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Modeling transport and filtration of nanoparticle suspensions in porous media
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Recently membrane filters have gained in significance due to the need to provide protection against airborne
pollution. A question of importance, and some controversy, is the efficiency of filters for small nanoparticles with
diameters below 100 nm as these are considered particularly dangerous due to possible penetration into the lungs.
The efficiency is measured by the number of particles blocked by the pore structure after passing though the filter.
To study the penetration into pores by nanoparticles suspended in a fluid, a stochastic transport theory based on
an atomistic model is used to calculate particle density and flow within the pores, resulting pressure gradient, and
filter efficiency. The importance of pore size relative to particle diameter and of the parameters of the pore wall
interactions are investigated. The theory is applied to aerosols in fibrous filters and found to reproduce common
trends in measurements. As particles enter the initially empty pores on relaxation to the steady state the small
penetration measured at the onset of filtration increases faster in time the smaller the nanoparticle diameter.
Control of pollution by filtration is achieved by strong repulsion of pore walls for particle diameters greater than
twice the effective pore width. For smaller nanoparticles the steady-state efficiency decreases as the pore wall
interactions weaken. Effective efficiency is increased when the suspended nanoparticles inside the pores combine
into clusters of sizes greater than the filter channel width.
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I. INTRODUCTION

Filtering of solid and fluid particles is a field of great
importance with applications to waste water treatment, air
purification, food processing, pharmaceutical preparation, and
many others [1,2]. Various types of porous media are used.
The type of material is chosen specifically for a given appli-
cation and the size of the pores is an important consideration.
Virus dimensions are typically in the nanometer range, burn-
ing wood from 0.3 to 60 microns and dust particles can range
from 1 nm to 10 000 μm. Porous media extend from macro-
porous wide meshed metallic sieves used to measure and
separate solid particles down to the nanometer-size channels
of microporous zeolite crystals used in the separation of gases
[3]. Paper and cloth based membrane filters [4] have gained
in significance due to the need to provide protection against
airborne pollution.

To improve existing filters and develop new ones, stan-
dardized test methods have been developed to characterize
the materials, test their filtering capability and relate structure
to filtering efficiency. The experimental setup is described
in the review by Wang and Tronville [5] which also pro-
vides an overview of filtration test methods and results of
recent experimental studies. The basic method is to pass a
sample of suspended particles with measured characteristics
such as concentration and size distribution through the filter.
The difference in the number of particles before and after
passing through the filter is determined. The penetration is
defined as the ratio of the concentration after passing through
the filter (downstream) to the concentration before entering
the filter (upstream). The efficiency is then defined as the
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fraction of particles removed by the filter. Parameters which
affect the efficiency are face velocity, aerosol particle size and
characteristics of the filter material. Theoretical interpretation
is historically based on the ideas of equilibrium Langmuir
adsorption and capture of particles by the filter material [6,7].
In the model, flow transports particles sufficiently close to
stick to the attractive adsorbing surfaces, by convection and
interception in the case of large particles and in the case
of small particles, predominantly by diffusion [8]. Efficiency
for small nanoparticles with diameters below 0.1 microns is
a subject of ongoing research and some controversy due to
experimental and theoretical issues for small particle sizes
and low concentration [9]. The uncertainty of validity at the
nanoscale calls for reconsideration and research into nanopar-
ticle transport by fluids in porous media [10]. Accurate and
reliable dynamic models for nanoparticle transport, deposition
and aggregation are needed for the development of design
tools in a number of technological areas [11,12].

The flow field through pores and the coupling of particle
motion to the macroscopic velocity field of air has been exam-
ined numerically [13] and a recent review has been published
for several model porous structures [14]. Rios de Anda et al.
[15] used the Boltzmann equation in combination with de-
tailed filter fiber structure to calculate the efficiency from the
flux of particles suspended in the flow of the fluid towards
the adsorbing surfaces. It was found that efficiency is low
as particles smaller than 1.5 μm follow the air through large
interyarn pores and exit unimpeded. No quantitative results
could be given for the efficiency of filtration by diffusion for
particle sizes below 100 nm.

The present calculation is well-adapted to nanosystems.
The approach is based on a statistical model for Brownian
motion of particles which respond to the erratic force fluc-
tuations of the medium in which they move. The trajectory
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FIG. 1. Schematic representation of the geometry of the slit pore.
The number density of suspended particles of diameter σ is held
fixed at the pore entrance at x = 0 and at the exit at x = L. The arrows
mark the flow direction in the steady state. The walls of the pore are
located at z = 0 and z = H .

of a Brownian particle follows certain conditions which limit
the directional changes of velocity and the average length
of a diffusive step. The kinetic theory which is the basis
of the present work incorporates such constraints in a path
integral formulation to express the statistical probability of
a given particle path and to derive the kinetic equation it
fulfills [16]. Details of the fluctuating particle paths are sup-
pressed to describe flow patterns that persist for indefinitely
long times; by taking appropriate statistical nonequilibrium
averages, particle dynamics can be followed from the scale of
a single particle on an atomic level to the macroscopic scale
of hydrodynamics [17]

The purpose of the present paper is to apply the model to
transport of nanoparticles and filtration efficiency in porous
media specifically in the lowest range of particle size. The
explicit interaction with the pore walls is considered. A filter
is selective by the size effect of molecular sieving but also
by specific membrane surface interactions. Both these mech-
anisms break down when the diameters of the particles are
much smaller than the pore width. The theory presented in the
following predicts low penetration due to the size effect for
particle diameters greater than half the pore width. As the par-
ticle diameter drops below the critical pore width, penetration
increases due to decreasing effect of pore wall interaction.

II. THE MODEL

An analytical solution for the efficiency is possible in the
simple model described below (Fig. 1).

A. The particles

Particles suspended in a quiescent fluid such as air enter
the channel at x = 0 and after passing through the filter exit
at x = L. The particles are modeled by spheres of diameter σ

and mass m. In each pore of the filter particle transport takes
place independently. The microparticles studied in this work
have diameters of micrometers or less, and the nanoparticle
diameters lie below 0.1 μm. The concentration is sufficiently
low to consider the particles as independent. The particles can
carry a charge distribution but forces are concentrated on the
centers of the particles. In a polydisperse sample each particle
size permeates independently.

B. The pore structure

Regular pore architecture simplifies theoretical and mod-
eling work and the interpretation of experiments. In the
following the theoretical model will concentrate on the effect
of the surfaces which form the pores. In a first step to un-
derstanding transport in a filter, the phenomena are calculated
for a single slit channel with rectangular geometry shown in
Fig. 1. The effective channel length along the x axis is L, the
width along the z axis is H and L � H . The walls limiting
the channel are located at the top z = H and the bottom
z = 0 parallel to the xy plane. The surfaces of the channel are
assumed to be smooth, surface roughness along the xy planes
will not be considered. Each channel of a given size H, L acts
independently on the aerosol particles to generate density and
velocity profiles which depend on H, L.

The filter medium is a series of channels of different size
with pore size distribution function f (H, L). Experimental
data measured for the filter are weighted averages in the
pore size distribution function of the quantity calculated in
the model system. The pore size distribution function can be
extracted from other experimental data, assuming the same
effective pore structure [18]. To make an analysis possible the
actual pore structure is a fit, as here, to a calculation in an
idealized model of pore shapes and sizes.

C. The pore wall interaction

Forces from the molecules of the pore surfaces acting on
the suspended particles lead to an interplay between fluid
transport and the membrane, resulting in rejection or accumu-
lation within the pores of the membrane. Inside the channel
the interaction potential w(z) of a single pore surface with the
particles is assumed independent of position along the pore
length axis. The total interaction W (z) on a particle in the
present geometry is the sum of the interactions w(z) from each
enclosing surface,

W (z) = w(z) + w(H − z). (1)

III. CALCULATION

A. Deriving the dynamic equation

The motion of the particles within the channel is described
by a set of coupled conservation equations for the local
density, the flux, and the pressure. These quantities emerge
directly from the kinetic equation derived from the model
for the probability distribution as velocity moments of the
statistical nonequilibrium distribution in phase space [16].

The zero-order moment is the number density for a given
particle size n(x, z, t ) which fulfills the equation of continuity
(to simplify the notation the variables are not given when
obvious). The continuity equation for conservation of particle
number is derived as

∂n

∂t
= −div�j + D0div[n(�r)grad(μ(�r)/kT )]. (2)

The diffusion coefficient within the channel D0 is related to
the finite mean free path. The local chemical potential μ(x, z)
in classical density functional theory is applicable to suspen-
sions as well as atomic systems. For low density only the
entropy contributes besides the wall interaction [19] and, in
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an expansion on the uniform density n0 and chemical potential
μ0,

μ(x, z) = μ0 + kT ln(n(x, z)/n0) + W (z). (3)

The first-order velocity moment is the flux �j, the number
of particles per second and surface area, given by the average
velocity of the particles. The flux �j fulfills the equation for
conservation of momentum and for the flux jx(x, z, t ) in the x
direction the equation of motion along x is

∂ jx
∂t

= −β jx − ∂Txx

∂x
, (4)

Along z the flux in the z direction jz(x, z, t ) fulfills

∂ jz
∂t

= −β jz − ∂Tzz

∂z
− Tzz

∂W

∂z
. (5)

The coefficient β is a measure of the internal friction with
the fluid and ensures suppression of large velocity changes
with time. The velocity decay time in nanosystems is β−1. The
effects of temperature variations for negligible heat conduc-
tion, and of viscosity for sufficiently low density are omitted.

The second-order moment is the kinetic energy tensor Ti j

with relaxation time (2β )−1. The equation for the kinetic
pressure tensor Txx = Tzz follows from the equation for con-
servation of energy

∂Txx

∂t
= −2β(Txx − nkT/m). (6)

The higher the order of velocity moment the faster the
decay to local equilibrium. In an adiabatic description the
higher velocity moments decay rapidly to local equilibrium
values [20]. After a time (2β )−1 the pressure tensor at lo-
cal equilibrium is Txx = nkT/m. The flux �j(x, z, t ) will have
achieved the local value given by the local driving force,

�j(x, z) = − kT

mβ
n(x, z)grad(μ/kT ). (7)

From Eq. (7) the flux along the channel length is found,

jx = − kT

mβ

∂n

∂x
, (8)

and along the channel width,

jz = − kT

mβ

(
∂n

∂z
+ n

∂W/kT

∂z

)
. (9)

The dynamic aerosol equation [6] is recovered by inserting
the flux from Eq. (7) into the continuity equation Eq. (2).
The general dynamic equation, GDE, for aerosols is an equa-
tion widely used to describe the time evolution of the particle
size distribution [21,22]. Further terms can be included such
as coagulation (aggregation) and condensation.

The number of particles and their velocity vary with time
and position within the pore. After a sufficiently long time a
stationary state is established of zero flux in the z direction
and steady-state flow along the pore axis. Initial and boundary
conditions at the pore entrance and exit are adapted to describe
a typical experimental situation. Here, at the pore entrance and
exit, the particle density and the chemical potential are held
constant thus setting up a pressure gradient. The density at the
pore entrance is n0.

A solution of the dynamic equation is investigated for
separation of motion in x along the channel and in z in the
perpendicular direction [3] by setting n(x, z) = n0 f (x)g(z).

B. Solution in the z direction and size effect

The equation in the direction of the pore width is a diffu-
sion equation in the external field created by the pore walls,

∂g

∂t
= D

[
∂2g

∂z2
+ ∂

∂z

g∂W (z)

∂z

]
. (10)

The effective diffusion coefficient D = D0 + kT/mβ is a
gauge of the complex pore structure and dependent on particle
size. The width of the channel or pore diameter is typically
smaller than the channel length. A stationary solution is first
established in the z direction in a time of the order of H2/π2D.
The transient profile along the width of the pore decays to the
stationary solution. The decay time for example is 10−5 s for
H = μm and diffusion constant D = 10−4 cm2s−1 in air but
1 s for diffusion constant D = 10−9 cm2s−1 in a dense fiber
filter. For Dπ2t/H2 � 1, the stationary density profile in the
z direction is given by

g(z) = exp

[
−W (z)

kT

]
, (11)

which describes a steady state of vanishing current along z,
jz = 0.

C. Solution in the x direction and time effects

The equation along the direction of the pore length is a
simple diffusion equation:

∂ f

∂t
= D

∂2 f

∂x2
. (12)

In the x direction the dynamics are purely diffusive. The
variations of the surface potential along x are sufficiently
small to be neglected. The density at the entrance is held
constant so that at the entrance n(x = 0, z, t ) = n0, and at the
exit n(x = L, z, t ) = 0. The standard solution of the diffusion
equation is known for fixed values of density at the bound-
aries:

f (x, t ) = 1 at x = 0 for equilibrium with the source cham-
ber,

f (x, t ) = 0 at x = L for equilibrium with the particle-free
collection chamber.

The steady state corresponds to a linear profile
f (x, t ) = (1 − x/L),
and from Eq. (8) a constant flux along the x direction,

jx = (kT/mβL)n0exp

(
−W (z)

kT

)
. (13)

The difference in density at entrance and exit causes a
pressure gradient as derived from the Gibbs Duhem equa-
tion for local equilibrium, n∂μ/∂x = ∂ p/∂x. The pressure
drop along the pore channel is p(L) − p(0) = −n0kT and the
steady-state flux is proportional to the pressure drop through
the mobility 1/mβ.

The nonstationary solution describes the drift of parti-
cles into the empty pore towards the exit. Particles are at
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first located close to the pore entrance. For initial condition
n(x, z, t = 0) = 0, the pore is initially empty of nanoparticles.
At t > 0 the density is given by

f (x, t ) = (1 − x/L) − 2

π

∑
K=1

1

K
sin(Kπx/L)

× exp(−DK2π2t/L2). (14)

The characteristic time is L2/π2D. and the stationary solu-
tion of constant flux appears after a time Dπ2t/L2 > 1. The
decay time for example is 104 s for L = 0.1 mm and diffusion
constant D = 10−9 cm2s−1 in a dense fiber filter.

At short times, before the steady state is estab-
lished, the flux at the exit is given by the time de-
pendent Theta function [23] θ4(q = exp(−Dπ2t/L2, Z =
0) = 1 + 2

∑
K=1(−1)K qK2

cos(2KZ ) and the total flux at
the entrance is the time-dependent Theta function θ3(q =
exp(−Dπ2t/L2, Z = 0) = 1 + 2

∑
K=1 qK2

cos(2KZ ).
Note that the theory can also be formulated for an imposed

velocity field. The equation for the steady-state flux leads
to − jx + j0 + D0∂n/∂x = 0. The flux at the entrance of the
channel is j0. The stationary density along the x axis found in
this case is n(x, z) = ( j0L/D)(1 − x/L)g(z).

D. Calculation of efficiency

Of interest for comparison to experiment is the efficiency.
The efficiency measures the number of particles which are
blocked by the filter. The effect of the system parameters can
be examined with the analytical solution.

The average flux Jx(L, t ) at the exit gives the number of
particles which leave the channel through the yz surface at
x = L, Jx(L, t ) = 1

H

∫
dz jx(x = L, z, t ).

On inserting the expression obtained for the flux,

Jx(L, t ) = −kT n0

βm
�

∂ f (x = L, t )

∂x
. (15)

The average flux at the entrance of the channel Jx(0, t )
determines the number of particles which enter the channel
at x = 0 through a cross section perpendicular to the channel
axis,

Jx(0, t ) = −kT n0

βm

∂ f (x = 0, t )

∂x
. (16)

The function

� = (1/H )
∫ H

0
dzg(z) (17)

measures the number of particles in the channel cross sec-
tion perpendicular to the channel axis relative to the number at
uniform density. The density component g(z) is inserted from
Eq. (11) for π2Dt/H2 � 1. � is a measure of the permeabil-
ity κL and stationary permeance [3] κ = Jx/(p(L) − p(0)) =
�/(βmL).

The stationary density profile corresponds to a time invari-
ant local flux jx in the direction of the channel and Jx(L, t ) =
kT n0�/(βmL). Before entering the membrane the flux is
Jx(0, t ) = kT n0/(βmL).

The penetration is determined by the ratio of the particle
flux leaving the pore to the flux entering the pore,

η = Jx(L, t )/Jx (0, t ). (18)

The efficiency is by definition E = 1 − η.
The calculated efficiency initially decreases in time until

reaching the stationary value at times greater than a character-
istic time of the order L2/π2D. The stationary penetration is
derived from Eq. (18): η = �.

The penetration is essentially the number of particles re-
tained in the channel by interaction with the channel walls
and the efficiency is determined by E = 1 − � for selective
rejection or attraction of the particles by the pore.

The number of particles within the pore increases expo-
nentially in temperature through the Boltzmann factors. The
efficiency is equal to one in the absence of particles inside
the filter or at the exit. The efficiency is large if the repulsive
interaction with the filter medium is very large or the temper-
ature low. The efficiency vanishes when the flux at the exit is
equal to the flux at the entrance. The efficiency is small if the
wall interaction is too weak relative to the thermal energy to
cause rejection of particles. The efficiency can be negative for
strong wall attraction with increased particle density inside a
pore [3].

E. Efficiency increase by cluster formation

An aerosol is composed of solid or liquid particles sus-
pended in air, alone or combined into clusters. Two transport
regimes can be identified for transport of nanoparticles in
porous media [24]. The first regime is characterized by
dominant particle-surface interaction and physicochemical fil-
tration. The second regime is characterized by domination of
particle-particle interaction and agglomeration or cluster for-
mation. Here, a cluster is a complex consisting of two or more
particles bound together through internal forces. Nanoparti-
cles in suspension are unstable [25,26] with a tendency to
form clusters due to strong attractive interparticle interactions
(van der Waals, electrostatic, chemical bonding), especially in
the presence of repulsive channel walls.

To calculate the effect of cluster formation on the efficiency
of filters the coagulation rate is added to the dynamic equa-
tion (2) for the number density nk (x, z, t ) of clusters of k
particles [6,27]. A solution for the density profile within the
channel is proposed:

nk (x, z, t ) = fk (x)gk (z)hk (t ).

The total number density of clusters at a given position is
the sum of nk (x, z, t ) over all clusters of size k. The penetra-
tion for clusters of size k is

ηk = �khk (t )/hk (0).

As in Eq. (17), �k is the amount of k clusters retained in a
cross section of the filter. The efficiency for clusters of size k
is Ek = 1 − ηk .

Clusters enter the entrance to the channel at t = 0 with a
total density

∑
k nk (0, z, 0) = n0. At time t,

∑
k nk (0, z, t ) =

n0(t ). Cluster numbers change with time as small clusters
combine into larger clusters during time t before exiting the
channel at x = L. In a first-order approximation in external
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interaction, neglecting the effect of the pressure gradient and
the wall potential on aggregation the density profiles along x
and z evolve as in previous sections. On separation of vari-
ables the equation for the change in the number density with
time is the classical coagulation equation [27],

dhk (t )/dt = ω

⎡
⎣ ∑

i+ j=k

hi(t )h j (t ) − 2hk (t )
∑

i

hi(t )

⎤
⎦.

The first term on the right describes the formation of k
clusters by interaction of i and j clusters with i + j = k. The
second term describes the loss of k clusters by interaction
with all other clusters in the sample. The characteristic time
for aggregation is given by (n0ω)−1. The characteristic time is
dependent on the initial concentration of particles and on the
strength of the interparticle interaction.

For short times the solution is given for the time depen-
dence of the cluster number density at the entrance with initial
concentrations of k-type clusters hk (0) and total concentration∑

i hI (t ) = n0(t )
(1) for total number n0(t )/n0 = 1

1+n0ωt ,

(2) for single particles: h1(t )/h1(0) = 1
(1+n0ωt )2 ,

(3) for twofold particles: h2(t )/h2(0) = 1
(1+n0ωt )2 +

[h1(0)2/h2(0)n0] n0ωt
(1+n0ωt )3 , and so on.

As an example the initial size distribution for an initially
monodisperse sample at the entrance of the channel is h1(t =
0)/n0 = 1, and hk (0) = 0 for k > 1. The calculated retention
of single particles is set to �1 = 0.9. Then at n0ωt = 0.25 the
total number density of clusters has dropped to n0(t )/n0 =
0.8, and of single particles h1(t )/n0 = 0.64. The number den-
sity of two fold particles clusters h2(t )/n0 = 0.13. Due to
aggregation the apparent efficiency for single particle clusters
is increased to E1 = 0.42 for an initially monodisperse sam-
ple, while without aggregation E1 = 0.1.

Aggregation continues to affect the number nk of clusters
with time and the apparent efficiency of the smallest particles
increases with time as larger and larger clusters form and shift
the particle size distribution. For long times the solution of the
GDE for the size distribution of aerosols with aggregation can
be fit to a log normal distribution with total cluster concen-
tration N (t ) at time t , average 〈σ 〉(t ) and standard deviation
σg(t ) [28]. The penetration is calculated as

η =�

(
N (t )

N (0)

)

× exp

{ ln 〈σ 〉(t )
〈σ 〉(0)

(ln σg)2
ln

[(
σ

〈σ 〉(0)

)2 〈σ 〉(0)

〈σ 〉(t )

]}
.

(19)

The penetration as a function of particle size can then be ex-
pressed as η = A(2σ/H )2P. The resulting efficiency increases
with decreasing particle diameter. The proposed relation is
consistent with measurements, as in five different filter ma-
terials for particle diameters below 100 nm [29].

IV. RESULTS

The efficiency is discussed for simple model potentials of
effective molecular interaction between the suspended par-
ticles and the molecules of the pore walls. The stationary
efficiency is found from the stationary retention �. The case
of interest is for interaction energy close to the thermal energy
and low effective concentration of particles in the suspension,
far from the dense packing value for formation of a dense solid
phase 1/σ 3. The size of the channel affects particle density
inside the channel and the number of particles within the pore.

To validate the theory reliable experiments are needed, but
rare, over a large range of pore diameters below 0.1 μm on
filter systems with data provided for pore sizes and pore size
distribution as well as structure and size distribution of the
feed particle system. Numerical simulation could also be used
[14,30,31].

Models for the interaction of particles with the pore wall
need to be established for each filter system. Forces usually
considered are steric repulsion, van der Waals attraction and
electrostatic interactions [32,33]. The type of force depends
on the chemical structure of the nanoparticles and the complex
filter components. The calculated shape of efficiency curve as
a function of particle size depends on the type of wall potential
for the system. To illustrate results will be given for some
simple model potentials and compared with experiments in
fibrous filters.

A. Lennard-Jones wall interaction

The Lennard-Jones interaction is a common model used
to describe weak interaction between neutral particles. The
model potential between the particles and the pore wall is [34]

w(z) = ε[2/5(σ/z)10 − (σ/z)4]. (20)

It contains a short-range repulsive interaction due to steric
effects and a long-range attraction due to van der Waals forces.
For values of 2σ/H > 1 the wall repulsion is smallest at
z = H/2 and particles will tend to the center of the channel.
To obtain an analytical expression for the efficiency and the
amount � of particles inside the channel an expansion of the
effective potential around the minimum at H/2 is inserted into
the integral and

η =
√

π

αH
exp

(
−2w(H/2)

kT

)
er f (αH/2). (21)

The curvature α depends on the strength and range of the
interaction as well as the channel width, and is of the order
of the inverse particle diameter, α2 = 1

kT
∂2w(H/2)

∂z2 .
As a result of the saturation of the error function er f (y) =

2√
π

∫ y
0 dse−s2

, the penetration will tend to zero for large αH/2
and the efficiency will be close to one.

For 2σ/H < 1 and increasing channel width the largest
particle density lies close to the wall surfaces due to the van
der Waals attraction [3]. The integral for � is calculated as
the sum in a Taylor expansion on the two minima of the wall
interaction at z = zc, a distance of the order of the particle
diameter σ and z = H − zc. The curvature parameter αc at
z = zc is α2

c = 1
2kT

∂2w(zc )
∂z2 . For large pores, the penetration is

034121-5



A. TEN BOSCH PHYSICAL REVIEW E 107, 034121 (2023)

FIG. 2. The efficiency E as a function of 2σ/H (particle diam-
eter σ to channel width H ) using the solution in wide pores for
σ/H → 0(· · · ) and in narrow pores for σ/H � 1(−). The Lennard-
Jones wall interaction parameter is ε/kT = 0.8. The tungsten oxide
nanoparticle filter efficiency measured in the nanofibrous polyviny-
lalcohol filter F5 from Fig. 4 in Ref. [31] is shown for comparison
(�) for an effective channel width H = 4 nm.

then

η =
√

π

αcH
exp

(−w(zc)

kT

)
er f (αczc) + (H − 2zc)

H
. (22)

The efficiency E is shown in Fig. 2 as a function of 2σ/H
for the steady state. In narrow channels, the overlap of the
short-range repulsion dominates with a minimum value at the
center. Large particles are impeded from entering, the density
is small and the efficiency for large 2σ/H is close to one
with significant rejection of particles. Rejection of particles
by the size effect is one way to produce high efficiency. The
efficiency can be close to one over a large range of particle size
if the effective pore size is small, smaller than the smallest
particle diameter. When the channel width and the particle
diameter are similar the well at the center of the channel
is lower leading to increase of density at the middle of the
channel and a decrease in efficiency for a pore width close to
twice the particle diameter.

As the pore size increases, the effective wall interaction
is attractive. More particles are attracted into and exit from
the channel further decreasing the efficiency. The mechanism
which produces greater penetration is the attraction of the pore
walls (which in equilibrium causes adsorption in the channel
for large values of ε/kT ). For smaller 2σ/H the effect of
the wall interaction is weaker and limited to a zone close to
the pore surface; particles can pass through the channel and
exit with little change of the number density. The efficiency
decreases toward zero. Experimental efficiency curves have
been reported which indicate low efficiency for small particles
(called thermal rebound) and the need for a theoretical basis
[9,35,36].

As an example, the steady-state efficiency is shown for
W O2 nanoparticles for the size range of 0.82 to 3.3 nm di-
ameter in Polyvinyl alcohol nanofibrous filters [37]. These
materials are dominated by covalent bonding and a Lennard-
Jones-type interaction between particles and walls would be a
reasonable choice. Inorganic materials can form nanocrystals;
however, tungsten oxide clusters are expected to be correctly
modeled as spheres for small diameters. In the experiment the
efficiency of a set of filters with different fiber structure was
measured. The fibrous filters were prepared under different
conditions of electrospinning. In all six filters of the experi-
ment the measured efficiency shows a rapid decrease around
a particle diameter of 2 nm with the long tail typical of the
effect of an attractive well for pore diameters greater than
twice the particle diameter. The effective pore width would
be around 4 nm to fit the theory. Due to the random nature
of electrospinning the characteristics and performance of the
filters of the experiment differ. The presence of large pores in
a bimodal pore size distribution lowers the average efficiency.
For example in the lower weight filter F4 the efficiency goes
from 0.8 at 2σ/H > 1 to below 0.1 for 2σ/H < 1.

B. Soft sphere wall interaction

The simple and mathematically convenient family of po-
tentials which model repulsive cores are the soft sphere
potentials: ε0(σ/r)p. The average interaction in the z- direc-
tion of a particle with a wall of charge density ρ is

w(z) = 2πρε0

∫ ∞

0
dXX

∫ −z

−∞
dZ

σ p

(
√

X 2 + Z2)p
, (23)

which can be written w(z) = ε(σ/z)p−3.
Two models will be considered for the average interaction

with the wall: w(z) = ε(σ/z) with p = 4 and wall interaction
w(z) = ε(σ/z)3 for p = 6. A complete physical justification
for soft sphere repulsion is lacking [38]. In an electrostatic
multipole expansion [39] a charge interacting with an
octupole or a dipole with a quadrupole corresponds to
p = 4. Octupole-quadrupole or dipole-hexadecapole terms
correspond to p = 6.

The pore wall interaction for w(z) = ε(σ/z) and the re-
sulting density profile across the width of the pore channel
are shown in Fig. 3 for a channel of a width of four times the
particle diameter. The density is lower within the channel due
to the repulsive wall potential. The repulsive interactions of
each of the walls overlap, the wall interaction has a minimum
at z = H/2 and particles will tend to the center of the channel.
The repulsion at the center of the pore is stronger the smaller
the channel width.

The time dependence of the efficiency calculated from
Eq. (14) inserted in Eqs. (15) and (16) is shown in Fig. 4. The
efficiency decreases with time until reaching the stationary
value. The penetration varies from zero at t = 0 to the station-
ary value of � at t = ∞. Smaller particles reach the stationary
value faster than larger ones. The dependence on time is mea-
sured by the characteristic time L2/π2D and persists longer
the smaller the diffusion coefficient. The diffusion coefficient
depends on particle size with an increase for small particles
as described for example by the macroscopic Stokes Einstein
equation [40]. Time dependence persists longer for larger
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FIG. 3. The interaction W (z)/kT (· · · ) of the channel wall with
suspended particles of diameter σ and the local suspended particle
density profile n(z)/n0(−) along the width (H = 4σ ) of the channel
at the entrance of the channel for wall interaction w(z) = ε(σ/z)
with ε/kT = 2. The density of particles before entering the channel
is n0.

particles with possible overlap of stationary and nonstationary
states in polydisperse mixtures.

FIG. 4. The efficiency E for a channel of length L as a function of
time t/τ for three values of particle size σ (−), σ/2(−−), σ/5(· · · )
corresponding to three values of characteristic time τ, τ/2, τ/5 of
decreasing particle size. The characteristic time τ = L2/(π 2D) is
determined by the size dependent diffusion coefficient D, 2D, 5D
of the suspended particles in the channel. Steady-state efficiency is
taken from Fig. 5 for w(z) = ε(σ/z) at (2σ/H ) = 0.5
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1
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FIG. 5. The efficiency E as a function of (2σ/H ) for repulsive
wall potential ε(σ/z) (–) and ε(σ/z)3 (· · · ). The channel width is H,
the particle diameter is σ and ε/kT = 1. The efficiency measured for
NaCl aerosol particles in polycarbonate filters in Fig. 4 of Ref. [31]
are shown for channel widths H = 1μ(•) and H = 3μ(�).

The steady-state penetration η is calculated from Eq. (21)
for the model potential ε(σ/z) as a function of Q = 2σ/H ,

η =
√

π

2

1√
2Qε/kT

er f (
√

2Qε/kT )e−(2Qε/kT ),

and for ε(σ/z)3,

η =
√

π

2

1

2
√

3Q3ε/kT
er f (2

√
3Q3ε/kT )e−(2Q3ε/kT ).

Due to the saturation of error function, the penetration will
be close to zero for Q > 4 and the efficiency will be large,
close to one.

The calculated efficiency is shown in Fig. 5 for the
soft sphere potentials and a moderate interaction strength
ε/kT = 1. The short-range repulsion ε(σ/z)p−3 hinders entry
of particles into the pore. The penetration is small and less
than 0.1 for 2σ/H > 1. Large particles penetrate less than
smaller particles as expected due to the size effect. For larger
pore width the repulsive interaction is effective only close to
the walls and the efficiency decreases. As the particle size de-
creases to zero the theoretical penetration rapidly goes to one
and the efficiency decreases to zero. The decrease is slower
for the longer range interaction in 1/z. Similar results are ob-
tained for hard spheres with attractive interaction −ε(σ/z)p;
corresponding to ion-polarizable molecule interaction for p =
4 and to neutral molecules for p = 6.

In many aerosol filters the measured efficiency as a func-
tion of particle size follows a more or less shallow U-curve,
with an increase, not found in the present calculation for
decreasing particle diameter below 0.1 μm.

The steady-state efficiency E = 1 − η measured [41] for
NaCl aerosols with particle diameters between 10 and 500 nm
in polycarbonate filters is given in Fig. 5. The filter struc-
ture is regular with pore widths of 1 and 3 μm. For particle
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FIG. 6. The efficiency E as a function of (2σ/H ) due to forma-
tion of clusters (−−), due to repulsive wall interaction (· · · ), and
total apparent efficiency (–). Channel width is H , particle diameter
is σ .

sizes 2σ/H> 0.1 the experiment can be fit to the theoretical
curve in the one micron filter using a dominant wall inter-
action w(z) = ε(σ/z). Below the particle diameter of 50 nm
the experimental efficiency increases again as predicted in
the conventional theory of filtration by increased diffusion,
whereas in the present kinetic theory the calculated efficiency
continues to decrease to zero. Evidence of agglomeration
has been reported in a 2 μm polycarbonate filter for NaCl
nanoparticles of diameter between 10 and 100 nm [29]. Ag-
gregation of small particles into clusters [6,42] results in loss
of the smallest particle sizes with apparent increase in effi-
ciency.

To illustrate the efficiency from Eq. (19) for clus-
ter formation alone is plotted in Fig. 6 for a reason-
able choice of parameters [43]: � = 1, constant σg =
2 and (measured) 〈σ 〉(0) = 0.18 μm, 〈σ 〉(t )/〈σ 〉(0) = 1.3,
N (t )/N (0) = 1. Then η = 4.8(2σ/H ). The efficiency due to
repulsive walls with interaction w(z) = ε(σ/z) is also plotted
in Fig. 6 for ε/kT = 2 as well as the total combined efficiency.

Cluster formation within the pore channel in generated
aerosol samples leads to an apparent loss of the smallest
particles and measured increase of efficiency for small par-
ticle size. The effect depends on the evolution of the initial
aerosol size distribution and is enhanced by strong forces
between particles, in particular electrostatic interactions be-
tween cluster charge distributions. The question justifies
further experimental and theoretical investigation.

V. CONCLUSIONS

Some straightforward observations already highlighted
elsewhere [44] are supported by the present study. Based on
the results of the model presented the best filters with high
efficiency over a large range of particle dimensions would
require:

(1) Pore width smaller than twice the smallest diameter of
the suspended nanoparticles for filtration by size exclusion.
Below this value the efficiency is close to one as was shown
for the model potentials. For example fabric filter materials
with tight weaves and small pore sizes are preferable.

(2) Strong repulsive interaction relative to the thermal en-
ergy to hinder the nanoparticles from entering the pore. The
penetration was given as an exponential function of the wall
potential and the slope of the efficiency with particle size
reflects the variation of the potential with distance. Aerosols
often appear to be charged and this could be exploited to
enhance efficiency. Electrostatic filtering of aerosols is well
documented and continues to be explored [45]. Certain mate-
rials such as silk provide good electrostatic filtering by their
chemical structure.

(3) Large pore lengths, possibly by layering, to slow decay
to the stationary state of lower efficiency within the character-
istic time which varies as L2. Combining layers has also been
suggested for optimal wearability and breathability in masks.

VI. DISCUSSION

Examining how nanoparticles move through porous media
contributes to current theories of nanoparticle transport and
diffusion [40,46,47]. The present approach considers flow in
a pressure gradient with Brownian motion for particles in the
force field of the channel walls, employing potentials of mean
force in a simple model pore structure and including aggrega-
tion into clusters. The model is useful to understand filtration
of particles in filters and membranes on the nanoscale.

Stochastic kinetic theories of matter have been successfully
applied to a number of mesoscopic systems: dilute molecular
gases, high molecular weight polymer solutions and melts, as
well as micrometer sized colloids and suspensions often used
as models for molecular systems. The aerosols studied here
are sufficiently dilute and limited in size to justify the validity
of the approach.

Extension to other geometries [19] and other model po-
tentials with attractive and repulsive contributions as well as
to more complex systems such as virus filtration [48,49] is
straightforward. Combining knowledge of molecular structure
with a probability based transport theory is a useful multiscale
approach in materials where long time constants make com-
putational methods difficult.
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