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Metastable states in the J1-J2 Ising model
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We study the J1-J2 Ising model on the square lattice using the random local field approximation (RLFA)
and Monte Carlo (MC) simulations for various values of the ratio p = J2/|J1| with antiferromagnetic coupling
J2, ensuring spin frustration. RLFA predicts metastable states with zero order parameter (polarization) at low
temperature for p ∈ (0, 1). This is supported by our MC simulations, in which the system relaxes into metastable
states with not only zero, but also with arbitrary polarization, depending on its initial value, external field, and
temperature. We support our findings by calculating the energy barriers of these states at the level of individual
spin flips relevant to the MC calculation. We discuss experimental conditions and compounds appropriate for
experimental verification of our predictions.
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I. INTRODUCTION

In recent years, many compounds have been discovered
in which electron spins form a two-dimensional square lat-
tice and interact with their nearest and diagonal next-nearest
neighbors via isotropic exchange interaction with the coupling
constants J1 and J2, respectively (Fig. 1) [1,2]. This also
includes the parent compound of cuprate high-temperature
superconductors La2CuO4 [3,4] and is likely relevant to
iron-based superconductors [5]. The corresponding quantum
Heisenberg model has been studied extensively by a variety of
methods; see, e.g., [6–8] and references therein. For the values
of the ratio p = J2/|J1| near p0 = 1/2, where two different
ordered low energy states have the same energy, the quantum
spin liquid ground state was predicted [1,9,10], which may
be the key to solving the problem of high-temperature super-
conductivity according to the resonating valence bond theory
[11]. Indeed, this ground state has recently been observed
experimentally in several compounds [2,12].

The J1-J2 Ising model, in which spins can only point in
two directions, up and down, has also been thoroughly stud-
ied theoretically using the cluster mean-field approximation
(MFA) [13–15], Monte Carlo (MC) simulations [13,16–18],
and tensor network simulations [19,20]. Although its imple-
mentations seem less common in nature, the easier to study
J1-J2 Ising model nonetheless is interesting in its own right,
and can also shed light on some properties of its more complex
quantum Heisenberg counterpart. This is especially true for
the Ising model in a transverse field, where quantum fluctu-
ations induce a gap between two ordered phases around p0

[15,21–23] with the valence-bond-solid state predicted [21].
Indeed, the phase diagrams of both models have a lot in
common [1,2,10,15].
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Previously, it was shown that in the case of a ferro-
magnetic ground state, i.e., with the ferromagnetic (FM)
nearest neighbor J1 = −1 and antiferromagnetic (AFM) next-
nearest neighbor p ∈ (0, p0) coupling constants, there exist
local metastable states that slow down the dynamics of the
approaching equilibrium [24,25]. Later, specific metastable
states were revealed in the two-dimensional (2D) Ising model,
i.e., at p = 0, during low-temperature quenching with zero
initial polarization in a zero external field [26–30]. In the
present paper, we will extend the analysis of the features of
metastable states for arbitrary values p > 0. First, we apply an
analytical approach, the so-called random local field approx-
imation (RLFA), to the problem. RLFA has been previously
applied to reproduce the coexistence of ferrimagnetic order
and cluster superparamagnetism in dilute spin systems, such
as moderately impure lithium nickel superoxide compounds
[31]. Its integral version [32] is particularly useful for long-
range spin-spin interactions and has been successfully applied
to dilute Ising antiferromagnets [33] and relaxor ferroelectrics
[34]. We show that RLFA reveals metastable states with zero
polarization at low temperature in zero field in the interval
p ∈ (0, 1). Note, however, that these metastable states are
macroscopic states due to the nature of RLFA, which is an ex-
tension of MFA. At the same time, our MC simulations show
that, in fact, metastable states can have arbitrary polarization
values, and we discuss their nature and properties.

II. MODEL AND METHODS

A. Model

Thus, we consider the Hamiltonian

H = J1

∑

〈i, j〉
sis j + J2

∑

〈〈i, j〉〉
sis j −

∑

i

hisi, (1)

where the sums are over nearest 〈i, j〉 and next-nearest (diag-
onal) 〈〈i, j〉〉 neighbors (see Fig. 1), as well as over each spin
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FIG. 1. The J1-J2 Ising model scheme. (a) Square lattice of Ising
spins (white: up; blue: down) with the interaction constant J1 be-
tween nearest neighbors along horizontal and vertical (solid) lines
and J2 between next-nearest neighbors along (dashed) diagonals.
(b) Random (very high-temperature) spin configuration; the number
of spins along each side of the square sample is L = 100.

coupled to the external field hi at its position with si = ±1.
In what follows, we set FM J1 = −1 and competing AFM
J2 = p > 0 coupling constants, which together ensure the
frustration of the system. For this choice of couplings, the
ground state is FM at p < p0 and striped AFM at p > p0;
at p = p0, the ground state is not ordered. The model prop-
erties remain the same for J1 > 0 with the replacement of the
uniform polarization by the Néel checkerboard one.

B. Random local field approximation

The starting point of the RLFA is the exact formula for the
average spin value [32,35],

〈si〉 = 〈tanh β(hs
i + hi )〉, (2)

where β = 1/T is the inverse temperature (in energy units,
with the Boltzmann constant set to unity, kB = 1), hs

i =
−∑

j Ji js j is the local field acting on the spin si due to all
spins s j coupled with it, and the brackets stand for the thermal
averaging.

With RLFA, the fluctuations of each spin are considered as
independent, and averaging in Eq. (2) is carried out with the
product of the probability distributions for each spin [31,32],

P(si ) = (1 + misi)/2, (3)

where mi = 〈si〉 = meiqri is the thermally averaged polariza-
tion at the position ri corresponding to the propagation vector
q. The uniform polarization corresponds to q = (0, 0), while
the striped polarization refers to the vectors (0, π ) and (π, 0).
The same applies to the spatial dependence of the external
field hi.

Equations (2) and (3) together constitute the essence of
RLFA. Equation (2), which is a seventh degree polynomial
in m according to the eight neighbor spins in the model, can
be solved numerically.

C. Monte Carlo simulations

We perform Monte Carlo simulations with single-spin-flip
Glauber dynamics at zero temperature and Metropolis dy-
namics at low temperatures, making a deep quench from a
(high-temperature) random or partially polarized initial spin
configuration similar to what was done for the 2D Ising model
in [26,27], according to the following standard algorithm. If a

randomly chosen spin flip leads to a negative energy change
�E < 0, then a new state is accepted. Otherwise, when �E �
0, the probability of acceptance is α = exp(−�E/T ) for the
Metropolis algorithm, and α/(1 + α) for the Glauber dynam-
ics (zero temperature corresponds to the limit T → 0). Both
algorithms satisfy the detailed balance criteria and give the
same final result [29,36].

We also obtain critical temperatures using MC to provide
benchmarks for RLFA. They correspond to maxima of the
susceptibility, which we calculate from the thermal fluctua-
tions of the average value of N spins s = N−1 ∑N

i=1 sieiqri ,
as χ = NT −1(〈s2〉 − 〈s〉2), with angular brackets representing
thermal averaging [36].

III. RESULTS

A. RLFA

The solution of the RLFA equation for uniform (at p < p0)
and striped (at p > p0) polarization is shown in Fig. 2. This
solution corresponds to the zero value of the Landau potential
derivative with respect to m and, therefore, corresponds to its
local minimum (stable or metastable state), local maximum,
or inflection point (unstable states). In the absence of an exter-
nal field, zero polarization is always a solution to the equation,
and it is unique and stable at high temperatures. At zero tem-
perature, there is always (except in the case of p = p0) another
solution m = 1, which corresponds to full polarization and is
supposed to be stable. And there is still a third solution about
mb ≈ 0.29 for p ∈ (0, p0) and mb ≈ 0.65 for p ∈ (p0, 1). It
corresponds to a local maximum, i.e., barrier, of the Landau
potential separating two local minima at m = 1 and m = 0,
the first of which is a stable solution and the second (with a
higher energy) is a metastable one. In an external field, the
metastable state exists only in a certain temperature window
(dashed purple lines in Fig. 2) and completely disappears at
fields above the critical hcr. At p = 0.1, 0.3, and 0.9, the
values of this field are hcr = 0.0037, 0.0113, and 0.0373,
respectively (the corresponding temperatures for the onset of
metastable states are T0 = 0.1634, 0.6083, and 0.6808). The
barrier heights, which are the product Eb = hcrmb, are thus
equal to 0.0011, 0.0033, and 0.0242, respectively.

The phase diagram for the J1-J2 Ising model obtained using
RLFA is shown in Fig. 3(a), which also shows, for com-
parison, the critical temperatures from our MC simulation,
which are in good agreement with the literature data [16,18].
In Fig. 3(a), we also traced the temperatures T0 and T1 [see
Fig. 2(a), left bottom panel], which indicate the range of
the zero-polarization metastable state and the lowest possible
temperature of the first-order phase transition in the absence of
an external field. The accuracy of RLFA regarding the values
of Tc turns out to be comparable to the cluster MFA [13–15].

Within RLFA, the transition turns out to be first order for
p from about 0.25 up to 1.25, while it has recently been
shown to be second order everywhere, except perhaps for the
region 0.5 < g < 0.54, using the tensor network simulation
technique [20]. At the same time, the first-order phase transi-
tion was also predicted just below p0 with Tc(p0) = 0 using
the same method [19]. It should be noted that the region of
the first-order phase transition in the diagram narrowed as
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FIG. 2. Polarization as a function of temperature obtained using the RLFA analytical approach and MC simulations. (a) Solution of the
RLFA equation (lines) and MC results (markers) for uniform polarization in a uniform field at p < p0, and (b) for striped polarization in a
striped field at p > p0. The magnitude of the field is h = 0.001 (purple dashed line and triangles) and h = 0 (blue solid line and circles). Each
data point is derived from a single MC run with a random initial spin configuration at each temperature. The magenta diamonds in the bottom
left panel of (a) indicate the temperatures T0 < T1 < Tc.

the quality of the numerical calculations improved (see, for
example, [13,14,16–18]), and the behavior at the tricritical
point p0 was of particular interest [37–39].

An important feature of the phase diagram, shown in
Fig. 3(a), is that RLFA supports a logarithmic scaling of Tc(p)
as p approaches p0 from above. Indeed, in this region, the
RLFA equation (2) can be simplified under the assumptions
�m = 1 − m � 1 and T � |J1|, J2. Keeping the terms up to
�m2 in the equation, from the unique solution condition [see
Fig. 2(b), p = 0.6], we find the equation Tc = −2/[ln(p −

p0) − ln(1 + √
5/2) − ln Tc]. The latter yields the depen-

dence Tc(p), which is very close to the asymptotic dependence
Tc(p) ∼ −2.16/ ln(p − p0), obtained recently from the trans-
fer matrix approach [19]. However, as p approaches p0 from
below, the RLFA solution tends to zero linearly, lowering Tc.

It should be noted that neither striped for p ∈ (0, p0) nor
uniform for p ∈ (p0, 1) polarizations with m = 1 are solutions
to the RLFA equation, although they are very close to it. At
the same time, these states are metastable at zero temperature,
since any spin flip in these states leads to an increase in energy.

FIG. 3. Critical temperatures and energies in the J1-J2 Ising model as functions of p = J2/|J1|. (a) Phase diagram obtained using RLFA,
standard MFA, and MC. Solid dark blue curves correspond to MFA; open blue circles, magenta up-triangles, and purple down-triangles are
Tc, T0, and T1, respectively, obtained within RLFA [Fig. 2(a)]. The dependence Tc(p) shows the logarithmic scaling in the striped phase as
p → p0. The red square is the exact Onsager’s solution for the 2D Ising model. Dark blue filled circles are calculated using the MC method.
(b) Energy per dipole obtained using MC simulation at zero temperature in the absence of a field (red squares), at a temperature T = 10−9 and
a field h = 0 (blue circles), and T = 0, h = 10−9 (cyan up-triangles for uniform and magenta down-triangles for striped field). Each data point
is averaged over 100 samples of size L = 100. Standard deviations of the energy distribution histogram over 100 samples for each data point
are smaller than the markers. Blue solid and dashed lines correspond to the energy of the FM and AFM states, respectively.
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FIG. 4. Spin configurations of final absorbing states after energy relaxation at zero temperature, starting from a random spin configuration,
in the absence or in a very small uniform or striped external field h for the values of p = J2/|J1| equal to 0, 0.01, 0.99, and 1.

B. MC numerical simulation

1. Metastable states

To further explore the metastable states, we perform MC
simulations with single-spin-flip dynamics, making a deep
quench from a (high-temperature) random spin configuration.
Note that using the same technique, it was previously shown
[26,27] that at zero temperature, starting from zero polariza-
tion, approximately in every third case the 2D Ising system
(p = 0) reaches a metastable state with a pair of vertical
or horizontal stripes. This was later explained by revealing
a deep connection between the zero-temperature coarsening
with critical continuum percolation [30,40]. However, for a
finite polarization or any external field, the 2D Ising system
always reaches ground states at zero temperature. We will
show below that a quite different situation occurs in the J1-J2

Ising model for p > 0.
In all calculations, we use the sample size L = 100 (un-

less otherwise specified) and periodic boundary conditions.
To obtain the data in Fig. 2, relaxation is performed at each
temperature, starting from a (high-temperature) random spin
configuration, with 105 Monte Carlo steps per spin (MCS)
used for thermalization and the same number of MCS for
subsequent calculations of thermodynamic quantities for each
run. This is much more than the domain growth time of about
L2 in units of MCS required to reach the ground state after
quenching in the absence of metastable states [41,42] (note
that the diagonal domain growth observed in the Ising model
is longer and requires about L3, but this only occurs about
4% of the time [26]). Metastable states, in turn, are reached
in a much shorter time of about 100 MCS (see below), and
their further relaxation is determined by the energy barrier

together with the thermal activation law and is very long at low
temperature. When simulating at zero temperature [Fig. 3(b)],
each data point is averaged over 100 samples with a relaxation
time of 104 MCS. For striped polarization, the largest of the
values corresponding to the propagation vectors q = (0, π )
and (π, 0) is taken.

In the absence of an external field, the MC simulations
show critical slowdown, which corresponds to the metastable
states with nearly zero polarization for p ∈ (0, 1). The tem-
perature below which the initial state remains frozen is linear
in the activation energy of the metastable state and depends
logarithmically on the MC relaxation time. It is well below
what follows from RLFA (Fig. 2). Typical spin configurations
of these states at zero temperature are shown in Figs. 4(b) and
4(f). The result is the same when the initial spin configuration
at each temperature, instead of a random one, is AFM for
p ∈ (0, p0) or FM for p ∈ (p0, 1).

For a small external field h (uniform for p < p0 and striped
for p > p0) at temperatures T < h, relaxation gets stuck in
metastable states with higher polarization (Fig. 2). At zero
temperature, these metastable states already appear in an
infinitesimally low external field (e.g., 10−9 as in our simu-
lations), with their typical configurations shown in Figs. 4(c)
and 4(h). The polarization of these states is m ≈ 0.56 for
p < p0, and m ≈ 0.98 for p > p0. As the temperature in-
creases for p < p0, the polarization first decreases and then
increases to m = 1 before the FM phase transition. For p >

p0, however, at T ≈ h the polarization m = 1 is observed after
quenching, and only at T > h does it decrease and increase
similarly to the case p < p0. When we swap the external field
propagation vectors, the metastable states configurations at
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(a) (b)

FIG. 5. Relaxation during MC simulation. (a) Energy relaxation starting from a random spin configuration at each temperature at p = 0.1,
L = 100. In some cases, the system is stuck in a state with an energy of about E1 = −1.77, which is higher than the FM ground state with
E0 = −1.8 by the energy of two domain walls. These two-stripe states are metastable with an activation energy of 4|J1| and disappear in an
external field, as discussed for the 2D Ising model in [26,27]. Large red dots at energy E0 correspond to the relaxation time. Inset: the relaxation
time fitting to the activation law A exp(0.4/T ) vs 1/T . (b) Polarization relaxation at p = 0.3 and zero temperature for 100 samples, starting
from a random spin configuration with polarization minit = 0.2.

T = 0 become somewhat denser compared to the zero field
case; see Figs. 4(d) and 4(g).

We note that some data with an intermediate polarization
value in Fig. 2 actually correspond to incompletely relaxed
FM and AFM states divided into slowly relaxing large diag-
onal domains, like in Figs. 4(a), or nondiagonal metastable
stripes (see the discussion about these states for the case of
p = 0 in [26,27]). At the same time, the energy of these states
does not differ much from a completely ordered state, while
for truly disordered states, it is noticeably higher. Thus, we
plot the energy per spin after relaxation of random initial
spin configurations at zero temperature as a function of p
[Fig. 3(b)], where the metastable states at p ∈ (0, 1) (red
squares) are clearly visible. For some values of p > p0, the
energy of metastable states in Fig. 3(b) appears to be slightly
higher and goes above the general trend. However, it suffices
to apply an infinitesimal temperature, for example, T ∼ 10−9,
as in our simulation, for these fragile metastable states to
quickly relax into robust metastable states for p ∈ (p0, 1)
or stable states for p > 1. Thus, these states, which have a
mosaic domain structure and appear at each run, resemble
metastable states with horizontal and vertical stripes in the 2D
Ising model, appearing at about every third quenching [26,27].
The energy deviations of these metastable states is less than
0.05, and changing the sample size to L = 50 does not change
the diagram in Fig. 3(b).

2. Approaching equilibrium

In contrast to the 2D Ising model (p = 0) [26,27], for
p ∈ (0, 1) and T = 0, the system always gets stuck in a
metastable state upon quenching. But, similarly, the relaxation
time of metastable states to the ground state is determined
by the activation energy Ea as τ ∝ exp(Ea/T ) [26,27]. For
p ∈ (0, p0), where the ground state is FM, metastable states
consist of rectangles with at least two spins on each side,
surrounded by spins with the opposite direction. These rect-
angles are then interconnected, making up the whole picture
[Figs. 4(b)–4(d)]. The energy cost for a spin flip in the corner

of the rectangle is 4J2, on its side is 4J1, and in the middle of
a long line of one spin wide is 8J2. The minimum of these
energies yields the activation energy Ea = 4J2 (see [24,25]
for a similar discussion). The external field sufficient to flip
a spin and destroy the metastable state is half of this value and
is equal to ha = 2J2. For p ∈ (p0, 1), the simplest excitations
appear to be rectangles that are three spins wide, more than
four spins long, and of opposite polarization inside [Fig. 4(h)].
The activation energy must be a minimum of 4(J1 + 2J2) for
spins inside and −4(J1 + J2) at the border of the rectangle.

Our MC calculation in an external field at zero temperature
confirms the critical fields ha given above. At temperatures
below Tc, where the critical slowing down due to the phase
transition is negligible, relaxation to the ground state is fast
enough with a relaxation time of the order of hundreds of
MCS. At still lower temperatures, after a very quick relax-
ation to the metastable state over tens of MCS, the system
begins to slowly relax to the ground state. The corresponding
relaxation time can be derived in a narrow temperature win-
dow [see Fig. 5(a)] and it appears to be in accordance with
the activation law supporting the activation energies written
above. For example, at p = 0.1 and L = 100, a least square
fit with A exp(0.4/T ) yields A = 590; see Fig. 5(a). The same
activation law was obtained for small L � 8 in [25].

When we start relaxation from a random spin configuration
with nonzero polarization at low temperatures and p ∈ (0, 1),
the resulting state is not the ground state, as in the case of p =
0 [26,27], but also has a nonzero polarization, slightly higher
than the initial one; see Fig. 5(b). This proves the existence
of metastable states with an arbitrary polarization value in the
J1-J2 Ising model.

The MC calculations also show that for nonzero p, even
at zero temperature, metastable states can fluctuate between
different configurations, slightly changing their polarization
but keeping their energy constant. This effect was previously
observed in the Ising model in a 3D cubic lattice [26–29] and
some 2D lattices [43], and these states were called blinking
states. This occurs when the local field hs

i on the spin, due to
its nearest and next-nearest neighbors, is zero. Any external
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field, however, removes this degeneracy and blinking states
disappear. For p = 1, a blinking state is shown in Fig. 4(e).

IV. DISCUSSION

The main result of this work is the discovery of specific
features of metastable states at p ∈ (0, 1), analyzed by RLFA
and MC simulations. It means that the spin frustration, which
is present for all p > 0, is not a sufficient condition for the
appearance of metastable states in this case. Only fragile
metastable states have been revealed at certain values of p > 1
using MC.

The results of RLFA should not be understood literally. Be-
ing just a modification of MFA, it can predict only some gen-
eral trends. Thus, it predicts a metastable state with zero po-
larization (in zero external field), while the MC simulation re-
veals the presence of metastable states with arbitrary polariza-
tion values. Within RLFA, metastable states appear only be-
low a certain temperature T0, while from a microscopic point
of view, these states exist at all temperatures, but the system
effectively get stuck in them when the temperature is much
less than the activation energy Ea to exit them; see Fig. 5(a).

Although the temperatures T0, below which metastable
states appear in RLFA, are of the order of the activation
energies Ea from MC, the critical fields ha found from the MC
calculation turn out to be much larger than the values obtained
within RLFA. Given the mean-field nature of RLFA, one can
assume that its critical field is the average value for all spins in
the sample. Indeed, with a total number of spin configurations
around the central spin of 28, only four of them have the
central spin in a rectangular corner that is part of a metastable
domain. Thus, we can estimate that the critical fields in RLFA
are 64 times smaller than those calculated microscopically for
a spin flip trapped in a metastable state. This is consistent with
the value of about 54 of the ratio of critical fields calculated
from the formula obtained in Sec. III B 2 to the RLFA values
of hcr given in Sec. III A for p = 0.1 and 0.3.

External fields h significantly affect spin quenching in the
MC simulation. At zero temperature and fields above the
critical one, h > ha, the system relaxes to the ground state.
When h < ha and T < h, the system relaxes to a state with
polarization m < 1 (Fig. 2), while RLFA predicts relaxation to
the ground state. This effect should be due to the destruction
of fragile metastable states in an external field, similar to what
was observed in the 2D Ising model [26,27]. On the other
hand, at temperatures h < T < ha, the system relaxes to a
state with a polarization close to the initial one, just as in zero
field. In this case, the external field is smaller than any energy
scale and effectively vanishes in the problem, and the RLFA
and MC results are in qualitative agreement (Fig. 2).

As an alternative, we also used the mean-field cluster
approximation with the 4 × 4 cluster size, formulated as in
[44,45], but, as it turned out, it does not predict metastable
states. Although a 4 × 4 cluster size is sufficient to study
the J1-J2 Ising model in many cases [13–15], it is possible
that a larger cluster is needed to reveal metastable states. For
instance, metastable states in an external field near critical
points have recently been predicted for the Ising model with
competing long-range interactions using the 6 × 6 cluster ap-
proximation [46,47].

According to the calculated phase diagram [Fig. 3(a)], the
accuracy of RLFA turned out to be similar to the accuracy of
the cluster MFA ordinarily applied to this problem [13–15].
Thus, besides metastable states, RLFA is also an effective
tool for studying phase diagrams in general, and it would be
promising to use it, for example, to reproduce recently discov-
ered anomalies in the dipole ordering of water molecules in
minerals [48–51] or to apply it to the above-mentioned Ising
model with competing long-range interactions [46,47].

A legitimate question arises: To what extent can one ex-
pand the finding of the existence of metastable states in
the J1-J2 Ising model to a broad and practically important
class of compounds with J1-J2 Heisenberg spin interactions
related to high-temperature superconductors? Apparently, a
first step in answering this question would be to investigate
the Ising model in a transverse field. The latter has some
common features with the quantum Heisenberg model, since
both have nondiagonal fluctuating terms in the Hamiltonian,
which may be a factor in destroying metastable states. Our
preliminary application of RLFA to the Ising model favors
the existence of metastable states in sufficiently small trans-
verse fields. On the other hand, by listing the appropriate
compounds with J1-J2 Heisenberg interaction, we encourage
experimenters to look for possible metastable states in the
experiments.

Turning to materials in which metastable states can exist,
we first mention La2CuO4 with the Néel AFM ground state,
in which J1 ≈ 150 meV was obtained from inelastic neutron
scattering data [3,4] in general agreement with ab initio cal-
culations [52–55]. However, the value and the sign of J2 differ
in different sources with J2 < 0 in [3,54] and J2 ranging from
about 0.2 [4,53,55] to 0.8 in [52].

For iron-based superconductors, which have a striped AFM
ground state in their parent compounds [56,57], it was shown
that biquadratic coupling together with isotropic in-plane cou-
pling constants explain many of the observed features [58,59].
For CaFe2As2, for example, experimental data are well fitted
for the ratio p = 0.86 [58]. We also mention LaFeAsO, where
p is very slightly more than one as calculated in [60], while it
was claimed to be about 0.71 in [61,62]. In both compounds,
J1 > 0 and they could be tested as well as La2CuO4 for
metastable states.

Other suitable magnetic compounds corresponding to the
J1-J2 Heisenberg model also include VOMoO4 with J1 =
100–150 K and p � 0.2, and the Néel temperature TN = 42 K
[63,64]. In BaCdVO(PO4)2, the ground state is striped AFM
with J1 = −3.6 K and J2 = 3.2 K [65,66], which gives p �
0.9. However, the expected temperature of metastable states
is approximately two orders of magnitude lower (Fig. 2) than
the already low phase transition temperature TN = 1.05 K
[66], which may complicate its experimental study. In PbVO3,
where J1 ≈ 190–200 K and p ≈ 0.2–0.4 is close to the gap
around p0 in the phase diagram, there is no long-range
magnetic ordering down to 1.8 K [67]. The solid solution
Sr2Cu(Te1−xWx )O6 is unique for studying frustrated square-
lattice antiferromagnetism as it can be tuned from the Néel
(x = 0, J1 ≈ 83 K, p ≈ 0.03) to the striped AFM order (x =
1, J1 ≈ 14 K, p ≈ 7.92) by varying the composition [68].
Thus, this compound may also be a preferred choice for study-
ing metastable states.
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Experimentally, strongly nonequilibrium conditions equiv-
alent to quenching can be achieved in ultrafast light-pump
experiments, such as [69]. Note that metastable states have
recently been reported in incipient ferroelectric SrTiO3 un-
der high-intensity THz pumping [70,71] and were predicted
from ab initio calculations in the antiferroelectric NaNbO3

[72]. The nonequilibrium conditions can also be created by
applying an external field at low temperature and turning it
off abruptly. The switch-off time in this case must be less
than the spin relaxation time, while in electrical circuits, it is
limited to hundreds of microseconds for magnetic fields [73]
and hundreds of picoseconds for electric fields [74]. However,
in experiments with laser pumping, it can be short enough in
both cases [75–78].

V. CONCLUSION

In this work, using RLFA, we predict the existence of
metastable states with zero polarization in the J1-J2 Ising

model at low temperature for p ∈ (0, 1). Our MC simulations
also indicate metastable states with an arbitrary polarization
value. The energy barrier of these states depends on the
coupling constant J2. We point to some antiferromagnets,
including known high-temperature superconductors, where
these states could be expected at low temperature. These
findings may be crucial for explaining the magnetic and
electric properties of some materials and may directly
manifest themselves, in particular, under the nonequilibrium
conditions of modern experiments with high-power ultrashort
light pumping.
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