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Linking fluctuation and dissipation in spatially extended out-of-equilibrium systems
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For systems in equilibrium at a temperature T , thermal noise and energy damping are related to T through the
fluctuation-dissipation theorem (FDT). We study here an extension of the FDT to an out-of-equilibrium steady
state: a microcantilever subject to a constant heat flux. The resulting thermal profile in this spatially extended
system interplays with the local energy dissipation field to prescribe the amplitude of mechanical fluctuations.
Using three samples with different damping profiles (localized or distributed), we probe this approach and
experimentally demonstrate the link between fluctuations and dissipation. The thermal noise can therefore be
predicted a priori from the measurement of the dissipation as a function of the maximum temperature of the
micro-oscillator.
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I. INTRODUCTION

Thermally induced fluctuations and energy dissipation are
intimately linked quantities: they both arise from the cou-
pling of a system with its environment. When an unsolicited
mechanical system has a high (kinetic, potential) energy, for
example, it will be damped by its environment, progressively
losing this energy to reach a minimum of potential. The en-
ergy transfer occurs in the opposite direction if the system is
too quiet: random driving from the environment, acting as a
thermostat at temperature T , induces fluctuations known as
thermal noise in the observables of the system. In statistical
physics, the equilibrium is defined by the steady state where
on average the energy fluxes cancel out. The amplitude of the
thermal noise is then accurately described by the fluctuation-
dissipation theorem (FDT), which states that the magnitude of
fluctuations is proportional to temperature and dissipation [1].
From the FDT, one can accurately describe the thermal noise
of any system in equilibrium, such as the Johnson-Nyquist
noise in electrical impedances [2,3], the Brownian motion of
particles in a fluid [4,5], the mechanical noise of atomic force
microscopy (AFM) cantilevers [6], and the thermally induced
surface waves on a liquid [7].

In real life, equilibrium is, however, the exception rather
than the rule: living matter, operating devices, and unsteady
systems are all out of equilibrium and experience unbalanced
energy fluxes with the environment. In many cases, their ran-
dom fluctuations due to their temperature cannot be described
in a universal way. Extensions of the FDT would be useful
to understand the thermal noise in such ubiquitous situations.
This is especially pertinent for mesoscopic scales, where ther-
mal noise and common deterministic operations have a similar
amplitude, or high-precision measurements, where any noise
is a source of uncertainty that should be avoided or at least
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characterized. We are interested here in a simple case: a me-
chanical system subject to a steady heat flux. The situation is
pertinent for microdevices whose position is measured with
a laser, such as AFM cantilevers [8,9] heated by absorbing
a fraction of the light. It is also meaningful for gravitational
wave interferometers [10,11], where a heat flux occurs in
the suspension system of the mirrors of the instrument under
intense laser radiation. In both cases, thermal noise degrades
the performance of the apparatus, and should be minimized.
Once thermal fluctuations are understood, they can also be
turned into a measurement tool: they can, for example, help
identify dissipation sources, turning the usual annoyance into
a useful signal.

In this article, we tackle the thermal noise of micro-
cantilevers subject to a steady heat flux. As in previous
works [12–14], we use an extension of the FDT [12,15,16]
to deal with these spatially extended systems presenting a
temperature profile, rather than a single temperature corre-
sponding to the thermostat. In these studies, we assumed
a dissipation mechanism for elastic energy (located in a
single point [12–14], or uniformly distributed along the can-
tilever [12]) and demonstrated that the measured thermal noise
amplitude was compatible with such hypotheses for damping.
As a further insight into this playground, we measure here
the dissipation in parallel to the fluctuations on three different
samples having distinct damping mechanisms. We show that
the dependency of the dissipation and the fluctuations on the
external heating is reasonably captured by the model, and con-
clude that both quantities are indeed linked by the proposed
extended FDT.

The article is organized as follows. In Sec. II, we first
present the methods: samples, measurement device, mechani-
cal modes of the cantilevers, experimental procedure to create
the nonequilibrium steady state (NESS), extraction of the
temperature field, thermal noise amplitude and global dissi-
pation, and finally the expected link between fluctuation and
dissipation. In Sec. III, we present the measurement results for
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FIG. 1. Experimental setup: The deflection and torsion of a can-
tilever are captured thanks to the optical lever technique. The red
laser beam (1 mW at 633 nm), focused on the cantilever tip, is re-
flected towards the four-quadrant photodiode. This sensor records the
temporal signals of deflection, δ(t ), and torsion, θ (t ). A green laser
beam (0–12 mW at 532 nm) focused close to the tip of the triangular
end of the cantilever acts as the heater. A camera is used to visualize
the position of both lasers on the sample. The cantilever, in vacuum
at 5 × 10−6 mbar, is monolithically clamped to its macroscopic chip,
which is thermalized at room temperature, T min.

the three samples, and check the proposed framework. Finally,
we briefly discuss the success and shortcomings of the model
before concluding in Sec. IV.

II. METHODS

The experimental setup is depicted in Fig. 1. The physical
system under study is a silicon microcantilever, whose thermal
fluctuations are measured close to its free end with the optical
lever technique [8,17]. A red laser beam (633 nm) is focused
with normal incidence on the cantilever, and its reflection
is collected with a four-quadrant photodiode. A green laser
(532 nm), focused close to its free end, is partially absorbed
and acts as a heat source, creating a temperature profile along
the sample. The cantilever, in vacuum at 5 × 10−6 mbar, is
monolithically clamped to its macroscopic chip which is ther-
malized at room temperature, T min.

A. Microcantilevers

The physical system consists of silicon microcantilevers
of typical length L = 500 µm, with width W and thickness
H which depend on the sample. We discuss here the three
samples considered in this work.

TABLE I. Cantilevers studied in this article and their
characteristics.

Sample Length, Width, Thickness, Ta2O5 coating
reference L ( µm) W ( µm) H ( µm) (each side) ( µm)

C100 500 100 1
C30 500 30 2.67
C30C 500 30 2.67 0.3

The first sample is a silicon cantilever, W = 100 µm wide
and H = 1 µm thick (Nanoworld Arrow TL-8 [18]), with a
triangular free end such as the one sketched in Fig. 1. This
cantilever is of particular interest because it is the same sample
studied in the previous NESS experiments in the group, first
focusing on the flexural fluctuations [12] and more recently
adding the torsional ones [13]. In both these works it is
demonstrated how, Brownian fluctuations-wise, the cantilever
is almost insensitive to the thermal flux it withstands. In this
work we intend to complete the previous work by adding the
study of the mechanical dissipation of the sample alongside
its thermal fluctuations. We refer to this sample as C100.

The second sample is a silicon cantilever, W = 30 µm wide
and H = 2.67 µm thick (BudgetSensors AIO-TL [19]), also
with a triangular tip at its end. This sample, albeit being
made purely of silicon as C100, shows a substantially different
behavior with respect to C100. Indeed, the system is sensitive
to the temperature profile along the system, from both fluctua-
tions and dissipation points of view. We refer to this cantilever
as C30.

The third sample is the same C30 cantilever, additionally
coated with a Tantala (Ta2O5) thin layer by the Laboratoire
des Matériaux Avancés (LMA, Lyon, France) [20,21]. With
this sample, we study the effect of a distributed dissipa-
tion (due to the coating) on the thermal fluctuations. This
cantilever is the same one used in past experiments of the
group [12], where it was shown how the flexural thermal
noise is strongly dependent on the temperature profile im-
posed on the system. In this work, we expand these results
for a torsional resonance mode and analyze the behavior of
the dissipation. We refer to this sample as C30C.

A summary of the characteristics of the different samples
can be found in Table I. A short discussion on geometrical
differences between cantilevers C30 and C100 is given in the
Appendix.

B. Experimental setup

As illustrated in Fig. 1, the red laser (1 mW at 633 nm)
enters the system through a half-wave plate (λ/2) which tunes
its polarization so that after passing through the polarizing
beam splitter (PBS) the light is directed towards the cantilever.
It then passes through a quarter-wave plate (λ/4), a dichroic
beam splitter, and a converging lens ( fcl = 30 mm), which
focuses the beam on the cantilever tip. The waist diameter
is tuned to roughly 100 µm to maximize sensitivity [22]. The
lens is also used as the light port to the vacuum chamber.
Light is reflected back on the same path from the cantilever.
The second passage through the quarter-wave plate rotates the
polarization perpendicular to the initial one, and therefore the

034118-2



LINKING FLUCTUATION AND DISSIPATION … PHYSICAL REVIEW E 107, 034118 (2023)

return beam passes straight through the PBS. A final beam
splitter (BS) divides it towards an optical camera, used to
position the lasers on the cantilever, and the four-quadrant
photodiode. A motorized two-dimensional translation plat-
form controlling the position of the sensor in these directions
is used in the calibration step (see Ref. [13] for details).

The green laser beam (0–12 mW at 532 nm) focused close
to the tip of the cantilever acts as the heater. It is directed
towards the cantilever by the dichroic mirror and through the
lens. Part of the intensity is absorbed and creates a heat flux,
and another part is reflected and runs through the same path
out of the system. The two laser spots do not overlap in order
to avoid mutual disturbances. We discuss the temperature of
the cantilever under the action of the heater in Sec. II E.

C. Mechanical resonance modes

The photodetector captures four light power signals, which
combined give two contrasts Cx and Cy (ratio of the difference
over the sum along the x and y axes, respectively). These
signals are proportional to the angle of the beam upon reflec-
tion on the cantilever. The contrast Cx leads to the calibrated
flexural angle ϑ (in radians), which can be converted to the de-
flection δ (in meters), while the contrast Cy is proportional to
the torsional angle θ (in radians). The conversion factors and
the calibration are carefully discussed in Ref. [13]. Computing
the power spectrum density (PSD), we identify the normal
modes of the cantilever, which are shown in Fig. 2. The
spectra are shot-noise limited and the thermal noise-driven
resonance peaks have a high signal-to-noise ratio.

Typical measurements allow us to explore a wide range
of frequencies, where the observable number of modes de-
pends on the geometry of the sample. In the case of C100,
this is up to 11 flexural and 8 torsional modes; for the C30
and C30C cantilevers we can detect up to 5 flexural and
1 torsional mode. In order to ensure we correctly identify
the resonances, we simulate the cantilever’s eigenmodes in
COMSOL [23]. Indeed, due to the imperfect orientation of
the photodetector, torsional signals are visible in the flexural
PSD and vice versa (see Fig. 2), and the simulation helps us
qualitatively distinguish the two motions, especially at high
frequency where amplitudes are intrinsically small and vanish
close to nodes. Another important contribution of these sim-
ulations is to prove we can access all the resonances in the
available frequency range: this is indeed true except for one
lateral mode (oscillations in the x-y plane), undetectable with
our setup.

Due to experimental constraints, in this article, some
modes are excluded from the analysis. Flexural mode 1 is of-
ten discarded because of self-oscillations [13,24], while some
modes can be undetectable due to the probing point being
close to a node of sensitivity [13].

D. Experimental procedure

In order to probe the thermal noise of the cantilever in
a NESS, we increase the temperature at the tip of the sam-
ple through the increase of the injected power P. We then
perform a power ramp, going from 0 to 12 mW and back,
in order to compare the results at increasing and decreasing

FIG. 2. PSDs of the (a) thermal-noise-induced deflection and
(b) torsion of the cantilever, where each resonance is identified as a
sharp peak with a quality factor in the range of tens of thousands. The
modes can safely be considered decoupled and each can be treated as
a simple harmonic oscillator. In the inset, a zoom-in around the sec-
ond flexural resonance shows how the resonance is redshifted with
the laser power increasing. The shapes of the modes are simulated
in COMSOL [23] and shown as snippets corresponding to each peak,
yielding resonance frequencies very close to the ones found in our
experiment and in agreement with the Euler-Bernoulli description.

temperature. At each power we record the Brownian motion
of the cantilever. In order to reduce the statistical uncertainty
on the measured noise, at each power step we record a large
number Nmeas of temporal signals (between 40 and 75), each
tmeas = 2 s long and sampled at 2.5 MHz.

E. Temperature

The absorbed power of the green laser, placed at the tip
of the cantilever, creates a heat flux along the length of the
sample. This generates a temperature profile T (x) between the
maximal temperature at the tip of the sample, T max, and the
temperature at the base, T min = 295 K, which is kept constant
by the contact with the macroscopic chip acting as the thermal
reservoir. On the other side, T max and T (x) vary with the
absorbed power according to Fourier’s law. The average tem-
perature T avg = ∫ L

0 dx T (x)/L is used to characterize the the
nonequilibrium state of the cantilever: the measured ampli-
tude of the thermal fluctuations in a NESS at T avg is compared
to the one the system should have if it was in equilibrium at
the same T avg. Its estimation is thus paramount.
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As shown in Fig. 1, the flexural resonance frequencies
fn are sensitive to the temperature changes in the cantilever,
mostly through the variations of the Young modulus of silicon,
Y . While this is discussed in detail in Ref. [25], we briefly
recall it here. In a first approximation, the frequency shift
� fn = fn − f min

n can be modeled as

� fn

f min
n

= 1

2

∫ L
0 dx �Y (T (x))ψn(x)2

Y min
∫ L

0 dx ψn(x)2
= gn(T ), (1)

where �Y = Y − Y min and the superscript min stands for the
reference value of the quantity at T min. The function ψn(x) =
φ′′

n (x) is the curvature of the normal mode φn considered. The
functions gn are governed by the temperature dependency of
the Young modulus, which for silicon is tabulated [26]. In
the case of C30C, the cantilever is the same sample used in
Ref. [12], where a calibration of gn was performed. Finally, in
Ref. [25] it is shown how inverting the functions gn yields
access to the average temperature of the cantilever at each
measured frequency shift. Therefore, for all the thermal noise
measurement presented in this work we can associate a T avg

at each imposed heating power.
The estimation of the uncertainty on T avg is discussed in

Refs. [13,14,25]. In a nutshell, for each of the Nmeas ∼ 50
time recordings at a specific power, we retrieve with a fit
of the thermal noise peak the value of fn for each mode n.
From the uncertainty on the fit parameter, the dispersion be-
tween the modes, the statistical uncertainty computed on the
Nmeas recordings (computed as their standard deviation over√

Nmeas − 1), the uncertainty on the function gn, and standard
error propagation rules, we deduce the uncertainty on T avg.

F. Thermal noise

When the heating power is zero, the cantilever is con-
sidered in thermal equilibrium with the environment at a
temperature T min. As we can see from Fig. 2, the resonances
are well separated in frequency, have a high signal-to-noise
ratio, and a quality factor larger than 1000. Hence, we can
model each flexural and torsional mode as an independent
oscillator, and thus we can apply the equipartition principle
to each resonance:

kn
〈
δ2

n

〉
EQ = κm

〈
θ2

m

〉
EQ = kBT min, (2)

where kB is the Boltzmann’s constant, and

kn = meffω2
n, κm = Jeffω2

m, (3)

are the flexural (index n) and torsional (index m) stiffnesses,
respectively, with Jeff = meffW 2/3 the inertial moment of
the beam, meff its effective mass, and ωn,m = 2π fn,m. The
subscript EQ emphasizes here that the system is considered
in equilibrium (implying that we neglect the absorption of
the red laser beam). The quantities 〈δ2

n〉, 〈θ2
m〉 are the thermal

fluctuations, calculated as the area under the resonance peak
once the background noise contribution is subtracted [13].

When the cantilever is in a NESS due to the presence of the
heat flux, we extend Eq. (2) to define a fluctuation temperature

T fluc as

T fluc
n ≡ kn

〈
δ2

n

〉
kB

=
(

fn

f min
n

)2
〈
δ2

n

〉
NESS〈

δ2
n

〉
EQ

T min,

T fluc
m ≡ κm

〈
θ2

m

〉
kB

=
(

fm

f min
m

)2
〈
θ2

m

〉
NESS〈

θ2
m

〉
EQ

T min. (4)

This quantity represents the temperature the system fluctuates
at when it is in an out-of-equilibrium state. Indeed, in this
condition, no thermodynamic temperature can be defined and
the equipartition principle cannot be applied. Nevertheless,
the amplitude of the fluctuations and the resonance frequency
can be measured; consequently a temperature T fluc can be
defined. While a single temperature T can be found for all the
modes in equilibrium [Eq. (2)], in a NESS T fluc is in principle
mode dependent since each resonance mode represents in this
case a different thermometer.

The evaluation of the uncertainty on T fluc
n,m is discussed

in Refs. [13,14,27]. Its statistical part is computed from the
dispersion around the mean of the Nmeas measurements (as
std/

√
Nmeas − 1). This uncertainty is intimately linked to the

number of independent samples that we extract from one
measurement. The relaxation time of one mode (the time it
takes to forget its initial conditions) is τn = 2/(ϕn fn), with ϕn

the dissipation associated to the mode. For a recording time
tmeas, we have N indep = tmeas/τn independent samples. Both ϕn

and ωn are increasing with the mode number n, and thus the
statistical uncertainty decreases with n. For large n, however,
the signal-to-noise ratio (ratio of thermal noise to floor noise)
decreases and the uncertainty rises again: intermediate n have
the lowest statistical uncertainty. Apart from this unavoidable
contribution, we must consider another source of error: during
the measurement, the laser position can slowly shift, mainly
due to experimental drifts. This effect causes a change in the
sensitivity of the experiment; therefore, we ascribe it to a
systematic uncertainty. As it turns out, this can be the main
contribution depending on the mode. Indeed, the amplitude of
the change in sensitivity is all the more important when the
measurement point is closer to a node of the mode. Since the
laser is focused close to the free end of the cantilever, the first
resonances are less affected. The statistical and systematic
uncertainties of T fluc

n,m are finally quadratically summed.
The right-hand-side definition of T fluc in Eq. (4) has the

advantage of yielding a simple calculation of T fluc as the ratio
of measured quantities: the amplitude of the nonequilibrium
fluctuations (NESS) and the equilibrium ones (EQ). Recalling
the discussion in Sec. II D, this corresponds to normalizing
each nonequilibrium measurement by the average of the first
and last recordings on the power ramp. Finally, the prefactor
with the ratio of the resonance frequencies in Eq. (4) takes into
account the changes in stiffness with the temperature [Eq. (3)],
since meff and Jeff are supposed constant.

The nature of the fluctuation temperature is related to the
existence of a nonequilibrium fluctuation-dissipation theorem.
Carefully extending this relation, which is normally valid
solely in equilibrium, for a system with a temperature profile
T (x), it is possible to show that T fluc is related to the nor-
malized local mechanical energy dissipation wdiss(x) in the
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cantilever and the temperature profile as [12,13,16]

T fluc
n,m =

∫ L

0
dx T (x)wdiss

n,m (x). (5)

This relation tells us that the amplitude of the fluctuations is
then related to the temperature profile weighed by the dissi-
pation profile; i.e., the locations with the higher dissipation
contribute more to the total thermal noise. We discuss the
nature of the damping in the system in the next section.

G. Dissipation

In the experiment, the damping of the system is measured
through a fit of the PSD around the resonance frequency using
the following expression, for example, for a flexural mode n:

Sδn ( f ) = 2kBT

πmeffω2
n f

f 4
n ϕn(

f 2 − f 2
n

)2 + (
f 2
n ϕn

)2 . (6)

The loss angles ϕn,m are extracted from the fits of the Nmeas

spectra corresponding to the recordings, and we compute their
expectation value (as the mean) and statistical uncertainty (as
std/

√
Nmeas − 1). ϕn,m represent the global dissipation of the

cantilever for each mode. It can have the various microscopic
origins, and can depend slowly on frequency. However, for
each mode, strongly peaked around resonance, it corresponds
to the inverse of the quality factor Q, and we have no access
to its value out of the resonance frequency.

The cantilever being held in vacuum, the dissipation of the
bulk material (silicon) arises from two mechanisms: clamping
losses [28] and internal damping [29] (also called viscoelas-
ticity). The latter can be due to the presence of defects in
the cantilever or thermoelasticity [30]. The presence of the
coating adds damping via its own internal damping and losses
at the interface with the substrate [31]. In the end, the effect of
these processes is the loss angle ϕ. In principle, ϕ depends on
the frequency f , the temperature T , the presence of defects,
and consequently the spatial coordinate x. The loss angle can
be thought of as the imaginary part of the static stiffness:

k = 3I

L3
Y = k0(1 + iϕY ),

κ = 4I

L
S = κ0(1 + iϕS ), (7)

with I = W H3/12 the second moment of area of the sample,
and S the shear modulus. Here the flexural and torsional loss
angles, ϕY and ϕS , respectively, are mainly due to the imagi-
nary part of the Young modulus and shear modulus.

The loss angles ϕn,m of the modes are expressed
through [12,13,16]

ϕn{T (x)} =
∫ L

0
dx ϕY (x, fn, T (x))ψn(x)2,

ϕm{T (x)} =
∫ L

0
dx ϕS (x, fm, T (x))ψm(x)2, (8)

with ψn,m(x) the local curvature: ψn(x) = φ′′
n (x) for the flex-

ural normal mode, where φn(x) is the local deflection, and
ψm(x) = φ′

m(x) for the torsional normal mode, where φm(x)
is the local transverse slope. Using these notations, the two

expressions in Eqs. (8) are equivalent for flexural and torsional
modes simply interchanging subscripts n by m and Y by S;
thus in the following we display only the equations for flexural
modes, but everything applies directly to torsional modes as
well. The spatial profile ϕY,S is in general not experimentally
accessible, and thus neither is the normalized local dissipation
wdiss

n,m (x), defined as [12,13,16]

wdiss
n (x) = 1

ϕn{T (x)}ϕY (x, fn, T (x))ψn(x)2. (9)

Nevertheless, in Sec. II H below, we show that, if certain
hypotheses regarding the temperature profile and the local
damping are satisfied, wdiss becomes experimentally acces-
sible. In this case, the fluctuation temperature T fluc can be
theoretically calculated through Eq. (5) and compared to the
experimental results.

H. Local properties versus global measurements

The elastic properties of the silicon and of the optional
coating depend only weakly on the temperature: the resonance
frequencies of the normal modes change, for instance, in the
per thousand range when the average temperature doubles.
We make the hypothesis that the dissipative part of the elastic
moduli changes accordingly, so that a second-order expansion
of ϕY in T is enough on the explored temperature range. If the
damping is distributed, we also make the hypothesis that the
material properties are uniform (independent of the position),
so that

ϕY (x, fn, T ) = αn + βn�T (x) + γn�T (x)2. (10)

The weak dependency of properties on frequency is captured
by the mode number dependency, sampling properties only
around the resonance frequency fn. Let us finally suppose that
the temperature profile is linear: �T (x) = �T maxx/L. This
assumption is equivalent to considering that the thermal con-
ductivity of the cantilever is independent of temperature. It is
reasonable at the considered heating powers for samples C30
and C30C, and it was verified thanks to numerical simulations
and in previous experiments [25]. In such a case, Eq. (10) is
written

ϕY (x, fn, T ) = αn + βn�T max x

L
+ γn

(
�T max x

L

)2
. (11)

Injecting this expression in Eqs. (8), we compute the global
dissipation of each mode as

ϕn = an + bn�T max + cn(�T max)2, (12)

where the set of coefficients an, bn, and cn is directly linked
to the expansion coefficients of the elastic moduli, αn, βn,
and γn:

an = αn

L

∫ L

0
dx ψn(x)2,

bn = βn

L

∫ L

0
dx

x

L
ψn(x)2, (13)

cn = γn

L

∫ L

0
dx

x2

L2
ψn(x)2.
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Experimentally, we can measure the dissipation ϕn as a
function of �T max; thus when a parabolic fit is pertinent to
describe these data, we can extract coefficients αn, βn, and
γn from the fit parameters and Eqs. (13). We therefore can
compute the local loss angle [Eq. (11)], then the normalized
dissipation [Eq. (9)], and finally the expected amplitude of the
fluctuations [Eq. (5)]. We refer to this computed temperature
as theoretical to distinguish it from the measured one, though
it is expressed from experimentally accessible parameters:

T theo
n = T min + 1

ϕn

1

L

∫ L

0
dx �T max x

L
ψ2

n (x)

×
(

αn + βn�T max x

L
+ γn

(
�T max x

L

)2
)

. (14)

In the case of a distributed damping, we thus have a strategy to
assess the validity of our model; i.e., we compute the expected
value of the fluctuation from the measurement of dissipation.

III. RESULTS

In this section we discuss the results of the measurements
on the three cantilevers. In each section we show the measured
fluctuation temperatures T fluc

n,m alongside the estimated damp-
ing ϕn,m, and we link them through Eq. (5).

A. C100

Thermal noise measurements of the C100 sample are
shown in Figs. 3(a) and 4(a), which as mentioned are the
same presented in Ref. [13]. We note how, while the temper-
ature T avg increases, the thermal fluctuations of the cantilever
are roughly unchanged for both flexural and torsional modes.
In order to interpret this dearth of fluctuations through
Eq. (5), we display the evolution of the loss angles ϕn,m in
Figs. 3(b) and 4(b). One can understand the lack of fluc-
tuations assuming that the C100 sample is dominated by
clamping losses; i.e., T fluc ≈ T min = T (0) because wdiss(x) ≈
wdiss

0 δD(x), where δD(x) is Dirac’s distribution. This claim can
be assessed with the observation of the damping of the system,
which shows little if no evolution at increasing temperature.
Two explanations are possible for this phenomenon: either
the dissipation is distributed all over the cantilever but it is
independent of the temperature, or it is located at a point at
constant temperature. The former is unlikely and would not
account for the flat behavior of T fluc: applying Eq. (14), the
prediction is a temperature-dependent T fluc (linear in T avg).
The hypothesis of a clamped-based dissipation must thus be
considered. In this regard, we may look at two phenomena:
clamping shear stresses and clamping-located defects. A sim-
ple model for the former [28] predicts typical quality factors
at least ten times higher than the measured ones; thus it is
unlikely to be the dominant phenomenon for this sample. The
presence of defects may then be the key. Indeed, the C100 is
chemically etched from a single-crystal silicon wafer, i.e., in
principle devoid of internal defects, and the vacuum removes
most of the hydrodynamical damping. An imperfect etching
at the clamping may still be present, thus lowering the quality
factor to the observed values.

Regardless of its origin, a Dirac-delta-type dissipation
function wdiss(x) ≈ δD(x) explains then both the thermal noise

FIG. 3. Cantilever C100, flexural modes. (a) The thermal noise
amplitude T fluc

n is shown with respect to T avg. The black solid line
represents the equilibrium temperature, i.e., the fluctuations an object
would show had it been in thermal equilibrium with a thermal bath at
T avg. All the modes lie below this line, showing a dearth of thermal
noise. Furthermore, we note how they are also much lower than the
maximal temperature of the system, represented by the black dashed
line. The modes shown span from 2 to 8, excluding mode 5 because
of the laser probe being on a mechanical node. (b) The measured loss
angles ϕn show little change with the average temperature. We note
also how the loss angle of the mode n = 6 is roughly twice that of the
other modes. (c) The PSD of the same mode at two different powers
alongside the fit with Eq. (6).

and the dissipation measurements through the extended FDT
expressed in Eq. (5).

B. C30

The results for the C30 sample are shown in Figs. 5–7.
We depict five flexural resonances and one torsional one, with
the third resonance mode depicted separately in Fig. 6. We
see that, apart from the latter, the fluctuation temperature
increases with the average temperature, thus showing how
we cannot suppose C30 to be a clamping-losses-dominated
system as C100. The observation of the loss angles confirms
this view, since also the damping changes with the temper-
ature. In this case, we can suppose that if clamping losses
exist, a distributed damping exists too as it becomes the main
contribution when we increase the temperature for the can-
tilever. Though samples C30 and C100 are made of the same
material (silicon), they have slightly different geometries and
their manufacturers (and thus manufacturing processes) are
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FIG. 4. Cantilever C100, torsional modes. (a) The thermal noise
content of the first eight torsional modes (except the fifth due to the
sensitivity being too low) is shown to be roughly independent of the
temperature profile imposed on the system. (b) The loss angle also
shows little changes at different temperatures. (c) The resonance m =
1 at two powers alongside the fit with Eq. (6).

different, resulting in different mechanical damping behav-
iors.

To a reasonable approximation, we observe that the global
losses ϕn,m are a smooth function of the average temperature,
and thus of T max, so that we can approximate them by a
quadratic fit. We can therefore apply the recipe of Sec. II H
to predict the amplitude of the fluctuations. Those are re-
ported as dotted lines in Figs. 5–7. We note how for most
modes the overlap of the experimental T fluc and this simple
model shows an overall reasonable agreement, which suggests
that the simple extension of the FDT appears to hold in this
distributed-dissipation case. We nevertheless remark how at
around T = 400 K the thermal content (mostly for mode n =
2) does not follow exactly the theoretical prediction, and how
for the torsion the prediction is a little below the experimental
data. Finally, for flexural mode n = 3 (Fig. 6), the damping
and the fluctuations do not draw the same picture: indeed,
while the thermal noise is roughly independent of the damp-
ing, the latter increases strongly with the temperature. In this
case, the simple approximations do not hold. This mode also
stands apart from the others on the magnitude of dissipation,
which is ten times larger than one would expect from the
extrapolation of the smooth (both in temperature and mode
number) behavior of modes 1 through 5. This odd behavior of
these modes probably hints at a different mechanism implied

FIG. 5. Cantilever C30, flexural modes. (a) Dissipation ϕn versus
T avg for flexural modes n = 1–5, alongside a quadratic fit of each.
[(b)–(e)] Thermal noise amplitude T fluc

n alongside its theoretical pre-
diction (dotted line) from Eq. (5) versus T avg for the same modes
n (excluding n = 3, shown in Fig. 6). The model nicely predicts the
thermal noise evolution, except for modes 2 and 4 around T = 400 K
where fluctuations are somewhat below the expected value.

at this specific frequency or mode shape for this cantilever, a
mechanism that we could not identify and deemed not repre-
sentative of the overall behavior.

C. C30C

If the C30 cantilever data hint at a distributed dissipation,
we expect this phenomenon to be even more striking for
the C30C case. Indeed, the coating on this sample adds an
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FIG. 6. Cantilever C30, flexural mode n = 3. (a) The thermal
noise of the third flexural mode shows little to no dependence on the
temperature profile, which is the opposite behavior expected looking
at the dissipation (b). In this case, the simple quadratic approximation
of the dissipation fails, and the model cannot predict the thermal
fluctuations.

additional distributed damping due to the dissipation in the
coating thickness [20]. We can observe this phenomenon com-
paring Fig. 8(a) with Fig. 5(a), where an increase in damping
of a factor of 10 is measured, alongside the squeezing of
all the loss factors alongside roughly the same curve. From
the thermal noise point of view, the fluctuation temperatures
increase similarly to the C30 case, and the theoretical pre-
diction once again allows us to qualitatively describe them
alongside the damping through the simple hypotheses exposed
in Sec. II H. It is to be noted that in this case mode n = 3
shows higher thermal content than predicted, at the edge of
the error bars. This cannot be said for the torsional mode,
presented in Fig. 9, for which the damping would predict a
fluctuation temperature always below the average one, while
the measurement shows otherwise. A possible explanation
lies on the uniform hypothesis for the loss angle ϕS (x, . . .).
Indeed, a higher value of dissipation close to the free end

FIG. 7. Cantilever C30, torsional mode m = 1. (a) The thermal
noise amplitude of the first torsional mode stays roughly below
the average temperature line. In this case, the model qualitatively
predicts this behavior. (b) The evolution of the dissipation with the
temperature and its fit with a quadratic function.

FIG. 8. Cantilever C30C, flexural modes n = 1–4. (a) Dissipa-
tion ϕn versus T avg, alongside a quadratic fit of each. We note how
the coating increases the magnitude of the dissipation at least ten
times with respect to the bare C30 sample. [(b)–(e)] Thermal noise
amplitude T fluc

n alongside its theoretical prediction (dotted line) from
Eq. (5) versus T avg. The theoretical framework and the simple hy-
potheses formulated for the C30 sample allow us to approximately
predict the nonequilibrium thermal content of the C30C sample. We
nevertheless note how mode 3 deviates slightly from the prediction.

would stand apart from the hypothesis we used, and raise
the theoretical prediction T theo

m . Even if dissipation processes
for the shear modulus and the Young one can be different, a
higher dissipation close to the cantilever end would also be
compatible with most flexural mode being slightly above the
prediction, though mostly within error bars.
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FIG. 9. Cantilever C30C, torsional mode m = 1. (a) The theo-
retical prediction of the thermal noise thanks to the evolution of
the dissipation [(b), quadratic fit] would predict an increase of the
fluctuations below the average temperature of the system. This is not
observed in the measurement. A possible explanation is discussed in
the text.

IV. DISCUSSION AND CONCLUSION

The comparison of the simultaneous measurement of the
nonequilibrium thermal fluctuations and the damping on three
different samples allows us to test the simple theoretical pre-
diction represented by the extended equipartition of Eq. (5).
Indeed, this equation simply states that the amplitude of
thermal fluctuations of a spatially extended system, when
a temperature profile is established, depends on where and
at which temperature the dissipation occurs. First, we show
how this theoretical framework explains the observed thermal
noise and damping on a clamping-located dissipation can-
tilever. Indeed, the thermal fluctuations and the dissipation are
roughly independent of the temperature profile imposed on
the system. On different samples (different manufacturer, and
optional coating layer), a quite different behavior is observed:
the thermal noise increases with the average temperature of
the system, as does the dissipation (in general, with the ex-
ception of the first torsional mode of cantilever C30). In these
cases, the system is dominated by other sources of dissipation,
and indeed presents loss angles at least twice larger than
those of cantilever C100. This can be due to a higher degree
of impurity in the system, which creates higher viscoelastic
losses, or a result of the damping due to the coating. We pro-
pose a simple model with a linear dependance of temperature
on space and second-order expansion of the local dissipa-
tion on temperature. Thanks to these simple but reasonable
hypotheses, we can then predict the fluctuation temperature
of the cantilever by just characterizing the damping. Though
not always quantitative, the global picture is consistent and
predictions of the thermal fluctuations are effective for most
of the resonance modes.

Our purpose was to demonstrate the compatibility of the
extended equipartition, including the variation of the dissipa-
tion with the local temperature field, with the measurement.
Though not perfect, this agreement is reasonable. This study
sheds light on the power of a simple extension of the FDT for
systems far from equilibrium. It expands the previous studies

on such systems [12–14] for various damping sources and
it includes a theoretical prediction of the fluctuation based
solely on the evolution of the dissipation with temperature,
whether constant (clamped-based damping) or not (distributed
damping). Obviously, one could encounter situations where
dissipation is a combination of several mechanisms with
comparable magnitude, and we would then need to mix hy-
potheses of local (including not only localized at the clamp)
and global dissipation. Deviation from the present model
could be useful to identify the physical origin or location of
the dissipation, with the possibility to use the complementary
information from several modes to pin defects (they would
be observable or not depending on the proximity of a node).
Another degree of freedom to probe the dissipation field and
its temperature dependency would be to change the location
of the heating point: it changes the shape of T (x), and thus
can lead to further insight on the matter. This strategy has
been used successfully to quantify the temperature field by
tracking the resonance frequencies of several modes while
scanning the heating position [25]. The extension to thermal
noise measurement still has to be demonstrated.

The data that support the findings of this study are openly
available in Zenodo [32].
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APPENDIX: GEOMETRICAL DIFFERENCES BETWEEN
SAMPLES C30 AND C100

It can be surprising at first to observe very different thermal
noise behaviors on cantilevers C30 and C100, since both sam-
ples are made of the same material. However, after repeating
the measurement on several cantilevers from different batches

FIG. 10. Top: Cross section of samples C100 and C30, to scale.
The red lines highlight the slanted faces of the cantilever. Bottom:
Scanning electron microscopy image of the samples, with dimen-
sions superposed. The green lines highlight the clamp length across
the cantilever.
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of both types, we came to the robust conclusion that they are
demonstrating a different thermal noise amplitude and dissi-
pation when heated. Though we have no strong insight on the
manufacturing processes, doping of substrates used, thermal
treatments, or thickness of the oxide layer, they actually have
an important geometric difference. Indeed, the chemical etch-
ing which is usually used to manufacture the cantilever creates
slanted sides, so that the cross section of the cantilever is

trapezoidal instead of rectangular. This effect is barely notice-
able on cantilever C100 (1 µm thick, 100 µm wide), but much
more on cantilever C30 (2.7 µm thick, 30 µm wide). We plot in
Fig. 10 the cross section to scale: cantilever C30 presents large
areas which are slanted, and may contribute differently to the
dissipation. Obviously also, the clamp between the cantilever
and the base is approximately three times longer for cantilever
C100, and enhances any clamp-induced dissipation.
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