from the free
energy per site using the automatic differentiation, m(h, T =
Tc) = −∂ f (h, T = Tc)/∂h, see Fig. 12. The numerical anal-
ysis was performed for very small values of the external
magnetic field h ranging from h = 2 × 10−8 up to h = 5 ×
10−7. The critical exponent δ was found to be δ ≈ 44.8 and
there is practically no difference between the results for D =
16 and D = 24. The linear dependence of m(h)δ at T = Tc =
1.3171724 is shown in the inset of Fig. 12.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we have built upon earlier HOTRG investiga-
tions of the phase transition of the Ising model on a fractal

FIG. 12. A detailed view of the global magnetization m(h) as
a function of the external field h at fixed temperature T = Tc =
1.3171724. The critical exponent δ was found to be δ ≈ 44.8. Inset:
Critical scaling of m(h)δ at T = Tc = 1.3171724.

lattice shown in Fig. 1. Previously, the values of only two
critical exponents related to magnetization (β and δ) were
obtained by means of the local impurity tensors in Ref. [8–10].
In this study, we have extracted the remaining four critical
exponents using the local impurity tensors. Additionally, we
have leveraged automatic differentiation to extract accurate
estimates of four critical exponents globally by differentiating
the free energy; see Table I. The automatic differentiation was
also used to accurately calculate the local specific heat and
magnetic susceptibility as derivatives of the local bond energy
and magnetization, respectively. Correlations near the critical
temperature were analyzed by means of two impurity tensors
inserted into the system. From the correlations we obtained
the correlation lengths from which we extracted the values of
the critical exponent ν and E = (d − 2 + η).

The critical exponents are not entirely independent of each
other [2]; they are expected to satisfy the following rules given
by various scaling assumptions,

γ = β(δ − 1), (38)

α + 2β + γ = 2, (39)

(2 − η)ν = γ , (40)

dν = 2 − α. (41)

TABLE I. Comparison of local and global critical exponents on
a fractal lattice Ising model. Local and global exponents are listed
in the first and second rows, respectively. The values of ν and E =
(d − 2 + η) (where d stands for the spatial dimension) in the last two
columns were extracted from the correlations obtained by the local
(impurity) method only and therefore are missing in the second row.
All listed values are obtained with the bond dimension D = 24.

Type α β γ δ ν (d − 2 + η)

Local −0.87 0.01383 2.826 204.93 1.60 0.02
Global −0.824 0.0629 2.764 44.8 — —
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The last equation, which involves the system (lattice) dimen-
sion d , can be derived by making further assumptions, known
as the hyperscaling hypothesis. Moreover, if just two indepen-
dent critical exponents are known, the remaining exponents
can be derived from Eqs. (38)–(41), assuming a value of the
spatial dimension d of the system.

The position dependence of the critical behavior on the
fractal lattice was already manifested by a slight discrep-
ancy between the single-site impurity approach used in
Refs. [8,9] and the multi-site impurity average approach used
in Ref. [10]. In the case of single-site impurities, the ob-
servation site is kept far from the “outer” boundary of the
system. Note that this approach was also used in the present
study when defining the local impurities. In the case of the
multi-site average employed in Ref. [10], the impurity was
obtained (for convenience) as an average over four sites in
the center of the 12-cluster defined by Eq. (9). This partial
average covers one-third of all sites; however, it does not
represent the whole system, as the measurement sites are
concentrated in the centers of local clusters only. In the case of
the magnetic critical exponents, the single-site measurements
yielded β ≈ 0.0138 and δ ≈ 205, whereas partial averaging
yielded β ≈ 0.0154 and δ ≈ 185. Notice that the partial aver-
aging yielded β around 10% larger and δ around 10% smaller
than the respective exponents obtained by single-site measure-
ments. Comparing with Table I, one can see that the partially
averaged values of β and δ lie somewhere between the local
and global values, which is to be expected.

Significant differences between the local and global ex-
ponents were observed; see Table I. Although in the case
of the exponents α and γ , the local and global observation
yielded similar values, the differences in the case of β and
δ are large. Large differences between the global and local
critical behavior we observed (see Table I) show a strong
position dependence on the fractal lattice. This should not be
surprising as the fractal structure is not homogeneous, and the
local behavior is similar to the surface behavior observed in
Refs. [18,19]. Let us emphasize that the fractal lattice accom-
modates large “outer” and “inner” boundaries at each level
which inevitably leads to some degree of position dependence.
We assume that the significant difference between the local
and global quantities can be explained by the contribution
of surface behavior, which we intend to study quantitatively
elsewhere.

Despite the considerable differences between the local and
global critical behavior, the scaling relations Eq. (38) and
Eq. (39) seem to be approximately satisfied for both sets of
local and global exponents. Given our numerical estimates
of the exponents β and δ, we evaluate the relative difference
between the values obtained from the scaling relations and the

TABLE II. Evaluation of the scaling relations. For the exponent
γ we define γβδ = β(δ − 1) (first column), whereas for α we de-
fine αβδ = 2 − β(δ + 1) (second column). In the case of the local
exponents, we also calculate dimensions d1 = γ /ν + E and d2 =
(2 − α)/ν, which are to be compared with the Hausdorff dimension
dH = log 12/ log 4 ≈ 1.79248.

Type |γ − γβδ|/γβδ −|α − αβδ|/αβδ d1 d2

Local <0.002 <0.03 ≈1.784 ≈1.79246
Global <0.003 <0.07 — —

numerical values of the exponents γ and α. The evaluations
for the local and global exponents are listed in the first and
second row of Table II, respectively. For the exponent γ we
define γβδ = β(δ − 1) [cf. Eq. (38)], whereas for α we define
αβδ = 2 − β(δ + 1) [cf. Eq. (38) and Eq. (39)].

In the case of the local exponents, we also calculate di-
mensions d1 = γ /ν + E [cf. Eq. (40)] and d2 = (2 − α)/ν
[cf. Eq. (41)], which are to be compared with the Haus-
dorff dimension dH = log 12/ log 4 ≈ 1.79248 in the last two
columns of Table II. Especially the hyperscaling relation with
the exponents α and ν in Eq. (41) is satisfied remarkably well
since d2 ≈ dH. For deff defined in Eq. (1) (which comes from
combining Eq. (39) with Eq. (41)), we get deff ≈ 1.782, which
yields the relative difference between deff and dH to be around
0.6%.

The fractal lattice studied here has the same Hausdorff
dimension dH as the Sierpinski carpet SC(4, 2). When com-
paring the critical exponents we obtained here globally
with those from the Monte Carlo studies for SC(4, 2) in
Refs. [3,4,6], it seems that there are large differences. How-
ever, the critical exponent α is negative in both cases. Also, we
obtained β close to the value reported in the newer short-time
critical dynamic scaling study in Ref. [6]. In the case of frac-
tals, the values of the critical exponents depend on the details
of the lattice structure, such as lacunarity and connectivity. It
is well known that only a weak version of universality survives
on self-similar structures such as fractals [20]. However, the
relations between the exponents may still be preserved.
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