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Cooling with fermionic thermal reservoirs

Gabriella G. Damas ,1 Rogério J. de Assis,1,2 and Norton G. de Almeida 1

1Instituto de Física, Universidade Federal de Goiás, 74.001-970 Goiânia-GO, Brazil
2Departamento de Física, Universidade Federal de São Carlos, 13.565-905 São Carlos-São Paulo, Brazil

(Received 18 July 2022; accepted 6 March 2023; published 17 March 2023)

The quantum reservoirs commonly considered in open-quantum systems theory are those modeled by quantum
harmonic oscillators, which are called bosonic reservoirs. Recently, quantum reservoirs modeled by two-level
systems, the so-called fermionic reservoirs, have received attention due to their features. Given that the com-
ponents of these reservoirs have a finite number of energy levels, unlike bosonic reservoirs, some studies are
being carried out to explore the advantages of using this type of reservoir, especially in the operation of heat
machines. In this paper, we carry out a case study of a quantum refrigerator operating in the presence of bosonic
or fermionic thermal reservoirs, and we show that fermionic baths have advantages over bosonic ones.
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I. INTRODUCTION

With the development of the so-called quantum ther-
modynamics [1–3], there is an increasing interest in the
realization of thermal devices operating at the quantum
limit [4–10]. In particular, heat engines whose working sub-
stance consists of systems with quantized energy levels,
such as two-level systems (qubits) and quantum harmonic
oscillators, can absorb from or deliver to their surround-
ings quantities of energy as small as their corresponding
energy gaps. Comparative studies exploring the difference
between working substances with finite and infinite en-
ergy levels demonstrate that heat engines operating with
the first kind of working substance can present advantages
[11–14]. Particularly, systems with finite energy levels, such
as qubits, can exhibit stationary states with population inver-
sion [15–17], giving rise to negative temperatures [18,19].
This inverted population effect has been explored in some
works [20–22] with a remarkable impact on the efficiency
of heat engines, as experimentally shown in Refs. [17,22].
The population inversion associated with the negative tem-
perature of the working substance requires a reservoir whose
average number of photons nF with energy E is given by the
Fermi-Dirac distribution nF = 1/(eE/T + 1), where T is the
temperature of the reservoir. Since 0 < nF < 1, it is straight-
forward to see that 0 < nF < 1/2 (1/2 < nF < 1) implies
T > 0 (T < 0). This sort of reservoir requires components
with a limited spectrum and for this reason are commonly
modeled by two-level systems, thus, being called fermionic
reservoirs [11,15,16,22–29]. Although the temperatures of
fermionic reservoirs assume both positive and negative val-
ues, reservoirs with T > 0 are mostly modeled by quantum
harmonic oscillators with the average number of photons
given by the Bose-Einstein distribution nB = 1/(eE/T − 1),
which makes them known as bosonic reservoirs. Note that
bosonic reservoirs cannot reach negative temperatures since
0 < nB < ∞.

Heat engines operating in the quantum regime are typi-
cally called quantum heat engines. Another kind of quantum

device widely discussed in quantum thermodynamics is the
so-called quantum refrigerator [30–33]. In this paper, we con-
sider a case study in which a quantum refrigerator built with
qubits can present advantages when operating in a fermionic
environment compared to a bosonic one. We assume all reser-
voirs with positive temperatures (thermal reservoirs). As the
operating conditions are kept the same for both environ-
ments, our results emphasize that the presented advantage
stems from the quantum nature of the fermionic thermal
reservoir.

II. MODEL

In the present paper, we consider a self-contained quantum
refrigerator (SCQR) composed of three interacting qubits,
each in contact with a specific thermal reservoir. The re-
spective SCQR was first proposed in Ref. [25] in which the
authors took into account only bosonic thermal reservoirs.
Although the authors have also addressed qutrits and systems
with more energy levels, which may be interesting for engi-
neering quantum refrigerators, for a better comparison of the
effect of different types of thermal reservoirs on the cooling
percentages, we will restrict our study to the SCQR composed
of three qubits. Recently, we investigated this SCQR operating
with one of the reservoirs being a fermionic one at a negative
temperature, see Ref. [34]. Here, as in Ref. [25], we approach
the case in which qubits 1–3 interact, respectively, with a ther-
mal reservoir at a cold temperature Tc > 0, a thermal reservoir
at a room-temperature Tr > 0, and a thermal reservoir at a
hot temperature Th > 0—see the schematic shown in Fig. 1.
The device in question works, such as a refrigerator when
T1 − Tc < 0, where T1 is the temperature of qubit 1. In this
case, therefore, heat flows from the cold thermal reservoir
to qubit 1. However, considering the asymptotic state, this
only occurs if the relations E3 = E2 − E1 with Ek > 0 being
the energy gap of qubit k (k = 1–3), and Tc < Tr < Th are
satisfied [25].

We assume the weak-coupling limit and the Markovian
regime governing the dynamics of the SCQR such that the
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FIG. 1. Schematic of the SCQR refrigerator and its respective
thermal reservoirs. The SCQR is composed of three interacting
qubits having energy gaps E1–E3 in contact with their respective
thermal reservoirs. Here, Th is the temperature of the hot thermal
reservoir, Tr is the temperature of the “room” thermal reservoir, Tc is
the temperature of the cold thermal reservoir, and g is the coupling
constant between the qubits.

master equation is [26,35]

dρ

dt
= −i[H0 + Hint, ρ]

+
3∑

k=1

�
↓
B(F ),k

2
(2σ−,kρσ+,k − {σ+,kσ−,k, ρ})

+
3∑

k=1

�
↑
B(F ),k

2
(2σ+,kρσ−,k − {σ−,kσ+,k, ρ}). (1)

Here, the free qubits Hamiltonian H0 and the three-body in-
teraction Hamiltonian Hint are given by

H0 = E1

2
σz,1 + E3

2
σz,3 + E3

2
σz,3, (2)

and

Hint = g(σ−,1σ+,2σ−,3 + σ+,1σ−,2σ+,3), (3)

where σz,k is the z Pauli operator for qubit k, g is the cou-
pling constant, and σ−,k (σ+,k) is the lowering (raising) Pauli
operator for qubit k. Note that Eq. (1) governs the dynamics
of either bosonic [35] and fermionic [23,24,26,36] thermal
reservoirs: if qubit k is interacting with a bosonic (fermionic)
thermal reservoir, �

↓
B,k = γk (1 + nB,k ) (�↓

F,k = γk (1 − nF,k ))

and �
↑
B,k = γknB,k (�↑

F,k = γknF,k), where γk is the dissipation
rate and nB,k = 1/(eEk/Tφk − 1) (nF,k = 1/(eEk/Tφk + 1)) is the
average excitation number, being φ1 = c, φ2 = r, and φ3 = h.
See that since nF,k < 1/2 for Tφk > 0, then �

↓
B,k (�↑

B,k) is

always greater than �
↓
F,k (�↑

F,k). To obtain the asymptotic state
of Eq. (1) we used the quantum optics toolbox [37,38].

III. RESULTS

Since the exchange rates �
↓
B,k (�↑

B,k) and �
↓
F,k (�↑

F,k) are
different, the possible combinations of bosonic and fermionic
thermal reservoirs lead to distinct asymptotic states of Eq. (1).
So, aiming to use the device as a refrigerator, it is interesting to

FIG. 2. Temperature difference T1 − Tc versus Th for (a) three
bosonic and (b) three fermionic thermal reservoirs, considering three
different values of Tc: Tc = 1 (dotted green line), Tc = 1.5 (dashed
red line), and Tc = 2 (solid blue line). Refrigeration occurs for
T1 − Tc < 0. Note the difference in behavior in the two figures:
whereas, in (a) temperature T1 reaches a minimum and then starts
to increase, approaching zero, in (b) T1 decreases monotonically,
practically stabilizing for sufficiently high Th, thus, indicating that the
lowest temperatures reached by qubit 1 occur for fermionic thermal
reservoirs.

evaluate which combination leads to the lowest-temperature
T1, considering a given set of parameters. To compare the
SCQR operating in the different configurations, we start by
fixing the energies E1 = 1, E2 = 5, and E3 = 4; the tem-
peratures Tc = 1, 1.5, 2, and Tr = 2; the coupling constant
g = 10−2; and the dissipation rates γ1 = γ2 = γ3 = g. Next,
we let Th vary from 10−1 to 103.

Figure 2(a) shows the temperature difference T1 − Tc ver-
sus Th (on logarithmic scale) for the SCQR working in a
bosonic environment for the cold temperatures Tc = 1 (dot-
ted green line), Tc = 1.5 (dashed red line), and Tc = 2 (solid
blue line). As said before, cooling occurs when T1 − Tc < 0.
Similarly, Fig. 2(b) shows T1 − Tc as a function of Th for the
same cold temperatures, but now the SCQR is surrounded by
fermionic thermal reservoirs. In Fig. 2(a), T1 − Tc decreases
to a minimum value and then increases until it stabilizes at a
negative value close to zero, whereas, in Fig. 2(b), T1 − Tc sta-
bilizes at its minimum value. Thus, the SCQR in the fermionic
environment has an advantage over the bosonic one, as its effi-
ciency in cooling qubit 1 does not decrease at higher values of
Th. Furthermore, under fermionic thermal reservoirs, qubit 1
reaches lower minimum temperature values than when under
bosonic thermal reservoirs, as can be seen from the difference
T1 − Tc, which is more negative for the fermionic environment
(compare Figs. 2(a) and 2(b)).

According to our numerical simulations, when consider-
ing the bosonic environment, the minimum values for T1 are
T1 ∼ 0.95 (when Tc = 1), T1 ∼ 1.41 (when Tc = 1.5), and
T1 ∼ 1.87 (when Tc = 2). On the other hand, when consid-
ering three fermionic thermal reservoirs since the values for
T1 continue to decrease with increasing Th, we take the min-
imum value for T1 when Th = 100. These minimum values
are T1 ∼ 0.82 (when Tc = 1), T1 ∼ 1.09 (when Tc = 1.5), and
T1 ∼ 1.29 (when Tc = 2). By considering Tc as a reference,
we can then calculate the cooling percentage (|T1 − Tc|/Tc) ×
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TABLE I. Comparative values in the cooling percentage
(|T1 − Tc|/Tc ) × 100 for the refrigerator working at three bosonic
(3B) and three fermionic (3F) thermal reservoirs for three values of
the reference temperature Tc.

(%)

Tc 3B 3F

1 5.14 17.57
1.5 6.31 27.44
2 6.65 35.32

100 to compare how much the fermionic and bosonic thermal
reservoirs cools qubit 1 - see Table I, where 3B (3F) stands for
three bosonic (fermionic) reservoirs.

Table I shows a significant difference in the cooling per-
centage for the two sets of thermal reservoirs: it is always
higher when using three fermionic thermal reservoirs, thus,
clearly showing that the fermionic environment is far more
efficient in decreasing the temperature T1 than the bosonic
one. Also, this percentage is better the higher the reference
temperature Tc such that for Tc = 2, it can reach up to more
than four times the value reached using only bosonic ther-
mal reservoirs. For lower values of the cold temperatures
Tc, the percentage difference decreases, but using fermionic
thermal reservoirs, the cooling when Tc = 1 is still more
than double that of the case of bosonic thermal reservoirs
alone. It is worth mentioning that by fixing the SCQR pa-
rameters as we did, there is a limit to cooling qubit 1.
As we found numerically, the corresponding lowest cooling
percentage reached by qubit 1, irrespective of the type of
thermal reservoir used, occurs when Tc ∼ 0.48. For temper-
atures lower than Tc ∼ 0.48, T1 − Tc > 0, meaning that the
SCQR no longer works. Also, the percentage of cooling de-
creases more and more as Tc approaches 0.48 for both kinds of
thermal reservoirs. However, the percentage of cooling when
using fermionic thermal reservoirs remains higher as shown in
Table II.

As we have seen, for fixed parameters we cannot cool down
qubit 1 to zero absolute. However, there is a strategy to keep
up cooling toward zero absolute, which is to isolate qubit 1
from its environment. This condition, obtained by imposing
γ1 → 0 or equivalently �

↓
B(F ),1 → 0 and �

↑
B(F ),1 → 0 in (1),

allows us to obtain the following analytical solution for the

TABLE II. Comparative values show that the cooling percent-
ages (|T1 − Tc|/Tc ) × 100 for fixed parameters decrease as the
reference temperature Tc approaches 0.48, where T1 − Tc > 0. Note
that even so fermionic thermal reservoirs are always more effective
for cooling.

(%)

Tc 3B 3F

0.48 0.87 3.31
0.60 2.20 7.39
0.80 4.14 12.85

TABLE III. Comparative values showing the cooling percentages
(|T1 − Tc|/Tc ) × 100 for several thermal reservoir configurations.
Here, for example, BFF means qubit 1 bound to a bosonic thermal
reservoir and qubits 2 and 3 bound to fermionic thermal reservoirs.
Note that the highest percentage of cooling occurs for the FBF
configuration, meaning that qubit 1 is bound to a fermionic thermal
reservoir, qubit 2 is bound to a bosonic thermal reservoir and qubit 3
is bound to another fermionic thermal reservoir.

(%)

Tc FBF FFF FBB FFB BBF BFF BBB BFB

0.48 3.38 3.31 1.11 1.10 2.71 2.65 0.87 0.86
0.80 13.09 12.85 7.31 7.22 7.76 7.62 4.14 4.09
1 17.87 17.57 10.81 10.67 9.03 8.87 5.14 5.09
1.5 27.28 27.44 18.65 18.43 10.28 10.13 6.31 6.24
2 35.76 35.32 25.36 25.09 10.46 10.33 6.65 6.58

temperature of qubit 1,

T1 = Tc

1 + E3
E1

(
1 − Tc

Th

) , (4)

from which we can see that, if we let E3/E1 → ∞, then T1 →
0. This result, obtained in Ref. [25], shows that there is no
fundamental limit to cool down to zero absolute, provided we
can perfectly isolate qubit 1.

So far we have considered fermionic thermal reservoirs
for all qubits in the SCQR. Other possibilities include the
cases of combinations of bosonic and fermionic thermal reser-
voirs. In fact, considering the fermionic thermal reservoir
as a quantum resource, it may be interesting to consider
cases where only one or two fermionic thermal reservoirs
are used. For this, it is necessary to consider which qubit
the fermionic thermal reservoir is associated with. Let us use
a notation in which B (F) denotes the bosonic (fermionic)
thermal reservoir and the order in which it appears in the
sequence indicates which qubit that reservoir is attached to.
For example, the sequence BFB indicates that qubit 1 is sub-
jected to a bosonic thermal reservoir, qubit 2 to a fermionic
thermal reservoir, and the third qubit to a bosonic thermal
reservoir. Next, we investigate all configurations numerically
and grouped the results in Table III, ordering from highest to
lowest percentage of cooling and following the same proce-
dure as in the previous tables, i.e., we took the minimum value
for T1.

Interestingly, and contrary to what one might think, the
best case does not occur when three fermionic thermal reser-
voirs are used. As Table III shows, the greatest cooling range
occurs for the FBF case, i.e., when only qubits 1 and 3 are
bound to fermionic thermal reservoirs. Although the differ-
ence between the FBF and FFF configurations is small, it
is still notable that the cooling percentage is higher when
only two fermionic reservoirs are used instead of three. As
mentioned at the beginning of this section, this difference is
due to the discrepancy between the exchange rates �

↓
B,k (�↑

B,k)

and �
↓
F,k (�↑

F,k) since they determine the asymptotic state of
Eq. (1).
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IV. CONCLUSION

Recent studies on quantum heat machines have used quan-
tum reservoirs as a resource to obtain better performances
both in engines and refrigerators [12,20,21,39]. For example,
fermionic reservoirs have been explored in previous works,
especially in their purely quantum characteristic of presenting
population inversion [17,22], which, in turn, is associated with
negative temperatures [3,18]. Here, we explore the quantum
nature of fermionic reservoirs without taking population in-
version into account such that we restrict to the domain of
positive temperatures. Using a qubit-based refrigerator model
proposed in Ref. [25], we show that, once the operating pa-
rameters of the refrigerator are fixed, the use of fermionic
thermal reservoirs allows us to obtain better results, concern-
ing the cooling capacity, than the use of bosonic thermal
reservoirs. We have verified, for example, that when the qubit
to be cooled cannot be perfectly insulated, the use of only
fermionic thermal reservoirs allows it to reach lower tem-
peratures than the use of only bosonic thermal reservoirs. In
addition, contrary to what might be thought, the cooling can
be more effective, in the sense of obtaining a higher percent-
age of cooling, when instead of three, only two fermionic
thermal reservoirs are used. As a final remark, we would
like to emphasize that our results are limited to the quantum
refrigerator studied here. We hope that our findings will mo-
tivate the quantum thermodynamics community to continue
investigating to better understand the origin of the cooling
advantages stemming from combining fermionic and bosonic
reservoirs.
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APPENDIX: DERIVING THE MASTER EQUATION

Let us start the derivation of the master equation assuming
we have a two-level system S that is coupled to a fermionic
reservoir R. In this case, the Hamiltonian corresponding to our
two-level system is

HS = h̄ω0σ+σ−, (A1)

where ω0 refers to the frequency, σ+ and σ− are, respectively,
the creation and annihilation operator for the two-level sys-
tem. The fermionic reservoir is composed by a collection of
noninteracting two-level systems whose Hamiltonian is

HR = h̄
∑

j

ω jσ+, jσ−, j, (A2)

here ω j represents the jth frequency of the reservoir. Further-
more, the Hamiltonian of interaction between the system and

the reservoir has the form

HSR = h̄
∑

j

(κ∗
j σ−σ+, j + κ jσ+σ−, j ), (A3)

with κ j being the jth coupling constant.
The dynamics of the composite system S ⊗ R is given by

the Von Neumann equation,

χ̇ (t ) = 1

ih̄
[V, χ (t )], (A4)

where χ and V are, respectively, the density operator and
the Hamiltonian of the composite system in the interaction
picture. Integrating Eq. (A4), and substituting the result back
into Eq. (A4), gives

χ̇ (t ) = 1

ih̄
[V (t ), χ (t )]

− 1

h̄2

∫ t

0
dt ′{V (t ), [V (t ′), χ (t ′)]}, (A5)

with χ (0) = ρ(0) ⊗ R0, being ρ(0) and R0 the initial states of
S and R, respectively. The initial state of the reservoir is the
Gibbs state,

R0 = e−βHR

trR(e−βHR )
, (A6)

which can also be written as

R0 =
∏

j

e(−β h̄/2)ω jσz, j

e(−β h̄/2)ω j + e(−β h̄/2)ω j
. (A7)

Now, the dynamics of the system of interest S is obtained
by tracing over the reservoir variables in Eq. (A5), which
provides

ρ̇(t ) = 1

ih̄
{trR[V (t )R0]ρ(0) − ρ(0)trR[R0V (t )]}

− 1

h̄2

∫ t

0
dt ′trR({V (t ), [V (t ′), χ (t ′)]}). (A8)

Considering that trR[V (t )R0] = 0, what is satisfied by R0 of
the Eq. (A6), Eq. (A8) becomes

ρ̇(t ) = − 1

h̄2

∫ t

0
dt ′trR({V (t ), [V (t ′), χ (t ′)]}). (A9)

Assuming the Born approximation χ (t ) ≈ ρ(t ′) ⊗ R0, see
Refs. [35,36], we arrive at

ρ̇(t ) = − 1

h̄2

∫ t

0
dt ′trR({V (t ), [V (t ′), ρ(t ′) ⊗ R0]}). (A10)

By writing Eq. (A3) in the interaction picture, noting that
trR(σ±, jσ±,kR0) = 0, Eq. (A10) becomes

ρ̇(t ) = −
∫ t

0
dt ′{[σ−σ+ρ(t ′) − σ+ρ(t ′)σ−]

× e−iω0(t−t ′ )〈F †(t )F (t ′)〉R

+ [ρ(t ′)σ+σ− − σ−ρ(t ′)σ+]

× e−iω0,k (t−t ′ )〈F (t ′)F †(t )〉R + H.c.}, (A11)
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where the reservoir averages read

〈F †(t )F (t ′)〉R =
∑

j

|κ j |2eiω j (t−t ′ )n̄(ω j, β ) (A12)

and

〈F (t ′)F †(t )〉R =
∑

j

|κ j |2eiω j (t−t ′ )[1 − n̄(ω j, β )]. (A13)

with n̄(ω, β ) being the average number of excitation of the
fermionic bath given by the Fermi-Dirac distribution,

n̄(ω j, β ) = 1

eh̄βω j + 1
. (A14)

Carrying out the changes τ = t − t ′ and
∑

j → ∫ ∞
0 dω g(ω),

results in

ρ̇(t ) = −
∫ t

0
dτ {[σ−σ+ρ(t − τ ) − σ+ρ(t − τ )σ−]

× e−iω0τ 〈F †(t )F (t − τ )〉R

+ [ρ(t − τ )σ+σ− − σ−ρ(t − τ )σ+]

× e−iω0τ 〈F (t − τ )F †(t )〉R + H.c.}, (A15)

with

〈F †(t )F (t − τ )〉R =
∫ ∞

0
dω g(ω)|κ (ω)|2eiωτ n̄(ω, β ),

(A16)

and

〈F (t − τ )F †(t )〉R =
∫ ∞

0
dω g(ω)|κ (ω)|2eiωτ [1 − n̄(ω, β )].

(A17)

Performing the Markov approximation, which consists of re-
placing ρ(t − τ ) with ρ(t ) in Eq. (A15) (see Refs. [35,36]),
we then reach,

ρ̇(t ) = α[σ−ρ(t )σ+ − ρ(t )σ+σ−] + β[σ+ρ(t )σ−
− σ−σ+ρ(t ) − σ−ρ(t )σ+ + ρ(t )σ+σ−]

+α∗[σ−ρ(t )σ+ − σ+σ−ρ(t )] + β∗[σ+ρ(t )σ−
− ρ(t )σ−σ+ − σ−ρ(t )σ+ + σ+σ−ρ(t )], (A18)

where α and β are given by

α =
∫ t

0
dτ

∫ ∞

0
dω g(ω)|κ (ω)|2ei(ω−ω0 )τ , (A19)

and

β =
∫ t

0
dτ

∫ ∞

0
dω g(ω)|κ (ω)|2ei(ω−ω0 )τ n̄(ω, β ). (A20)

Taking into account that the dynamics of the reservoir is much
faster than the dynamics of the system, the limit of integration
can be extended to infinity such that

lim
t→∞

∫ t

0
dτ ei(ω−ω0 )τ = πδ(ω − ω0) − i

P

ω0 − ω
, (A21)

where P is the principal Cauchy value. In this way, we have

α = πg(ω0)|κ (ω0)|2 − i�, (A22)
and

β = πg(ω0)|κ (ω0)|2n̄(ω0, β ) − i�′, (A23)

with � and �′ given by

� = P
∫ ∞

0
dω

g(ω)|κ (ω)|2
ω0 − ω

, (A24)

and

�′ = P
∫ ∞

0
dω

g(ω)|κ (ω)|2n̄(ω0, β )

ω0 − ω
. (A25)

Defining γ = 2πg(ω0)|κ (ω0)|2 and neglecting the Lamb-shift
term, one finally arrives at

ρ̇(t ) = γ

2
(1 − n)[2σ−ρ(t )σ+ − σ+σ−ρ(t ) − ρ(t )σ+σ−]

×γ

2
n[2σ+ρ(t )σ− − σ−σ+ρ(t ) − ρ(t )σ−σ+], (A26)

where n ≡ n̄(ω0, β ). Eq. (1) is obtained by making the same
deduction for three weakly interacting qubits, each one inter-
acting with its respective thermal reservoir, and going back to
the Schrödinger picture.
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