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Heat current magnification in classical and quantum spin networks
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We investigate heat current magnification (CM) due to asymmetry in the number of spins in two-branched
classical as well as quantum spin systems that are kept between two heat baths at different temperatures. We
study the classical Ising-like spin models using Q2R and Creutz cellular automaton dynamics. We show that just
the difference in the number of spins is not enough and some other source of asymmetry like unequal spin-spin
interaction strengths in the upper and lower branches is required for heat CM. We also provide a suitable physical
motivation for CM along with ways to control and manipulate it. We then extend this study to a quantum system
with modified Heisenberg XXZ interaction and preserved magnetization. Interestingly, in this case, just the
asymmetry in the number of spins in the branches is enough to achieve heat CM. We observe that the onset
of CM is accompanied by a dip in the total heat current flowing through the system. We then discuss how the
observed CM characteristics can be attributed to the intersection of nondegenerate energy levels, population
inversion, and atypical magnetization trends as a function of the asymmetry parameter in the Heisenberg XXZ
Hamiltonian. Finally we use the concept of ergotropy to support our findings.
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I. INTRODUCTION

Heat currents can influence systems in a significant manner
at the nanoscale and, as a result, their control and manipula-
tion at small scale is currently a subject of intense research in
both the classical as well as quantum domain. These studies
may be broadly divided into two categories, one dealing with
finding ways to control heat currents by modeling and man-
ufacturing small-scale thermal devices like thermal diodes
[1–10], thermal transistors [11–19], etc., and the other more
direct way of explicitly studying heat current transport and
distribution in various systems, and developing transportation
theories [20–30]. Interestingly, for a multibranched system
kept between two heat baths at different temperatures, it is
observed that under certain conditions heat current in one of
the branches may become larger than the total current flowing
between the baths, thus leading to the phenomenon called the
current magnification (CM) or circular current [25,31–40].
CM has been shown to exist in a wide variety of physical
systems like spins [31], molecules [34,39], classical harmonic
chains [35,40], and metallic rings [33,41]. In general, it is
observed that to get CM, the system must possess either ro-
tational or reflection asymmetry [31]. For the simplest case of
a system containing two branches, the heat current can flow in
three possible ways, namely, parallel currents in the branches,
clockwise circulating current, and anticlockwise circulating
current (see Fig. 1). In a recent study [31], it was observed
that it is possible to get circulating heat currents in quantum
spin systems with modified Heisenberg exchange interactions
if the on-site magnetic field is inhomogeneous and the total
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magnetization of the system is conserved. However, it is diffi-
cult to realize this system experimentally as applying different
magnetic fields at different sites for such small systems is in
general a difficult task. Motivated by this and earlier stud-
ies on heat CM, here we study some simple classical and
quantum models for heat CM in two-branched spin systems.
In particular, we study the heat current flow in the classical
Creutz cellular automaton (CCA) and Q2R models described
in Refs. [42–46]. We consider systems with unequal branch
spin numbers and with equal as well as unequal branch spin-
spin interaction strengths. We find the required conditions for
getting CM and the range of parameters that optimize it. We
also study a five-spin quantum system similar to Ref. [31]
but with spin-number asymmetry in two branches. We use
the Redfield master equation and explore the heat flow and
energetics in it. Similar to the classical models, we find the
parameter range suitable for getting CM in this system. The
models that are studied in this paper can have possible ex-
perimental realizations, for example, in systems like quasi-1D
Ising chains [47,48] or quantum simulators like NMR [49,50],
quantum dots [51,52], and trapped ions [53,54].

The paper is organized as follows. In Sec. II, we consider
the classical spin models and provide analytical and numerical
results. In Sec. III, we discuss the numerical [55] implemen-

FIG. 1. Possible ways for current to flow in a two-branch system
(motivated from Ref. [31]).
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FIG. 2. Schematic representation of the model system.

tation of branch spin number asymmetry in the quantum case
by analyzing our system by the Redfield master equation and
highlight the relative ease for achieving CM in our model. We
summarize our findings and conclude in Sec. IV.

II. MODEL AND CLASSICAL ANALYSIS

We consider an Ising-like two-state spin chain with peri-
odic boundary conditions as shown in Fig. 2. This system is
kept between two heat baths at temperatures TL and TR to its
left and right, respectively. The system interacts with the heat
baths at two individual nodes such that only the nodal spins
are in direct contact with them while the bulk spins are not.
This results in the formation of two spin branches between
the baths as shown in Fig. 2. We use NU (ND) for the number
of spins in the upper (lower) branch which are not in contact
with the heat baths. So the total number of spins is given
by NS = NU + ND + 2. The spins are numbered in clockwise
direction, i.e., starting from the spin in contact with the left
bath followed by the upper branch spins and then the lower
branch spins implying that the spins numbered 1 and NU + 2
interact with the left and right baths, respectively. The state or
configuration of our system is described as

η = {σ1, σ2, . . . , σNu+2, . . . σNS }, (1)

where σi denotes the state of ith spin and σi ∈ {−1, 1}. The
energy corresponding to a particular configuration is decided
by the Hamiltonian of the system. For the cases that we study
in this paper, only the nearest-neighbor spin-spin interaction
are considered. Thus, the Hamiltonian is given by

HI
S = −

∑
i

Jiσiσi+1, (2)

where HI
S is the spin-spin interaction term in the total Hamilto-

nian, Ji is the interaction strength between the ith and (i + 1)th
spin and σNS+1 = σ1. This means that the energy cost for
flipping a spin σi is

�Ei = 2Jiσiσi+1 + 2Ji−1σiσi−1, (3)

subject to the periodic boundary conditions. Due to the
interaction with the baths as well as the internal interaction be-
tween the spins, the configuration of the system may change,
resulting in the flow of heat currents in our system.

A. Time evolution dynamics

To carry our analysis forward, we first need to define the
appropriate time evolution dynamics for our system. The mas-
ter equation for our system is characterized by configuration
pairs (η, ηi ) where ηi is same as η except for the flip of ith
spin and is given as

dP(η)

dt
=

Ns∑
i=1

rηi→ηP(ηi ) −
Ns∑
i=1

rη→ηi P(η), (4)

where P(η) is the probability of finding the system in the
configuration η at time t and rηi→η is the transition rate for
flipping spin i and taking the system from configuration ηi to
η. As already discussed above, for our model the nodal spins
are in direct contact with the baths while the bulk spins are
not. This suggests that to study our system, we need hybrid
dynamics with separate transition rates for nodal and bulk
spins.

First, because of their interaction with the baths, the dy-
namics of the nodal spins can be studied using the Metropolis
algorithm, for which a spin flips according to the following
transition rate [1]:

rα
η→ηi = min(1, e−βα�Ei ), (5)

where βα = 1/kBTα , α ∈ {L, R}, i ∈ {1, NU + 2} and we work
in units where kB = 1. Since the bulk spins are not in contact
with any baths, a dynamics involving random numbers is not
suitable for them and a deterministic energy-conserving dy-
namics is needed for understanding their time evolution. Such
kinds of dynamics generally fall under cellular automaton
[42,56]. We use two different types of cellular automaton for
our problem: first, the Q2R dynamics in Sec. II D and then
the CCA dynamics in Sec. II G. We now discuss the current
definitions required for the classical analysis.

B. Heat current definitions

To define the heat current flowing out of a bath, we look at
the nodal spin associated with it and identify all the configu-
ration pairs (η, ηi ) which differ by its flip. The corresponding
heat energy flow is then given as

Iα =
∑
(η,ηi )

�Ei
(
rα
η→ηi P(η) − rα

ηi→ηP(ηi )
)
, (6)

where the sum runs over all the configuration pairs that differ
by a flip of the ith spin with α ∈ {L, R} for i ∈ {1, NU + 2}.
Since the bulk spins are not in contact with the baths, their
flipping should cause no change in total energy of the system
for any of the dynamics used. As a result, Eq. (6) gives us
zero when applied for flipping of bulk spins. However, the
flip of bulk spins still leads to a transfer of energy from one
spin to other over a bond [43]. To better understand this, let us
consider the interaction energy associated with a spin i:

Ei = −Jiσiσi+1 − Ji−1σiσi−1. (7)

The above expression contains the two bond energy terms
associated with spin i. Since this spin does not interact with
the baths, it can flip only when the associated energy cost
given in Eq. (3) is either zero or can be compensated by
some other noninteracting internal energy of the system. In
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both cases, the individual bond energies change, signifying a
transfer of energy through the bonds and hence a heat current.
Focusing on the i–i + 1 bond, the energy transferred through
it on the flipping of the ith spin is

�Ei,i+1 = 2Jiσiσi+1. (8)

To find the associated heat current, we identify all the config-
uration pair transitions related by the flip of the ith spin but
focus only on the corresponding energy change on the i–i + 1
bond. This gives the following expression for heat current
passing through bulk spin i:

IU (D) =
∑
(η,ηi )

�Ei,i+1(rη→ηi P(η) − rηi→ηP(ηi )), (9)

where IU (D) is the heat current in the upper (lower) branch
depending on the position of the ith spin. Since the flipping of
the bulk spins is deterministic, it will either definitely happen
or is completely forbidden and, as a result, rη→ηi ∈ {0, 1},
unlike the stochastic flipping of the nodal spins. Finally, CM
occurs when the heat current in one of the branches is larger
than the current flowing between the system and the bath.
According to the convention used in the current definitions
above, we get CM if both branch currents have the same sign.

C. Information about methodology

We now discuss the methodology [57] used to find results
for the classical case. All the results shown in this paper are
for the steady state. The simulations for the classical case
are performed by randomly selecting a spin and flipping it
depending on a suitable dynamics. Here, we use a hybrid
dynamics involving the metropolis algorithm for the nodal
spins and the Q2R or CCA dynamics for the bulk spins.
Whichever the case, only one spin is allowed to flip per time
step. The system is allowed to relax to the steady state and
the required quantities are then calculated. The corresponding
numerical and analytical calculations are done by writing the
master equation and solving the transition matrix like the one
given in Eq. (11). Since we are only interested in the steady
state calculations, we require the eigenvector corresponding
to the eigenvalue 0 of the transition matrix. On applying
the probability normalization condition on this eigenvector,

FIG. 3. Illustration of the model system consisting of three spins
with NU = 1 and ND = 0.

steady-state probabilities can be obtained. These can then be
used to calculate the currents analytically.

Note on experimental parameter range. In the units that we
work in, for both classical and quantum systems, the effect on
the system due to the interaction with the baths is quantified by
an expression of the type eJ/T . This means that for any mean-
ingful dynamics to take place, the temperature of the baths
should correspond to the thermal energy of the same order
as J . The value of J is typically decided by the experimental
setup being studied. For example, in the experimental setup
studied by Coldea et al. [47], the value of J is in few mev,
which roughly corresponds to the thermal energy associated
with temperatures of order 10 K.

D. Q2R dynamics with symmetric upper and lower branch
interaction strength

We start our analysis by studying the Q2R dynamics
[43,44] for the flipping of the bulk spins. This is one of
the simplest models which allows us to have a deterministic
mechanism for time evolution of the bulk spins while pre-
serving the total energy of the system. The Hamiltonian for
this model is the same as the typical Ising Hamiltonian and is
obtained by substituting Ji = J in Eq. (2). According to this
dynamics, a bulk spin i can flip only if its neighboring spins
have opposite orientations, i.e.,

σi−1 = −σi+1. (10)

This ensures us that the total energy change of the system
in Eq. (3) is zero on flipping of the bulk spin. To better
understand the implications of the Q2R dynamics, we perform
an analytical study for the minimalistic model with just three
spins and NU = 1 and ND = 0 as shown in Fig. 3. This being
the simplest case, where the required asymmetric spin branch-
ing is possible, it offers a good starting point. The master
equation (4) for this system written in the matrix form is given
by

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P(↓,↓,↓)

P(↑,↓,↓)

P(↓,↑,↓)

P(↑,↑,↓)

P(↓,↓,↑)

P(↑,↓,↑)

P(↓,↑,↑)

P(↑,↑,↑)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−e−4JβL − e−4JβR 1 0 0 1 0 0 0

e−4JβL −3 0 1 0 1 0 0

0 0 −2 1 0 0 1 0

0 1 1 −3 0 0 0 e−4JβR

e−4JβR 0 0 0 −3 1 1 0

0 1 0 0 1 −2 0 0

0 0 1 0 1 0 −3 e−4JβL

0 0 0 1 0 0 1 −e−4JβL − e−4JβR

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P(↓,↓,↓)

P(↑,↓,↓)

P(↓,↑,↓)

P(↑,↑,↓)

P(↓,↓,↑)

P(↑,↓,↑)

P(↓,↑,↑)

P(↑,↑,↑)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)
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Solving the master equation (as discussed in Sec. II C), we
arrive at the following steady state probabilities:

P(↓,↓,↓) = e4JβL+4JβR

D1
, P(↑,↓,↓) = 3e4JβL + 5e4JβR

8D1
,

P(↓,↑,↓) = e4JβL + e4JβR

2D1
, P(↑,↑,↓) = 5e4JβL + 3e4JβR

8D1
,

P(↓,↓,↑) = 5e4JβL + 3e4JβR

8D1
, P(↑,↓,↑) = e4JβL + e4JβR

2D1
,

P(↓,↑,↑) = 3e4JβL + 5e4JβR

8D1
, P(↑,↑,↑) = e4JβL+4JβR

D1
.

(12)

where

D1 = 2e2J (βR+βL )D, withD

= (3 cosh(2J (βR − βL )) + e2J (βL+βR ) ), (13)

and the notation P(↑,↓,↓) specifies the probability of getting
the left spin up, middle spin down, and right spin down, re-
spectively. Using the above probabilities and the rates defined
in Eq. (5), the steady-state heat current flowing out of the left
bath in Eq. (6) becomes

IL = 8
3 J (e−4JβL P(↓,↓,↓) − P(↑,↓,↓))

= J sinh (2J (βR − βL ))/D. (14)

Similarly, the branch heat currents are found by using Eq. (9)
for the bulk spins in the upper and lower branches and have
the following expressions:

IU = J

3
sinh (2J (βR − βL ))/D,

ID = −2J

3
sinh (2J (βR − βL ))/D. (15)

From the above expressions for total and branch currents,
we see that all currents go to zero for equal temperatures of
baths as expected. For different bath temperatures, the branch
currents add up to give us the total current, i.e., IL = IU − ID.
The minus sign comes because of the convention used for
defining the current direction in the system (+ve when current
direction is left to right). Also, the magnitude of the total
current is always greater than the magnitude of the branch cur-
rents for any values of system parameters, so heat CM is not
possible for this system. Interestingly, the heat current flowing
through a branch is inversely proportional to the number of
spin-spin bonds in that branch. This is similar to Ohm’s law in
an electric circuit with the spin-spin bond behaving analogous
to a resistor. The corresponding simulation results for this
model are shown in Fig. 4. We see in Fig. 4(a) that for the
three-spin system, our analytical and numerical results match
perfectly with the simulation results. In Fig. 4(b), we plot the
current as a function of the temperature of the left bath TL,
keeping the temperature of right bath TR fixed. We find that the
heat currents are nonmonotonic functions of temperature dif-
ference, initially increasing sharply and then saturating for a
large temperature difference between the baths. To understand
why this is so, we put the limit of large temperature gradient
TL � TR in Eqs. (13)–(15). Since we have fixed TR = 1, this

(a) (b)

(c) (d)

FIG. 4. (a) Comparison of total current (IL) between analytical,
numerical, and simulation results for the three-spin system with
NU = 1, ND = 0, (b) variation of heat currents (I) with TL for NU =
1, ND = 0, (c) variation of IL with TL for an eight-spin system but
with different branch spin distributions, (d) variation of heat currents
(I) with NU for ND = 4, TL = 2, TR = 0.1. For all cases unless other-
wise specified, we use TR = 1, J = 1.

means that TL � 1 and βR ± βL ∼ βR. Using this, we get the
following asymptomatic expressions for currents:

IL ∼ J sinh(2JβR)

3 cosh(2JβR) + e2JβR
,

IU ∼
J
3 sinh(2JβR)

3 cosh(2JβR) + e2JβR
, ID ∼

−2J
3 sinh(2JβR)

3 cosh(2JβR) + e2JβR
.

(16)

We see that the above expressions are independent of βL(TL ),
hence the current saturates for large values of TL. We also note
from Fig. 4(c) that the total current flowing in the system does
not only depend upon the total number of spins but also on
how they are distributed in branches. In Fig. 4(d), we see that
the current decreases with an increase in the number of spins
which is consistent with our earlier proposition of the spin-
spin bonds behaving similarly to the resistors. From the above
analysis, it is clear that we will not get CM just by branch spin
number asymmetry for the Q2R dynamics, and a dynamics
with additional source of asymmetry is required. We study one
such dynamics in the next section.

E. Q2R dynamics with asymmetric upper and lower branch
interaction strength

Since just the branch spin number asymmetry is not suffi-
cient for generating CM, we now employ different spin-spin
interaction strengths in the upper and lower spin branches as
a new source of asymmetry in our model. This effectively
means that we have two different thermal wires for upper and
lower branches. The Hamiltonian for this system is given as

HS = −J1

Nu+1∑
i=1

σiσi+1 − J2

Ns∑
i=Nu+2

σiσi+1. (17)

034120-4



HEAT CURRENT MAGNIFICATION IN CLASSICAL AND … PHYSICAL REVIEW E 107, 034120 (2023)

(a) (b) (c)

(d) (e) (f)

FIG. 5. Variation of heat currents (I) with (a) TL , with (b) TL for ND = 2, NU = 3, with (c) TR, with (d) J2, with (e) NU for ND = 4, and
(f) variation of heat currents (I) and 〈σ2σ3〉 with TL . For all cases, unless otherwise specified we use J1 = 2, TL = 2, TR = 0.1, J2 = 1.9, ND =
3, NU = 2. In all figures where multiple regions of current circulation directions are present, we use green, gray, and yellow background colors
to indicate clockwise, parallel, and anticlockwise circulating currents, respectively. For all other cases, we use a white background.

Similar to the previous case, it is possible to analytically solve
this model for a three-spin system but the expressions are
too complicated to be included here. However, we can still
infer the general characteristic of this model by looking at the
simulation results given in Fig. 5. We see in Fig. 5(a) that
it is possible to get CM for asymmetric branch interaction
strengths in the Q2R model if the system parameters are in
optimal range. This deviates from our earlier observations
and tells us that for different interaction strengths in upper
and lower branches, we can no longer assume the bond as
being analogues to a resistor. In Fig. 5(b), we see that inter-
changing the number of spins in the branches still gives us
current circulation in the same direction but the magnitudes
of currents change. We also note [see Fig. 5(c)] that we need
the temperature of one of the heat baths to be an order below
the energy scale of the bond interaction energy to achieve
significant CM. Interestingly, as seen Fig. 5(d), increasing the
difference between interaction strengths of the branches does
not necessarily increase the relative CM and a possibility for
optimization of CM exists. We see that the direction of current
circulation changes depending on the relative magnitude of
interaction strength in upper and lower branches. This may
result in a scenario where no current flows through one spin
branch and total current equals one of the branch currents.
This happens for J2 ∼ 2 in Fig. 5(d). We also see in Fig. 5(e)
that the magnitudes of the currents decrease with an increase
in the number of spins and CM is possible even for the same
number of spins in the branches. To check how the CM de-
pends on the spin-spin correlation defined as

〈σiσ j〉 =
∑
{σ }

P({σ })σiσ j, (18)

where the sum runs over all the system configurations {σ } and
P(σ ) is the probability of getting a particular configuration σ .
We plot the currents as well as the correlation between spins
2 and 3, namely, 〈σ2σ3〉 in Fig. 5(f) and see that for the region
where we get CM, the spin-spin correlation is high and when
it decreases the magnification also decreases. We now discuss
a possible physical mechanism behind this.

F. Possible physical mechanism

To make sense of the results observed above, we study the
example of an energy transfer process in a four-spin system
with ‘NU = 1, ND = 1’ as shown in Fig. 6. The configuration
change steps corresponding to this process are

{↑↑↑↓} → {↓↑↑↓} → {↓↓↑↓} → {↓↓↑↑} → {↓↓↓↑},
(19)

FIG. 6. Example of a process which results in the transfer of
energy 2(J1 − J2) from left bath to right bath.
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where, as before, the arrows indicate the states of spins num-
bered from left to right. The spins numbered 1 and 3 interact
with the left and right baths, respectively, and follow Metropo-
lis dynamics while spins 2 and 4 follow Q2R dynamics. The
bond interaction strength is J1 and J2 for upper and lower spin
branches, respectively. The first step in the process involves
the flipping of the first spin via the Metropolis algorithm and
signifies a transfer of energy 2(J1 − J2) from the left bath to
the system [see Fig. 6(a)]. The next two steps in the process
are shown in Fig. 6(b) and involve the deterministic flipping
of the bulk spins via the Q2R dynamics that result in energy
transfer of magnitude 2J1 in the upper branch and −2J2 in the
lower branch successively. The final step involves the flipping
of the right nodal spin, which indicates an energy transfer of
magnitude 2(J1 − J2) from the upper system branch to the
right bath and simultaneously a energy transfer of 2J2 from
the upper branch to the lower branch [see Fig. 6(d)]. Looking
at the cumulative effect of all these steps, we get a process re-
sulting in transfer of energy 2(J1 − J2) from the left bath to the
right bath accompanied by the flow of 2J1 energy in the upper
branch and 2J2 energy in the lower branch, hence resulting
in CM and clockwise current circulation inside the system.
For the circulation of the same energy in the anticlockwise
direction, we will have to transfer the energy 2(J1 − J2) from
the right bath to the left bath, which has less probability
because of the lower temperature of the right bath, hence this
process gives us a net current circulation.

The other way to transfer energy from the left to right bath
includes a process where the energy transfer is of magnitude
2(J1 + J2). This gives us no current circulation, but since the
energy is of higher magnitude this process has less probability
of occurrence. Thus, overall, the process with current circula-
tion dominates the energy transfer and hence CM happens on
an average. But if the temperature of right bath is increased,
the probability of the reverse process also increases and cur-
rent circulation decreases, as seen in Fig. 5(b). Increasing the
gap between values of J1 and J2 increases the energy trans-
fer magnitude 2(J1 − J2), making the process less and less
probabilistic, hence reducing relative CM. Therefore, large
CM is achieved if the interaction strengths are of a similar
order of magnitude [see Fig. 5(c)]. The above mechanism also
explains why we will not get any heat current for symmetric
interaction strength in both branches as the net current due to
this process becomes zero. No such heat transfer process is
possible when we have the two nodal spins directly connected
to each other, so there will be no CM in such a case as well.
The corresponding simulation results for the system shown in
Fig. 6 are shown in Fig. 7. We see qualitatively similar results
for this case as in Fig. 5, though the value of the circulating
current is small pertaining to the symmetry in the number of
spins in the upper and lower branch.

G. CCA model

In the Q2R dynamics discussed above, the system Hamil-
tonian consisted of only the interaction energy terms and as
such the heat current in the bulk could only be transferred
through the passing of energy from one bond to the other.
We now work with a model which allows additional ways
for the system to possess energy. To achieve this, we use the

(a) (b)

FIG. 7. Variation of Heat Currents (I) with (a) TL , with (b) J2

for the system shown in Fig. 6 with ND = 1, NU = 1, For all the
cases, unless otherwise specified we use J1 = 2, TL = 2, TR = 0.1,

J2 = 1.9.

relatively complex CCA dynamics [43,44] for studying the
time evolution of bulk spins. This dynamics allows for a
change in interaction energy of the system by using an addi-
tional source of energy at each site, a local “demon” [44]. As
stated earlier, for studying this dynamics we need to modify
the total Hamiltonian and include an extra energy term to each
spin site. This term corresponds to the presence of kinetic
energy at each site and this results in the following total
Hamiltonian:

HS = −J1

Nu+1∑
i=1

σiσi+1 − J2

Ns∑
i=Nu+2

σiσi+1 + μ

i=Ns∑
i=1

σ̃i, (20)

where μ is the scaling parameter for the kinetic energy reserve
at each site and σ̃i represents the state of this new degree
of freedom with σ̃i ∈ {0, 1, 2, 3}. The presence of additional
energy reserves at each site leads to the possibility of more
bulk spins flips as some of the extra energy changes can be
compensated. Since the magnitude of energy supplied by the
kinetic energy reserve is in multiples of μ, the bulk spin i
can only flip under this dynamics if the following condition
is satisfied:

μσ̃i − �Ei ∈ {0, μ, 2μ, 3μ}, (21)

where, �Ei = 2Jiσi(σi−1 + σi+1) and it can take the values
�EU ∈ {0,±4J1} or �ED ∈ {0,±4J2} for upper and lower
branch spins, respectively. The above equation tells us that
the bulk spin i can only flip if its kinetic energy reserve can
compensate for the corresponding energy cost. So, the dynam-
ics is still deterministic and total energy is conserved for the
flip of a bulk spin. A consequence of the above condition is
that for CCA to allow additional flips than Q2R, the values
μ and J1, J2 must be related. To illustrate this, we give a few
particular examples. If we choose J1 = 2, J2 = 1, and μ = 4,
then CCA dynamics can be applied for both branches. Since,
for μ = 4, μσ̃ ∈ {0, 4, 8, 12}, |�EU | ∈ {0, 8}, and |�ED| ∈
{0, 4}. However, for some other value, say, μ = 2, we have
μσ̃ ∈ {0, 2, 4, 6}, |�EU | ∈ {0, 8}, and |�ED| ∈ {0, 4}. Hence,
for the upper branch, we essentially have the Q2R dynamics
because the condition in Eq. (21) is only satisfied for �EU =
0, but for the lower branch CCA dynamics still applies. We
can see that irrespective of the particular values of J1, J2,
and μ, the above condition is always satisfied for zero energy
change and the Q2R dynamics always remains embedded in
the CCA dynamics. Since the interaction energy of the spin
bonds still remains the same, flipping of a spin signifies the
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(a) (b)

(c) (d)

FIG. 8. Variation of Heat Currents (I) for the CCA model with
(a) TL for J1 = J2 = 1, with (b) TL , with (c) TR and (d) with μ. For all
the cases unless otherwise specified J1 = 2, TL = 2, TR = 0.1, J2 =
1, ND = 3, NU = 2, and μ = 4.

same transfer of energy as before but that energy could come
either from the neighboring bond or the kinetic energy reserve.
The expressions for heat currents remain the same and are still
given by Eqs. (6) and (9). Simulating this model gives us the
results shown in Fig. 8.

In Fig. 8(a), we see that it is not possible to get CM even
in the CCA model just by the branch spin number asymmetry
and the total heat current distribution still has Ohm’s law like
characteristics for symmetric upper and lower branch interac-
tion strengths. Similar to the earlier cases, we see in Fig. 8(b)
that we can get CM for this model if the spin-spin interaction
strength differs in upper and lower branches. In Fig. 8(c),
we see that the CM is possible only when the temperature
of one of the baths is an order below the interaction energy
of the bonds. Finally, on studying the variation of current
with μ in Fig. 8(d), we see that the steady-state currents are
independent of the values of μ, even though CCA dynamics
allows additional flips when μ ∈ {2, 4, 8}. This means that
we get similar steady-state heat currents for both CCA and
Q2R models for similar values of system parameters. The
extra momentum term does not contribute critically to the
steady-state heat currents. This in agreement with what was
observed by Saito et al. [43].

III. QUANTUM ANALYSIS

We now want to study the effects of branch spin num-
ber asymmetry on the heat current transport in the quantum
domain. To do this, we perform a complementary study to
the one performed by Xu et al. [31]. It was shown by them
that it is possible to get heat CM in a quantum system with
four spins interacting via modified Heisenberg exchange in-
teraction if the on-site magnetic field is inhomogeneous and
the total magnetization of the system is conserved. How-
ever, it is difficult to realize this system experimentally as

FIG. 9. Illustration of the quantum spin system consisting of five
spins with NU = 2 and ND = 1.

applying different magnetic fields at different sites for such
small systems is, in general, a difficult task. So, in place of
the inhomogeneous magnetic field, we use unequal number
of spins in branches similar to the classical models. This will
also help us to distinguish the CM in quantum spin systems
from the classical ones.

A. The model

We study a five-spin quantum system containing unequal
branch spin numbers as shown in Fig. 9. The spins are in-
teracting with each other via a slightly modified Heisenberg
XXZ interaction [31] and the system Hamiltonian is given as

ĤS = J
∑

i

(
σ̂ i

xσ̂
i+1
x + σ̂ i

yσ̂
i+1
y

) + �σ̂ i
z′ σ̂

i+1
z′ , (22)

where J is the interaction strength between the x and y com-
ponents of neighboring spins, � is called the asymmetry
parameter of the Heisenberg XXZ interaction and signifies
the interaction strength between z components of the spins, σ̂ i

α

denotes the α ∈ {x, y, z} component of the usual Pauli spin- 1
2

matrix for the ith spin. The unit operators are denoted by Î

and σ̂ i
z′ = σ̂ i

z +Î
2 . This slight modification to the usual XXZ

interaction is done so the transition to the fermionic system
via the Jordan Wigner transformation [58] does not lead to
a �-dependent local chemical potential [31]. This system is
interacting with two Bosonic baths with the following Hamil-
tonian:

ĤBi =
∑

n

ωnâi†
n âi

n, (23)

where âi†
n (âi

n) is the creation (destruction) operator of the nth
mode of the ith bath. To achieve the spin branch configuration
given in Fig. 9, the spins numbered 1 (4) should interact with
the left (right) baths, respectively. The system bath interaction
is chosen to preserve the initial magnetization of the system
and has the form

ĤSBL = σ̂ 1
z ⊗ √

γ
∑

n

cL
n

(
âL

n + âL†
n

)
,

ĤSBR = σ̂ 4
z ⊗ √

γ
∑

n

cR
n

(
âR

n + âR†
n

)
, (24)

where
√

γ is the coupling strength between system and the
baths and its value is always taken as positive. Though the
operator σ̂z can’t change the magnetization of a spin, it can
still lead to a transfer of energy as the eigenstates of the
Hamiltonian and σ̂z are not the same.
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B. Master equation

To study the dynamics of the system, we again impose
Markovian time evolution and hence the density matrix of our
system satisfies a master equation of the type [59],

d

dt
ρ̂(t ) = LLρ̂(t ) + LRρ̂(t ), (25)

where ρ̂(t ) is the density matrix of the system of interest at
time t and LL(R) is the Liouvillian operator of the left (right)
bath. Specifically, for the analysis in this paper, the Redfield
master equation [59,60] is used. This is because the more
simpler Lindblad master equation doesn’t give the correct
coherences in the steady state and hence we obtain incorrect
branch currents in that case [31,61]. The Redfield master
equation is used for the weak coupling regime between the
system and the baths and is correct only up to order γ [59,60].
Its form for our model in the Schrödinger picture and in the
energy basis is given as (working in the units where h̄ = 1)

˙̂ρnm = − i�nmρ̂nm + γ
∑
i, j

⎛
⎝ŜL

niŜ
L
jm

[
W̃ L

jm + W L
ni

]

− δm j

∑
l

ŜL
nl Ŝ

L
liW

L
li (0) − δni

∑
l

ŜL
jl Ŝ

L
lmW̃ L

jl (0)

)
ρi j

+ right bath terms. (26)

Here ρ̂nm is the matrix element of the system density matrix
and �nm is the energy difference between the nth and mth
energy levels or �nm = En − Em. ŜL(ŜR) is the operator of the
system that interacts with the left (right) bath and ŜL,R = σ̂ 1,4

z
for our case. Finally, the W matrices depend on the system
energy spectrum and the heat bath correlations. They are
defined as

W L
i j =

∫ ∞

0
dte−i�i j tCL(t ), W̃ L

i j =
∫ ∞

0
dte−i�i j tCL(−t ),

(27)

with CL(t ) = TrB (B̂L(t )B̂Lρ̂B(0)), B̂L = ∑
n cL

n (ân + â†
n), and

ρ̂B(0) is the equilibrium density matrix corresponding to the
bath. Ignoring the Lamb shift terms [59,60], W̃ L(R)

j,i = W L(R)
i, j

and we can write

W L(R)
i, j =

{
J (�i j )N (�i j, TL(R) ) �i j > 0
J (|�i j |)(1 + N (|�i j |, TL(R) )) �i j < 0,

(28)

where N (ω, TL(R) ) is the Bose-Einstein distribution function,

N (ω, TL(R) ) = 1

eω/TL(R) − 1
, (29)

and we choose

J (ω) = ωe−ω/�C , (30)

as the spectral density of the baths. We fix �C = 10 without
loss of generality. Since the above equation is only correct up
to the order γ , we take

√
γ = 0.1 without loss of generality.

The functional form of the bath spectral density and numerical
values of �C and γ are similar to the ones taken in Ref. [31].

C. Definitions

We now define the physical quantities required for studying
the quantum model. Similar to the classical case, all the results
are calculated for the steady state and we denote our steady-
state density matrix as

ρ̂S = lim
t→∞ ρ̂(t ). (31)

The expression for the current flowing through a branch is
derived by using the Heisenberg equation of motion [59] for
the bond energy operator between spins l and l + 1. The
resulting operator for the current flowing through site ‘l of
our system is given as [31]

Î[l] = i[ĥl−1,l , ĥl,l+1], (32)

with the bond energy operator inferred from Eq. (22) as

ĥl,l+1 = J
(
σ̂ l

xσ
l+1
x + σ̂ l

y σ̂
l+1
y

) + �σ̂ l
z′ σ̂

l+1
z′ . (33)

Thus, the average steady-state heat currents for the lth spin in
the upper (lower) branch become

IU (D) = Tr(Î[l] · ρ̂S ), (34)

Average current flowing out of a bath is derived from the
Liouville operator and is given as [2,7]

〈IL〉 = Tr[LLρ̂SĤS]. (35)

Magnetization of the system is defined with respect to the σ̂z

operator of each spin. To avoid confusion, we will use the
notation Ns(NE↑, NG↓), where Ns is the total number of spins,
NE (NG) is the number of spins in excited (ground) eigenstate.
The average magnetization of a spin i is defined as

Mi = Tr
(
σ̂ z

i · ρ̂S
)
. (36)

The spin-spin correlation along the z direction is given as〈
σ̂ z

i σ̂ z
j

〉 = Tr
(
σ̂ z

i σ̂ z
j · ρ̂S

)
. (37)

We also use the concurrence [62] as a measure of entangle-
ment between two spins; it is given by the following formula:

C(ρ̂ ) = max[0, λ1 − λ2 − λ3 − λ4], (38)

where λ’s are the eigenvalues in decreasing order of the matrix
R̂ =

√√
ρ̂ρ̃

√
ρ̂ and ρ̂ is the reduced density matrix for the

two spin subsystems of interest with ρ̃ = (σ̂y ⊗ σ̂y)ρ̂∗(σ̂y ⊗
σ̂y) and σ̂y being the usual Pauli Y matrix. We will discuss
in detail how the CM influences the correlations between the
spins and the concurrence later.

Finally, we introduce the concept of ergotropy [63], which
is defined as the maximum amount of work extractable from a
quantum state under unitary time evolution. The state which is
attainable by the unitary transformation and through which no
work is extractable is called the passive state (for example, an
equilibrium state). To find it, we first need to write the spectral
decomposition of the steady-state density matrix as well as the
system Hamiltonian in the following manner:

ρ̂S =
∑

i

ri|ρi〉〈ρi|, with ri � ri+1,

Ĥs =
∑

i

Ei|Ei〉〈Ei|, with Ei � Ei+1, (39)
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where ri, Ei and |ρi〉, |Ei〉 are the eigenvalues and corre-
sponding eigenvectors of the density matrix and the system
Hamiltonian, respectively. Given the above decompositions,
the passive state (ρ̂passive) is defined as [31,63]

ρ̂passive =
∑

i

ri|Ei〉〈Ei|. (40)

The ergotropy (ε) is then defined as

ε = Tr(ĤS · ρ̂S ) − Tr(ĤS · ρ̂passive)

=
∑
i, j

riE j (|〈ρi|Ej〉|2 − δi, j ). (41)

From the above discussion, we can infer that ergotropy can be
used to quantify how far a system is from the passive state.

D. Information about numerical methodology

For solving the master equation given in Eq. (26), we again
write it in the matrix form, though we use the more effective
numerical method for the Redfield master equation defined
in Ref. [55]. Numerically solving this equation by replacing
the time derivative terms with 0 and imposing the constraint
of fixed initial magnetization then gives us the steady-state
density matrix [57]. Once we have the steady-state density
matrix, all the quantities of interest can be evaluated from
the definitions given in Sec. III C. It is important to note
that the Redifield master equation is not guaranteed to be
trace preserving and totally positive [59], so we also check
if the obtained solutions have negative probabilities. For the
parameter range we work on, no such regions were found.
We now discuss in detail the results for the quantum model
below.

E. Results

As seen in Fig. 10, large CM can be achieved just by
having an unequal number of spins in the branches if the
total magnetization is conserved and the asymmetry param-
eter � is in the suitable range. In Fig. 10(a), on plotting the
currents with the asymmetry parameter � for the five-spin
setup 5(3↑2↓), we see that CM occurs for positive values
of asymmetric interaction parameter �. We also see that the
onset of CM is marked by a sudden dip in the total current
near � ∼ 0. Interestingly, on reversing the magnetization via
a configuration change 5(3↑2↓) → 5(2↑3↓), the total current
remains the same and CM also occurs for a certain parameter
range but the branch currents drastically change, as seen in
Fig. 10(b).

In Fig. 10(c), we observe that the dip in the total current
is sharper for a six-spin system and is accompanied by CM
in a narrow range. Finally, on plotting the currents with the
temperature of the left bath TL while keeping the temperature
of right bath TR fixed in Fig. 10(d), we see that the mag-
nitude of currents initially increase nonmonotonically with
an increase in the value of TL, but they plateau for larger
temperature differences. On the other hand, the corresponding
CM initially increases for a small region, reaches a maximum,
and then starts decreasing before finally vanishing at some
finite temperature difference. We also look at the spin-spin
correlation along the z direction and concurrence between

(a) (b)

(c) (d)

FIG. 10. Variation of heat currents (I) with the asymmetry pa-
rameter � for (a) setup 5(3↑2↓), (b) setup 5(2↑3↓), (c) a six-spin
system with setup 6(4↑2↓) with NU = 3, ND = 1, and (d) variation
of heat currents (I), correlation, and concurrence between spins 2 and
3 with TL for � = 2.1. For all cases unless otherwise specified, we
work with the setup 5(3↑2↓) and TL = 2, TR = 1, J = 1. In (d), we
scale the correlation and concurrence by a factor of 0.2 for the visual
convenience.

spins 2 and 3 in Fig. 10(d) to check the dependence of CM
on correlations. We see that similar to the CM, correlation
and concurrence initially increase for a small region and then
start declining with an increase in temperature of the left
bath. Concurrence shows a sharper decline as compared to
the spin-spin correlation. Note that 〈σ̂ z

2 σ̂ z
3 〉 is negative because

of the antiferromagnetic interaction between the spins. We
try to understand the above observations in the following
discussion.

We discuss only the five-spin setup 5(3↑2↓). The results
in Fig. 10 above showed that the onset of current circulation
is accompanied by a dip in total current near � ∼ 0. To
understand why the total current drops, we study the prop-
erties of the occupied energy levels. It turns out that the
nonzero occupancy is seen in only ten energy levels. These
levels correspond to ten different configurations having the
same magnetization. Out of these, only six energy levels are
nondegenerate, numbering these energy levels in ascending
order of their energies we plot E1, E2, E3, E4, E5, E6 with �

in Fig. 11(a) and observe that the energy levels E4 and E5

intersect each other at � = 0. The other energy levels are
sufficiently far from each other in the plotted region. This
means that the system loses one phonon transfer channel
through which heat current can pass at � = 0 and, as a result,
the total heat current decreases. To check what happens to
the probability of occupancy corresponding to these energy
levels, we plot the variation of probability of occupancy with
� for the same range in Fig. 11(b). We see that P2 suddenly
drops and P3 increases, indicating population inversion be-
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(a) (b) (c)

(d) (e) (f)

FIG. 11. (a) Variation of energy levels with �, (b) variation of occupation probability (P) with �, (c) variation of individual spin
magnetization (Mk) with �, (d) variation of ergotropy (ε) with �, variation of (e) energy levels and (f) currents for a larger range of asymmetry
parameter �. Note that only the magnitude of currents are considered for the log plot in (f) but the background colors for parallel, clockwise,
or anticlockwise circulating currents are kept. For all cases unless otherwise specified, we work with the setup 5(3↑2↓) and TL = 2, TR = 1,
J = 1.

tween energy levels E2 and E3 near � = 0. The probability
of occupancy for other energy levels behaves in the expected
way with higher energy levels having lesser probability of
occupancy and vice versa. This can only happen if the system
is far from the passive state defined in (40) and seems to
suggest that the additional degeneracy in the two energy levels
and the constraint of fixed initial magnetization is forcing
the system to settle at states that are unfavorable, according
to a passive state. We also plot the variation of individual
spin magnetization with � in Fig. 11(c) and see that though
the total magnetization remains fixed throughout this region,
individual spin magnetization behaves in an atypical manner
near � ∼ 0 with local minima or maxima dipping for each
spin. To support our observations further, we evaluate the
ergotropy as given in Eq. (41) but only consider the energy
levels with nonzero probability of occupancy. Plotting the
variation of ergotropy with � in Fig. 11(d), we see that the
ergotropy suddenly starts rising around � ∼ 0, indicating the
system does move farther away from the passive state in this
region. Also, on increasing the temperature of the left bath,
the ergotropy increases as the system moves even further away
from the passive state due to the increase in the temperature
gradient.

All the above results seem to suggest that whenever two
energy levels intersect, the physical observables of our system
behave in an atypical manner. Even for a larger range of the
asymmetric parameter � ∈ [−15, 15], very similar features
are seen in energy levels and currents as shown in Figs. 11(e)
and 11(f). This shows that whenever nondegenerate energy
levels come close to each other, a transition from parallel to
circulating currents can occur in the system. Though the above

discussion does help us to predict suitable conditions for
current circulation, namely, ergodic constraints and additional
degeneracies, we note that analyzing the phonon transfer
mechanism between different energy levels might help us to
get better insights into CM in quantum systems, but this is
beyond the scope of the present paper [2,7].

IV. CONCLUSION

To conclude, we study heat CM due to branch spin number
asymmetry in classical and quantum spin systems. We find
that CM is absent in the classical Q2R model for symmetric
branch interaction strengths. We then employ different spin-
spin interaction strengths in the upper and lower branches
and show that this inequality is enough to generate as well
as manipulate the CM. This happens even if we have the same
number of spins in both branches. We then provide a possible
physical mechanism responsible for CM in such systems.
Similar features and heat current values are found if we use
the CCA model instead of the Q2R model. This shows that
the presence of additional momentum energy in the system
does not contribute appreciably to the steady state currents.
This is in accordance with earlier studies with such dynamics.
We then study a five spin quantum system with modified
Heisenberg XXZ interaction and preserved magnetization us-
ing the Redfield master equation. We, with detailed numerical
analysis, show that it is possible to generate CM just by the
branch spin number asymmetry in this model for a suitable
range of asymmetry parameter �. Our results indicate that the
onset of CM is accompanied by a sudden dip in total current,
which may be triggered due to the intersection of two energy
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levels for certain values of �. It is seen that this value of �

also corresponds to population inversion and atypical trends
for other physical observables, e.g., magnetization. Since the
two factors, namely, the ergodic constraint due to fixed mag-
netization and additional degeneracies in the system push the
system away from the passive state, we deduce that they may
be the main causes for CM. This deduction is also supported
by the ergotropy evaluations for our system. It is also seen that
the total current is immune to the inversion of individual mag-
netization of the spins while the branch currents are not. We
also find that for both the classical and quantum models, CM
is only observed when temperature gradient and intrasystem
interaction strength have similar orders of energy. This also
points to the importance of correlation between spins required

for CM. In further studies, the relation of CM with ergodicity
can be studied as both the classical and quantum systems
considered here have nonergodic dynamics [44,46], and the
effect of different spectral densities can also be explored in
the quantum case.
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