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Nonequilibrium dynamics of the Ising model on heterogeneous networks
with an arbitrary distribution of threshold noise
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The Ising model on networks plays a fundamental role as a testing ground for understanding cooperative
phenomena in complex systems. Here we solve the synchronous dynamics of the Ising model on random graphs
with an arbitrary degree distribution in the high-connectivity limit. Depending on the distribution of the threshold
noise that governs the microscopic dynamics, the model evolves to nonequilibrium stationary states. We obtain
an exact dynamical equation for the distribution of local magnetizations, from which we find the critical line that
separates the paramagnetic from the ferromagnetic phase. For random graphs with a negative binomial degree
distribution, we demonstrate that the stationary critical behavior as well as the long-time critical dynamics of the
first two moments of the local magnetizations depend on the distribution of the threshold noise. In particular, for
an algebraic threshold noise, these critical properties are determined by the power-law tails of the distribution of
thresholds. We further show that the relaxation time of the average magnetization inside each phase exhibits the
standard mean-field critical scaling. The values of all critical exponents considered here are independent of the
variance of the negative binomial degree distribution. Our work highlights the importance of certain details of
the microscopic dynamics for the critical behavior of nonequilibrium spin systems.
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I. INTRODUCTION

Understanding cooperative phenomena in large interacting
complex systems is at the forefront of various branches of
science [1–4]. The Ising model on random graphs provides
a general framework to tackle this problem and to explore
how heterogeneous interactions among the spins influence
their dynamical behavior. Heterogeneity here refers to local
fluctuations in the graph topology, such as the number of
neighbors coupled to each spin (the so-called degrees [5]).

Universal scaling around phase transitions is perhaps the
most striking collective property of spin models [6]. Renor-
malization group theory and the computation of critical
exponents have prompted the notion of universality classes,
i.e., the fact that systems very different in nature share the
same critical behavior. Understanding how network hetero-
geneities modify the critical properties of spin models is a
central problem in network science [1]. Specifically, the equi-
librium critical behavior of the Ising model on networks is
characterized by mean-field critical exponents [7–9], as long
as the fourth moment of the degree distribution is finite.

Progress has been much slower on the side of the dy-
namical critical properties of spin models on networks. To
our knowledge, the effect of network heterogeneities on the
dynamical exponents [10] of the Ising model is not known.
More than that, depending on the details of the dynamics and
of the network structure [11–13], the Ising model may evolve
to nonequilibrium stationary states that do not follow the
Boltzmann distribution. In this case, even if the interest lies
only on the stationary critical properties, one has to abandon
equilibrium statistical mechanics and shift to a full dynamical
approach.

The nonequilibrium dynamics of the Ising model on ran-
dom graphs has been exactly solved in the thermodynamic
limit using the generating functional approach [14,15] and
the cavity method [16]. Even though the microscopic dy-
namics of the model is by construction a Markovian process,
symmetric couplings among the spins induce retarded self-
interactions and the formal solution of the problem is a path
probability for the effective dynamics of a single spin [16].
The history dependency encoded in the path probability pre-
vents any attempt to calculate analytically the trace over the
single-spin configurations. Besides that, the dimension of the
path probability grows exponentially in time, which quickly
renders numerical computations unfeasible. These features
make the dynamics of spin models on networks a notorious
difficult problem, which has stimulated the design of various
approximate methods. Some of them rely on assumptions to
reduce the number of variables in the problem and obtain a
closed set of dynamical equations [17–20], while other ap-
proaches, such as the dynamical Thouless-Anderson-Palmer
equations [21–23] and cluster variational methods [24,25],
are inspired in well-established methods for the equilibrium
properties of spin models.

There are two main classes of graphs for which the ef-
fective problem simplifies and one can derive closed-form
dynamical equations: dense random graphs and sparse di-
rected random graphs [15,16,26]. In the former case, each spin
is densely connected with the rest of the network and the path
probability simplifies on account of the law of large numbers.
In the second case, the absence of bidirected edges eliminates
the history dependency and the effective dynamics becomes
Markovian. In both cases, the exact dynamics follows from a
simplified form of the cavity equations for the path probability
[16].
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The cavity or message-passing equations provide an algo-
rithm to compute the local marginals of a variety of problems
defined on random graphs [4,27,28]. In general, these equa-
tions do not admit analytic solutions on undirected graphs
with an heterogeneous structure. However, the spectra of undi-
rected random graphs [29,30] and the equilibrium of spin
models on networks [31] have been recently studied by means
of an interesting family of analytic solutions of the cavity
equations, in which the mean degree is infinitely large, but
the solutions still depend on the full degree distribution. This
class of solutions is simple enough that it allows one to ad-
dress the role of degree fluctuations in a comprehensive way.
Since the cavity equations share the same formal structure
across different areas [4], one expects to extract an analogous
solution for the dynamics of the Ising model on heterogeneous
networks.

Here we confirm this expectation and derive an exact so-
lution for the synchronous dynamics of the Ising model on
highly connected random graphs with an arbitrary degree
distribution. The stochastic dynamics of the spins is governed
by an arbitrary distribution of the threshold noise that mimics
the contact of the system with a thermal bath. Depending on
the choice of the distribution of thresholds [11], the model
evolves to stationary states that are not described by the Boltz-
mann distribution. Therefore, the present model allows one to
clearly study how degree fluctuations and the nonequilibrium
nature of the stationary states influence the critical properties
of the Ising model. Besides that, networks of binary units with
random thresholds give valuable insights into neural networks
[11,12], choice and opinion dynamics [3,32,33], gene regu-
latory networks [13,34–36], and socioeconomic phenomena
[37].

We derive a simple dynamical equation for the full distribu-
tion of local magnetizations, from which we find the critical
line that separates the paramagnetic from the ferromagnetic
region. We compute stationary and dynamical critical expo-
nents for the mean and the variance of local magnetizations
in the case of a negative binomial degree distribution [30,31].
For a hyperbolic tangent distribution of thresholds, for which
the stationary states follow a Boltzmann-like distribution [38],
all critical indexes assume their standard mean-field values
[10,39–41]. In contrast, when the threshold noise follows
an algebraic distribution and detailed balance is presumably
broken, the stationary critical behavior and the long-time crit-
ical dynamics are both characterized by the same values of
the critical indexes, which are determined by the power-law
tails of the distribution of thresholds. On the other hand,
the characteristic time for the exponential relaxation of the
average magnetization inside each phase always exhibits a
mean-field critical behavior [10], independently of the distri-
bution of thresholds. Lastly, we derive analytic expressions for
the stationary distribution of local magnetizations inside the
ferromagnetic phase and we show that its variance displays a
maximum as a function of the temperature, due to the inter-
play between threshold noise and degree fluctuations. Some
of our theoretical findings are corroborated by numerical sim-
ulations.

The paper is organized as follows. In the next section we
define the model and its microscopic dynamics. Section III
explains how to obtain the recurrence equation for the

dynamics of the distribution of local magnetizations. We
present the results for the critical exponents in Sec. IV, and
some final remarks in Sec. V. The paper contains an Ap-
pendix that explains how to solve the dynamics using the
generating functional approach.

II. MODEL DEFINITIONS

We study the dynamics of N Ising spins σi(t ) ∈ {−1, 1}
(i = 1, . . . , N) that interact through the edges of an undirected
and simple random graph [42]. The states evolve in time t
by following a Markov process, in which t = 0, 1, . . . , tmax

is a discrete variable and all spins are synchronously
updated according to their local fields at the previous
time step

σi(t + 1) = sgn{hi[σ(t )] + T ζi(t )}, (1)

where {ζi(t )} are independent and identically distributed ran-
dom variables drawn from a distribution μ(ζ ) that fulfills
μ(−ζ ) = μ(ζ ). The temperature T � 0 controls the threshold
noise in the stochastic dynamics: for T = 0 the dynam-
ics is deterministic, whereas for T → ∞ it is completely
random.

The local field hi[σ(t )] at time t due to the global state
σ(t ) = (σ1(t ), . . . , σN (t )) is given by

hi[σ(t )] = J

c

N∑
j=1

Ci jσ j (t ), (2)

where the binary random variables Ci j ∈ {0, 1} are the ele-
ments of the adjacency matrix C that specifies the topology
of the random graph model. If there is an interaction between
the spins located at nodes i and j, then we set Ci j = 1, whereas
Ci j = 0 if the corresponding spins do not interact. The matrix
C is symmetric (the graph is undirected) and its diagonal
entries are zero. The parameter J > 0 denotes the strength
of the pairwise ferromagnetic interactions between adjacent
spins, while c is the so-called mean degree (see below) or
average coordination number. The scaling of the coupling
strengths with c is suitable to analyze the model in the limit
c → ∞.

In order to derive a discrete map for the time evolution of
the global magnetization,

m(t ) = 1

N

N∑
i=1

σi(t ), (3)

it is more convenient to formulate the dynamics in terms
of probabilities. Equation (1) defines a Markov process and
the probability p(σ, t ) to observe a global configuration σ =
(σ1, . . . , σN ) at time t evolves as follows:

p(σ, t + 1) =
∑
σ ′

W (σ|σ ′)p(σ ′, t ), (4)

where
∑

σ ′ runs over the 2N configurations of the system, and
the matrix element W (σ|σ ′) is the conditioned probability to
observe a transition from state σ ′ to σ. By integrating over
ζi(t ) in Eq. (1), one finds the explicit form of the transition
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matrix elements W (σ|σ ′),

W (σ|σ ′) =
N∏

i=1

1

2
(1 + σiF[βhi(σ

′)]), (5)

where β = T −1, and F (x) is determined by the distribution
μ(ζ ) of the threshold noise as follows:

F (x) =
∫ x

−x
dζ μ(ζ ). (6)

The function F (x) satisfies the properties

F (−x) = −F (x), lim
x→±∞F (x) = ±1. (7)

Depending on the choice of μ(ζ ), the stationary distribution
of the spin configurations is not given by the Boltzmann
distribution and we expect that detailed balance breaks down
[11].

Let us now specify the random graph ensemble. The coor-
dination number or degree Ki of node i, defined in terms of C
as

Ki =
N∑

j=1

Ci j, (8)

gives the number of spins coupled to σi. One of our pur-
poses is to investigate how fluctuations in the degree sequence
K1, . . . , KN impact the stationary and the dynamical critical
properties of the Ising model. Thus, we consider the config-
uration model of networks [5,43,44], in which the degrees
K1, . . . , KN are independently drawn from a common distri-
bution

pk = lim
N→∞

1

N

N∑
i=1

δKi,k, (9)

and a single graph instance is generated by randomly choos-
ing pairs of nodes and then connecting them subject to the
prescribed degrees. The first moment of pk yields the average
degree

c =
∞∑

k=0

kpk, (10)

which provides the mean number of neighbors coupled to a
single spin. Since the degree distribution pk is specified at the
outset, the configuration model provides the ideal setting to
explore the effect of degree fluctuations by changing the shape
of pk .

In the next section, we exactly solve the nonequilibrium
dynamics of this model in the limit N → ∞ for arbitrary
distributions pk and μ(ζ ). The solution is valid in the high-
connectivity limit c → ∞, provided c/N → 0. This regime is
achieved by first taking the limit N → ∞ and then c → ∞
afterwards [31].

III. RECURRENCE EQUATIONS FOR THE DYNAMICS

In this section we derive an exact map for the time
evolution of the global magnetization and for the full dis-
tribution of local magnetizations in the limit c → ∞ by
using the law of large numbers. As a by-product, we put

forward an effective approximation for the interactions be-
tween the spins valid for large c. In the Appendix, we present
a more rigorous derivation of the dynamical equation for
the global magnetization by using the generating functional
approach [12,45].

The probability pi(σ, t ) of observing the spin at site i in the
state σ ∈ {−1, 1} at time t follows from the marginalization

pi(σ, t ) =
∑
σ\σi

p(σ, t ), (11)

where
∑

σ\σi
sums over the configurations of all spins except

for σi. The local magnetization mi(t ) at time t reads

mi(t ) =
∑

σ

σ pi(σ, t ), (12)

while the global magnetization m(t ) is given by

m(t ) = 1

N

N∑
i=1

mi(t ). (13)

Our primary aim is to obtain an exact recursive equation for
m(t ) in the thermodynamic limit N → ∞. Inserting Eq. (4)
into Eq. (11) and using the explicit form of W (σ|σ ′), Eq. (5),
one can write the local magnetization as

mi(t + 1) =
∑

σ

p(σ, t )F

⎛
⎝βJ

c

∑
j∈∂i

σ j

⎞
⎠, (14)

where ∂i represents the set of nodes that are adjacent to node i.
Since the sum over j ∈ ∂i contains a number of terms of order
O(Ki ), we invoke the law of large numbers for c → ∞ and
replace this sum by the expectation value

1

Ki

∑
j∈∂i

σ j
c→∞−−−→ u(t ) =

∑
σ

P(σ, t )σ, (15)

where

P(σ, t ) =
∑N

i j=1 Ci j
∑

σ ′ pi(σ ′, t )δσ ′σ∑N
i j=1 Ci j

(16)

is the probability that a randomly chosen edge has one of its
spins in the state σ at time t . Thus, the spatial fluctuations
of the local field on the right-hand side of Eq. (14) are solely
determined by the degree distribution. In the limit c → ∞, the
local magnetization fulfills

mi(t + 1) = F[βJGiu(t )], (17)

where the rescaled degrees Gi = Ki/c (i = 1, . . . , N) are dis-
tributed as follows:

ν(g) = lim
c→∞

∞∑
k=0

pkδ

(
g − k

c

)
. (18)

In terms of ν(g), the global magnetization at time t + 1 is
determined by recurrence equation

m(t + 1) =
∫ ∞

0
dgν(g)F[βJgu(t )]. (19)

Equations (17) and (19) are valid when the variance of the
rescaled degrees remains finite in the high-connectivity limit.
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One can access this connectivity regime for N → ∞ by set-
ting c ∝ Na (0 < a < 1) [31]. In contrast, one recovers the
dynamics of a fully connected system in the dense regime
c ∝ N (N → ∞), for which degree fluctuations are irrelevant.

In order to determine m(t + 1), we need to find the recur-
rence equation for u(t ). Inserting Eq. (16) into the definition
of u(t ), we obtain

u(t + 1) =
∑N

i j=1 Ci jmi(t + 1)∑N
i j=1 Ci j

. (20)

For large c, we can use Eq. (17) and rewrite u(t + 1) as
follows:

u(t + 1) =
∑N

i=1 KiF[βJGiu(t )]∑N
i=1 Ki

. (21)

We see that u(t ) is a global observable that weights the local
magnetization of each site according to its rescaled degree
Gi = Ki/c. In the limit c → ∞, the above equation is rewrit-
ten as

u(t + 1) =
∫ ∞

0
dgν(g)gF[βJgu(t )]. (22)

Equations (19) and (22) describe the nonequilibrium dynam-
ics of the global magnetization of the Ising model on infinitely
large random graphs in the high-connectivity limit c → ∞.
This solution is valid for arbitrary distributions ν(g) and μ(ζ ).
In the Appendix, we present a formal derivation of such equa-
tions by using the generating functional approach pioneered
in [45].

In contrast to fully connected models, the local magnetiza-
tions on heterogeneous random graphs fluctuate from site to
site. Equation (17) fully characterizes the spatial fluctuations
of mi(t ) at any time step t . The probability distribution P (m, t )
of the local magnetization at time t is determined only by
ν(g) and by the activation function F (x). By making a simple
change of variables, we find a formal recurrence relation for
P (m, t ),

P (m, t + 1) = 1

βJu(t )

dF−1(m)

dm
ν

[F−1(m)

βJu(t )

]
, (23)

in which F−1(x) is the inverse of F (x) under composition.
The above equation allows one to study the nonequilibrium
dynamics of the distribution P (m, t ).

Interestingly, we can also compute the stationary distribu-
tion

p∞(σ) ≡ lim
t→∞ p(σ, t ) (24)

of the spin configurations in the high-connectivity limit. The
object p∞(σ) fulfills the self-consistent equation

p∞(σ) =
∑
σ ′

W (σ|σ ′)p∞(σ ′). (25)

Thus, in the stationary regime, σ ′ in the local field hi(σ ′) of
Eq. (5) is sampled from p∞(σ ′). By using the law of large
numbers, we can write

hi(σ
′) = J

c

∑
j∈∂i

σ ′
j

c→∞−−−→ JGiu, (26)

where we have assumed that u(t ) evolves to a fixed point
u when t → ∞. From Eqs. (5) and (26), we conclude that
W (σ|σ ′) becomes independent of σ ′ for large c, which imme-
diately leads to

p∞(σ) =
N∏

i=1

1

2
[1 + σiF (βJGiu)]. (27)

The above equation describes the stationary distribution of the
spins for a single realization of the graph in which both c and
N are very large, but the ratio c/N is vanishingly small.

Equation (27) explicitly depends on the distribution μ

of the threshold noise by means of F (x). For the par-
ticular choice F (x) = tanh(x), the long-time synchronous
dynamics fulfills detailed balance and Eq. (27) corresponds
to a Boltzmann-like distribution [11,38], which enables
the application of equilibrium statistical mechanics. In-
deed, by starting from the standard form of the equilibrium
distribution p∞(σ) ∼ ∏

i=1 cosh [βhi(σ)] for synchronous dy-
namics [11], one can duplicate the configuration space,
apply the law of large numbers on the local fields in the
high-connectivity limit, and then recover Eq. (27) when
F (x) = tanh(x). The fact that Eq. (27) is not generally
given by a Boltzmann-like form strongly indicates that de-
tailed balance breaks down depending on the choice of
F (x) [11].

We end this section by presenting a useful approxima-
tion for the interaction matrix of the Ising model on random
graphs. We note from Eqs. (17) and (21) that the local field at
node i can be written for large c as

hi[σ(t )] = J

N

N∑
j=1

GiGjmj (t ). (28)

It follows from Eqs. (2) and (28) that the entries of the original
adjacency matrix C can be replaced, for large enough c, by the
effective matrix elements

Ceff
i j = c

N
GiGj (i 	= j). (29)

The above equation provides a practical way to simulate
the adjacency matrix of the ferromagnetic Ising model on
highly connected random graphs with arbitrary degree distri-
butions, without having to generate random graph instances
using more sophisticated algorithms [44,46]. Equation (29)
defines a complete graph that is essentially equivalent to
the graph ensemble studied in [9]. Below we confirm the
exactness of Eq. (29) by comparing our theoretical recur-
rence equation for the average magnetization with numerical
simulations.

IV. RESULTS

Equations (22) and (23) describe the dynamics of the Ising
model on an infinitely large random graph with an arbitrary
degree distribution ν(g) and for any symmetric distribution
μ(ζ ) of the threshold noise. In this section we present re-
sults for the stationary and the dynamical critical properties
of the model in the case of a negative binomial degree
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distribution

pbin
k = �(α + k)

k!�(α)

(
c

α

)k(
α

α + c

)α+k

, (30)

which is parametrized by 0 < α < ∞ and the mean degree c.
The variance σ 2 of pbin

k is given by

σ 2 = c + c2

α
. (31)

We recover the geometric degree distribution [5] and the
Poisson degree distribution by setting, respectively, α = 1 and
α → ∞. Given that

lim
c→∞

σ 2

c2
= 1

α
, (32)

the relative variance of pbin
k is controlled only by α in the

high-connectivity limit, which renders the negative binomial
distribution very convenient to probe the effect of hetero-
geneous degrees on the dynamics. Substituting Eq. (30) in
Eq. (18), we can find the explicit form of ν(g),

νbin(g) = αα

�(α)
gα−1e−αg. (33)

In the limit α → ∞, the relative variance goes to zero and we
expect to recover the recurrence equations for the dynamics of
the Curie-Weiss model [12].

We will present numerical results for two different distri-
butions of the threshold noise:

μh(ζ ) = 1

2
[1 − tanh2(ζ )], (34)

μa(ζ ) = 1

2(1 + ζ 2κ )1+(1/2κ )
, (35)

where κ in μa(ζ ) is a positive integer which ensures that the
symmetry μa(ζ ) = μa(−ζ ) is preserved. More precisely, we
will discuss the results for κ ∈ {1, 2, 3}. The corresponding
activation functions are given by

Fh(x) = tanh (x), (36)

Fa(x) = x

(1 + x2κ )1/2κ
. (37)

The hyperbolic tangent distribution μh(ζ ) has exponen-
tial tails, while the algebraic distribution μa(ζ ) behaves as
μa(ζ ) ∝ |ζ |−2κ−1 for |ζ | 
 1. Consequently, the nth moment
of μa(ζ ) diverges if n � 2κ . In addition, if the threshold
noise is sampled from μh, the stationary spin configurations
follow a Boltzmann-like distribution, obtained from Eqs. (27)
and (36). In contrast, the long-time behavior of the system is
not described by a Boltzmann-like distribution if the thresh-
old noise follows from μa. In this case the system reaches
nonequilibrium stationary states and equilibrium statistical
mechanics is not applicable. Thus, our choices of μ allow us
to examine how strong fluctuations in the threshold noise and
the concomitant absence of Boltzmann equilibrium impact the
dynamics and the stationary states of the Ising model.

A. Stationary behavior

The fixed-point equations of the dynamics are obtained by
setting limt→∞ u(t ) = u and limt→∞ m(t ) = m in Eqs. (19)

and (22):

m =
∫ ∞

0
dgν(g)F (βJgu), (38)

u =
∫ ∞

0
dgν(g)gF (βJgu). (39)

The above expressions generalize the standard mean-field de-
scription of the Curie-Weiss model [47]. By setting F (x) =
Fh(x), we recover the fixed-point equations derived through
equilibrium statistical mechanics in Ref. [31].

Since F (0) = 0, Eqs. (38) and (39) admit a paramagnetic
solution u = m = 0. By expanding the integrand of Eq. (39)
up to O(u), we find that a nontrivial solution |u| > 0 appears
below the critical temperature

Tc = JAμ

(
1 + �2

ν

)
, (40)

where

�2
ν =

∫ ∞

0
dgg2ν(g) − 1, Aμ = dF

dx

∣∣∣
x=0

. (41)

Equation (40) is valid for arbitrary distributions ν(g) and
μ(ζ ), and it shows that the model has a finite critical tem-
perature when the variance of ν(g) is finite [7–9]. The tails
of μ(ζ ) are irrelevant for the critical temperature Tc, which
depends on μ(ζ ) only through its behavior around ζ = 0. For
�2

ν = 0 and Aμ = 1, we obtain the critical temperature Tc = J
of the Curie-Weiss model [47]. Regular random graphs and
Erdös-Rényi random graphs [42] are the most representative
homogeneous random graph ensembles for which �2

ν = 0.
The system undergoes a continuous transition between the

ferromagnetic (|m| > 0) and the paramagnetic (m = 0) phase
at T = Tc. The stationary order parameter u determines the
global magnetization m and all moments of the stationary
distribution P (m) = limt→∞ P (m, t ) of local magnetizations.
For u > 0 (u < 0) the support of P (m) is the interval m ∈
[0, 1] (m ∈ [−1, 0]). By setting |u| 	= 0, we obtain from
Eqs. (23), (36), and (37) the corresponding distributions

Ph(m) = 1

βJ|u|(1 − m2)
ν

[
tanh−1(m)

βJu

]
(42)

and

Pa(m) = 1

βJ|u|(1 − m2κ )1+(1/2κ )
ν

[
m

βJu(1 − m2κ )1/2κ

]
(43)

for the hyperbolic and the algebraic activation function, re-
spectively. For homogeneous random graphs, in which ν(g) =
δ(g − 1), the above equations yield the δ distribution P (m) =
δ[m − F (βJm)].

Figure 1 shows the global magnetization m and the vari-
ance Var(m) of P (m) as a function of the temperature T
for the hyperbolic distribution of the threshold noise and
different values of α, which controls the relative variance of
the negative binomial degree distribution. The solid lines in
Fig. 1 are the theoretical results, obtained from Eqs. (38),
(39), and (42), while the symbols are numerical simulations
of Eq. (1) for large random graphs with c = 100. Due to
the interplay between topological and thermal fluctuations,
Var(m) is a nonmonotonic function of T , with a maximum
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FIG. 1. (a) Stationary magnetization m and (b) variance Var(m)
of the distribution Ph(m) of local magnetizations as a function of the
rescaled temperature T/Tc [see Eq. (40)] for the hyperbolic tangent
distribution μh of the threshold noise. The parameter 1/α is the
relative variance of the negative binomial degree distribution [see
Eq. (32)]. The solid lines follow from the analytic equations (38),
(39), and (42). The symbols are results obtained from numerical
simulations of Eq. (1) for N = 104 and mean degree c = 102. The
vertical bars are the standard deviation calculated from ten inde-
pendent runs of the simulations. The random graph samples in the
numerical simulations are generated from Eq. (29).

that shifts towards smaller temperatures for decreasing α. For
0 < α � 1, the degrees are very heterogeneous and a small
amount of thermal noise leads to strong fluctuations of the
local magnetizations. Figure 2 illustrates the typical shape of
Ph(m) for a negative binomial degree distribution and dif-
ferent temperatures. Similarly to the distribution of effective
fields calculated in [31], the distribution Ph(m) exhibits a
power-law divergence at m = 0 for α < 1, which reflects the

FIG. 2. The stationary distribution Ph(m) of local magnetiza-
tions inside the ferromagnetic phase of the Ising model on random
graphs with a negative binomial degree distribution with α = 2.5
[see Eq. (32)] and the hyperbolic tangent distribution μh of the
threshold noise.

singular behavior of the rescaled degree distribution ν(g) at
g = 0. The results in Figs. 1 and 2 remain qualitatively the
same for the algebraic distribution of the threshold noise.

In the case of the hyperbolic activation function Fh(x), we
can expand Eqs. (38) and (39) in powers of u for 0 < Tc −
T � 1 and show that

m � ±
√

3〈G2〉
〈G4〉

(
Tc − T

Tc

)1/2

, (44)

Var(m) � 3〈G2〉
〈G4〉 (〈G2〉 − 1)

(
Tc − T

Tc

)
, (45)

where 〈Gn〉 is the nth moment of the distribution ν(g). Con-
sistently with previous works [7–9], Eq. (44) shows that m
exhibits the usual mean-field critical scaling when 〈G4〉 is
finite. The variance Var(m) vanishes linearly with Tc − T ,
analogously to the variance of the replica-symmetric effective
field distribution of fully connected spin-glass models [48].

In the case of the algebraic activation function Fa(x), an
expansion in powers of u contains diverging coefficients, but
we can still expand Eqs. (38) and (39) in powers of u2κ and
derive the asymptotic behaviors

m � ±
(

2κ〈G2〉
〈G2κ+2〉

)1/2κ(Tc − T

Tc

)1/2κ

, (46)

Var(m) �
(

2κ〈G2〉
〈G2κ+2〉

)1/κ

(〈G2〉 − 1)

(
Tc − T

Tc

)1/κ

. (47)

The above equations hold when 〈G2κ+2〉 is finite. Remarkably,
the critical exponents in Eqs. (46) and (47) are determined by
the tails of the distribution μa of the threshold noise. This is
a surprising finding for a mean-field model with long-ranged
interactions between the spins. Figure 3 compares Eqs. (46)
and (47) with numerical solutions obtained from Eqs. (39)
and (43) for different κ . The agreement between the analytic
results for the critical exponents and the numerical data is
excellent.

B. Dynamical behavior

The nonequilibrium dynamics of the full distribution
P (m, t ) of local magnetizations is obtained by iterating
Eqs. (22) and (23) from an initial condition u(0), which
is related to the local magnetizations m1(0), . . . , mN (0) by
means of Eq. (20). Throughout this section we consider a
homogeneous initial condition mi(0) = m(0) (i = 1, . . . , N),
which implies that u(0) = m(0). Figure 4 compares the itera-
tion of Eqs. (19) and (22) for the average magnetization m(t )
with numerical simulations of Eq. (1) inside the ferromagnetic
phase, confirming the exactness of the theoretical recurrence
equations for c → ∞. The finite-size simulation results of
Fig. 4 converge for t 
 1 to the fixed-point solutions obtained
from Eqs. (38) and (39). The inset of Fig. 4 shows numerical
simulations on random graphs generated through both the
configuration model and the effective matrix of Eq. (29) for
the same system size, confirming that the simulation results
obtained from each method are approximately the same for
large values of N and c.

Now we discuss the nonequilibrium dynamics of m(t ) and
Var[m(t )] at the critical temperature T = Tc. After an initial
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FIG. 3. (a) The stationary magnetization m and (b) the variance
Var(m) of the distribution Pa (m) of local magnetizations as a func-
tion of the reduced temperature (Tc − T )/Tc [see Eq. (40)] for α = 1
and the algebraic distribution μa of the threshold noise. The symbols
are numerical results obtained from Eq. (43), while the dashed lines
are the analytic expressions of Eqs. (46) and (47).

transient that depends on m(0), the average magnetization
m(t ) and the variance Var[m(t )] become independent of the
initial conditions for large t and they exhibit, respectively, the
power-law decays

m(t ) ∝ 1

t z1
and Var[m(t )] ∝ 1

t z2
, (48)

with dynamical exponents z1 and z2 that only depend on the
distribution of thresholds. For the algebraic distribution μa(ζ )
of the threshold noise, the dynamical exponents are given by
z1 = 1/2κ and z2 = 1/κ , where κ controls the power-law tails
of μa(ζ ). Figure 5 illustrates the critical dynamics of m(t )
and Var[m(t )] for κ = 2. For a hyperbolic tangent distribution
μh(ζ ), the exponents are given by z1 = 1/2 and z2 = 1. These
are the standard mean-field values for the critical dynamics of
purely dissipative systems (models with nonconserved order
parameter) [39,40]. Note that z1 and z2 have the same values as
the critical indexes that govern the stationary critical behavior
[see Eqs. (44)–(47)]. The inset of Fig. 5(a) clearly shows that
z1 and z2 are independent of the variance 1/α of the negative
binomial degree distribution.

Lastly, we investigate how degree fluctuations and the dis-
tribution of thresholds influence the dynamics of m(t ) inside
each phase. For an arbitrary initial condition 0 < m(0) < 1,
the magnetization flows exponentially fast to its stationary
state m, namely,

|m(t ) − m| ∝ e−t/τ (t 
 1). (49)

FIG. 4. Dynamics of the average magnetization m(t ) inside the
ferromagnetic phase of the Ising model on random graphs with a
negative binomial degree distribution with α = 0.625. The dashed
lines are derived from Eqs. (19) and (22), while the symbols are nu-
merical simulations of Eq. (1) for N = 104 and mean degree c = 100.
The main panel shows results for the hyperbolic tangent distribution
and for the algebraic distribution [see Eq. (35)] of the threshold
noise with temperature T = Tc/2. The random graphs in the nu-
merical simulations of the main panel are sampled from Eq. (29).
The inset compares numerical simulation results obtained from the
configuration model and from the effective matrix of Eq. (29) for
the distribution μh. The vertical bars are the standard deviations
calculated from ten independent simulations.

Close to a critical point, the relaxation time τ typically be-
haves as [10]

τ ∝ ξZ , (50)

where ξ is the correlation length and Z defines a dynamical
exponent. In the homogeneous mean-field Ising model, the
correlation length and the relaxation time diverge, respec-
tively, as ξ ∝ |T − Tc|−1/2 and τ ∝ |T − Tc|−1, which implies
that Z = 2 [10]. Below we examine the critical scaling of τ in
the present model.

Figure 6 shows τ (α) as a function of α for T = 2J . As
the critical value αc is approached from each side of the
transition, the relaxation time diverges as τ (α) ∝ |α − αc|−1,
independently of the distribution of thresholds. For fixed α,
τ (T ) also diverges as τ (T ) ∝ |T − Tc|−1, regardless of the
shape of μ(ζ ). Thus, it is reasonable to conclude that Z = 2
in the present model, independently of the degree distribution
and of the distribution of thresholds.

V. FINAL REMARKS

We have presented an exact solution for the dynamics of
the Ising model on highly connected random graphs with an
arbitrary degree distribution. The spins are updated in parallel
according to a stochastic dynamical rule which depends on
a threshold noise that emulates the contact of the system
with a thermal bath. For certain choices of the distribution of
thresholds, the microscopic stationary states of the dynamics
do not follow the Boltzmann distribution, which rules out the
application of equilibrium statistical mechanics.

The solution of the model is given in terms of a general
dynamical equation for the distribution of local magnetiza-
tions, which encapsulates all information about the effect of
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FIG. 5. (a) Dynamics of the global magnetization m(t ) and of
the (b) variance Var[m(t )] of the distribution of local magnetizations
at the critical temperature T = Tc. The degrees follow a negative
binomial degree distribution with relative variance 1/α. The main
panels show results for α = 1, different initial conditions m(0), and
for the algebraic distribution μa(ζ ) of the threshold noise with κ = 2.
The inset in (a) illustrates the long-time power-law decay of m(t ) for
m(0) = 0.4 and different α (the other parameters are the same as in
the main panels): α = 2 (�), α = 1 (×), and α = 0.5 (+).

both degree and threshold fluctuations in the behavior of the
system. The theoretical results for the stationary as well as
for the nonequilibrium dynamics of the average magnetization
have been validated by numerical simulations of the micro-
scopic dynamics. In addition, our numerical simulations have
confirmed that the interaction matrix of the Ising model on
graphs sampled from the configuration model converges to
the suitable matrix decomposition of Eq. (29) in the high-
connectivity limit. This equation enables one to simulate the
Ising model on networks with an arbitrary degree distribution
without resorting to more sophisticated algorithms to sample
graph instances [44]. We have shown that the model under-
goes a continuous transition between a paramagnetic and a
ferromagnetic phase.

We have presented results for random graphs with a
negative binomial degree distribution, in which the high-
connectivity limit is solely parametrized by the variance of the
rescaled degrees. In particular, we have focused on the critical
exponents that characterize the stationary critical behavior and
the long-time critical dynamics of the mean and the variance
of the local magnetizations. Our main result is to show that
these critical exponents depend on the distribution of the
threshold noise. If the distribution of thresholds is such that
the model evolves to equilibrium states, then both exponents
assume their standard mean-field values [10]. In contrast, if

FIG. 6. Relaxation time τ of the average magnetization as a
function of α for fixed temperature T = 2J , approaching the critical
value αc = 1 [see Eq. (40)] from the (a) ferromagnetic and from the
(b) paramagnetic phase. The quantity 1/α is the relative variance of
the negative binomial degree distribution. Each data point is obtained
by fitting the long-time dynamics of m(t ), derived from the recur-
rence Eqs. (19) and (22), with the exponential function of Eq. (49).

the distribution of thresholds is such that the stationary states
do not follow the Boltzmann distribution, then the aforemen-
tioned critical exponents may depend on the fluctuations of
the threshold noise. Remarkably, in the case of an algebraic
threshold noise both critical exponents are determined by the
power-law tails of the distribution of thresholds. In addition,
we have shown that the dynamical exponent for the relax-
ation time of the average magnetization inside each phase
always assumes its standard mean-field value, regardless of
the distribution of the threshold noise. Overall, our results
show that the details of the microscopic dynamics and the
absence of detailed balance are relevant factors in determining
the universality classes of spin models, in line with the critical
properties of other nonequilibrium systems [10]. Still, the
fact that the critical properties of the global magnetization
do not belong to the mean-field universality class is some-
what surprising, given that random graphs can be seen as the
infinite-dimensional, mean-field limit of finite-dimensional
lattices.

Although the values of all critical exponents studied here
are independent of the degree fluctuations, we point out that
all moments of the negative binomial degree distribution are
finite. It is well established that, in the case of scale-free
networks, the equilibrium critical scaling of the magnetization
depends on the power-law decay of the degree distribution [9]
when its fourth moment diverges. In this respect, it would
be very interesting to consider the nonequilibrium dynamics
of the Ising model on scale-free networks and understand
whether strong degree heterogeneities are able to modify the
dynamical exponents of spin models.
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The probabilistic approach discussed here is general
enough that it can be adapted to study the parallel as well as
the sequential dynamics of other agent-based models of inter-
acting binary variables on undirected networks [3,13,36,37].
For sequential dynamics, in which a single spin is updated
at each time step, there is an extra critical index that de-
scribes the short-time, nonmonotonic critical dynamics of
spin models [39,49]. Our work paves the way to understand
whether network heterogeneities change this critical exponent
in mean-field models. We leave this and other aforementioned
problems as interesting perspectives of future works.
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APPENDIX: SOLUTION VIA THE GENERATING
FUNCTIONAL APPROACH

In this Appendix we present a more rigorous derivation
of Eqs. (19) and (22) based on the generating functional
approach [12,45]. The time-dependent local field is defined
by Eq. (2). We assume that the entries Ci j of the adjacency
matrix C are generated according to

Ci j = c

N
GiGj (1 − δi j ), (A1)

where G1, . . . , GN are independent random variables drawn
from the rescaled degree distribution ν(g). The above

effective matrix C has been put forward in Sec. III based
on the asymptotic form of the local field for c → ∞. Here
we take Eq. (A1) as the definition of the adjacency matrix
elements and the starting point of our derivations, from which
we will reobtain the recurrence equation for the magnetiza-
tion. The calculations in this Appendix further confirm that
Eq. (A1) is the correct form of C for c → ∞.

Our aim is to compute the disorder-averaged generating
functional

Z[ψ] =
∑

σ(0),...,σ(t )

exp

⎡
⎣−i

t∑
s=0

N∑
j=1

ψ j (s)σ j (s)

⎤
⎦

× p0(σ(0))

〈
t−1∏
s=0

W [σ(s + 1)|σ(s)]

〉
{Gi}

, (A2)

where p0[σ(0)] is the probability distribution of the initial
state and 〈(· · · )〉{Gi} represents the average over the rescaled
degrees G1, . . . , GN . The derivatives of Z[ψ] with respect
to the auxiliary fields {ψi(t )} yield all moments of the spin
variables. For instance, the magnetization follows from

m(t ) = lim
N→∞

i

N

N∑
i=1

δZ
δψi(t )

∣∣∣∣∣
ψ=0

, (A3)

where the shorthand notation ψ = 0 means that ψ j (s) = 0 for
any j = 1, . . . , N and s = 0, . . . , t .

By substituting Eq. (5) in Eq. (A2), we can rewrite Z[ψ]
as follows:

Z[ψ] =
∑

σ(0),...,σ(t )

p0[σ(0)] e−i
∑t

s=0

∑N
j=1 ψ j (s)σ j (s)

∫
R

⎛
⎝ N∏

j=1

t−1∏
s=0

dh j (s)dĥ j (s)

4π
{1 + σ j (s + 1)F[βhj (s)]}

⎞
⎠

× ei
∑N

j=1

∑t−1
s=0 h j (s)ĥ j (s)

〈
e−(iJ/N )

∑t−1
s=0

∑N
jk=1 Gj Gk ĥ j (s)σk (s)

〉
{Gi}, (A4)

in which the integration variables {h j (s), ĥ j (s)} have been
introduced through Dirac δ functions [12]. In order to perform
the average over G1, . . . , GN , we need to decouple sites in the
exponent of the above equation, which is achieved by inserting
the macroscopic order parameters

u(s) = 1

N

N∑
i=1

Giσi(s)

and

v(s) = 1

N

N∑
i=1

Giĥi(s)

via Dirac δ functions that enforce the above definitions. More-
over, by assuming that the initial states of the spins are
independent, p0[σ(0)] = ∏N

i=1 p0[σi(0)], the computation of
Z[ψ] can be recast in terms of the calculation of an inte-
gral over the order parameters and its conjugate variables

{û(s), v̂(s)}, namely,

Z[ψ] =
∫
R

(
t−1∏
s=0

N2du(s)dv(s)dû(s)d v̂(s)

4π2

)
eN�[u,v,û,v̂].

(A5)

The functional �[u, v, û, v̂] is given by

�[u, v, û, v̂] = i
t−1∑
s=0

[u(s)û(s) + v(s)v̂(s) − Ju(s)v(s)]

+ 1

N

N∑
j=1

ln

{ ∑
�σ

∫
R

d �hd �̂h
(2π )t

e−i
∑t

s=0 ψ j (s)σ (s)

× 〈MG(�h, �̂h, �σ )〉G

}
, (A6)
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where d �h d �̂h = ∏t−1
s=0 dh(s)dĥ(s) and

MG(�h, �̂h, �σ ) = p0[σ (0)]
t−1∏
s=0

1

2
{1 + σ (s + 1)F[βh(s)]}

× ei
∑t−1

s=0 h(s)ĥ(s)−iG
∑t−1

s=0 û(s)σ (s)−iG
∑t−1

s=0 v̂(s)ĥ(s).

(A7)

Note that we have defined the vectors �σ = [σ (0), . . . , σ (t )]T ,
�h = [h(0), . . . , h(t − 1)]T , and �̂h = [ĥ(0), . . . , ĥ(t − 1)]T ,
which reflects the reduction of the computation of Z[ψ] to
an effective single-spin problem.

In the limit N → ∞, the integral in Eq. (A5) is solved by
the saddle-point method and the generating functional reads

Z[ψ] � exp (N�∗[u, v, û, v̂]), (A8)

where �∗[u, v, û, v̂] is the stationary value of �. By
deriving the functional �[u, v, û, v̂] with respect to its
arguments and then setting ψ = 0, we obtain the saddle-
point equations for the order parameters and their conjugate
variables,

û(l ) = Jv(l ), (A9)

v̂(l ) = Ju(l ), (A10)

u(l ) =
∑

�σ
∫
R d �h d �̂h σ (l )〈GMG(�h, �̂h, �σ )〉G∑
�σ
∫
R d �h d �̂h〈MG(�h, �̂h, �σ )〉G

, (A11)

v(l ) =
∑

�σ
∫
R d �h d �̂h ĥ(l )〈GMG(�h, �̂h, �σ )〉G∑
�σ
∫
R d �h d �̂h〈MG(�h, �̂h, �σ )〉G

, (A12)

which give the arguments of �∗[u, v, û, v̂]. The
magnetization

m(t ) =
∑

�σ
∫
R d �h d �̂h σ (t )〈MG(�h, �̂h, �σ )〉G∑
�σ
∫
R d �h d �̂h〈MG(�h, �̂h, �σ )〉G

(A13)

is obtained from Eqs. (A3) and (A8). The last step consists in
simplifying the saddle-point equations. By adding a term of
the form Gjθ j (s) to the local field, Eq. (2), and then perform-
ing the same calculation that led us to the above saddle-point
integral, one finds that the single-site conjugate fields {ĥ(s)}
couple to the external fields {θ j (s)} in such a way that the
order parameter v(s) can be written in terms of the derivatives

δZ
δθ j (s) |ψ=0. Combining this fact with the normalization prop-
erty Z[0] = 1, one can show that v(s) = 0 ∀ s, which leads to
the following expression for the magnetization:

m(t ) =
∫
R

d �h d �̂h
(2π )t

〈
ei

∑t−1
s=0 ĥ(s)[h(s)−GJu(s)]

〉
G

×
∑

�σ
p0[σ (0)]σ (t )

t−1∏
s=0

1

2
{1 + σ (s + 1)F[βh(s)]}

(A14)

and for the order parameter u(t ),

u(t ) =
∫
R

d �h d �̂h
(2π )t

〈
Gei

∑t−1
s=0 ĥ(s)[h(s)−GJu(s)]〉

G

×
∑

�σ
p0[σ (0)]σ (t )

t−1∏
s=0

1

2
{1 + σ (s + 1)F[βh(s)]}.

(A15)

Recalling that the random variable G follows from the distri-
bution ν(g), it is straightforward to recover Eqs. (19) and (22)
by performing the sum over �σ and the integrals over the fields
in the above expressions.
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