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1/ f noise from the sequence of nonoverlapping rectangular pulses
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(Received 24 October 2022; revised 9 February 2023; accepted 24 February 2023; published 13 March 2023)

We analyze the power spectral density of a signal composed of nonoverlapping rectangular pulses. First,
we derive a general formula for the power spectral density of a signal constructed from the sequence of
nonoverlapping pulses. Then we perform a detailed analysis of the rectangular pulse case. We show that pure 1/ f
noise can be observed until extremely low frequencies when the characteristic pulse (or gap) duration is long in
comparison to the characteristic gap (or pulse) duration, and gap (or pulse) durations are power-law distributed.
The obtained results hold for the ergodic and weakly nonergodic processes.
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I. INTRODUCTION

Flicker noise, also 1/ f noise or pink noise, is a phe-
nomenon well-known for almost a century since it was first
observed by Johnson in a vacuum tube experiment [1,2].
Since then power-law scaling in the power spectral density of
1/ f β form (with 0.5 � β � 1.5) has been reported in different
experiments and empirical data sets across varied fields of
research [3–7], especially in solids [8–10]. One of the pecu-
liarities of 1/ f noise is that it is observed for low frequencies
and no cutoff frequency has been observed in many cases,
e.g., 300 years’ worth of weather data [11] or a three-week
experiment with semiconductors [12], no cutoff frequency has
been observed [13]. In other cases, the cutoff frequency can be
observed [14–16], but 1/ f noise is still observed over a broad
range of frequencies.

Given observations in various research fields, one would
expect that a general explanation of 1/ f noise is due. How-
ever, even almost a century after discovery, there is no
generally accepted model of 1/ f noise. There are numer-
ous different modeling approaches, some of them based on
actual physical mechanisms within the systems in question,
while some approaches aspire to provide a more general ex-
planation. Mathematical literature is rich in true long-range
memory models, such as fractional Brownian motion [17],
ARCH family models [18], and ARFIMA models [19]. In
physics literature, one most commonly will see 1/ f noise
being obtained by appropriately summing Lorentzian spectra
as in the McWorther model [20,21]. Self-organized criticality
framework was also put forward as a possible explanation
[22], as well as the memoryless nonlinear response [23].
Our group has built various nonlinear stochastic processes
to model 1/ f noise in a variety of scenarios and different
modeling frameworks: autoregressive interevent time point
processes [21,24], stochastic differential equations [25,26],
and agent-based models [27]. For a detailed review of works
by our group see Ref. [28]. Our group, as well as others,
have observed that nonlinear transformations of Markovian
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stochastic processes can lead to spurious long-range memory
processes [29–32]. These are completely different approaches
as the true long-range memory models rely on nonlocal opera-
tors, while the models exhibiting spurious long-range memory
rely on locally nonlinear potentials, which often result in
nonergodic or nonstationary behavior.

Here we will consider a different model, one which is not
affected by the nonlinear transformations of amplitude and
thus reproduces 1/ f noise not due to fluctuations in amplitude
but due to temporal dynamics. The approach we take here
is most similar to renewal theory models [33] and random
telegraph noise models, as we model a system which abruptly
switches between two states (“on” and “off”). Thus the signal
generated has the characteristic look of a telegraph signal
or pulse sequence [34]. In Ref. [35], Halford suggested that
1/ f noise could be modeled by a sequence of well-behaved
perturbations with power-law distributed durations. Heiden
[36] considered a sequence of pulses, with the coupling be-
tween pulse amplitude, duration, and the gap duration, and
showed that for fixed-time integral pulses (of any arbitrary
shape) 1/ f β noise will be obtained when the pulse duration
is power-law distributed. In Ref. [37] an opposite problem
was solved: reconstruction of pulse duration distribution given
power spectral density and the characteristic pulse shape.
Schick and Verveen have reported a grain flow experiment in
which 1/ f noise was observed with a low-frequency cutoff
[14]. A theoretical model of triangular pulse sequences was
also proposed to explain the experimental results. The power
spectral density of a signal with “on” and “off” states was
examined in [38]. The autocorrelation function of a random
telegraph signal with power-law distributed “on” and “off”
durations was obtained in Ref. [39]. Exploration of the non-
ergodic case has led to further exploration of age dependence
of observed statistical properties [40] and a proposed solution
to the cutoff paradox [13]. Theoretical and empirical anal-
ysis of 1/ f noise in random telegraphlike signals remains
an active object of research (for more recent examples see
Refs. [41–47]). References [48,49] considered a combination
of the random telegraphlike dynamics turning the Poisson
process on and off as an explanation for 1/ f noise in semi-
conductors. References [50–53] have considered the random
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telegraphlike noise in the blinking quantum dots experiments,
in some cases leading to the prediction and experimental ob-
servation of the aging effects in the power spectral densities.
Therefore, this is a third kind of approach to the modeling
of the long-range memory phenomenon, which is local in
the event-time space, but is observed as nonlocal due to the
observation occurring in the real-time space [26].

In this paper, we consider a sequence of nonoverlapping
rectangular pulses and show that 1/ f noise can be obtained
when gap durations are short in comparison to the character-
istic pulse duration and are power-law distributed. In Sec. II
we provide a generalized derivation of an expression for the
power spectral density of the signal constructed from the
sequence of nonoverlapping pulses. In Sec. III we examine
the case when the pulse and gap durations are sampled from
the exponential distribution. In Sec. IV we examine a case
when gap durations are sampled from a power-law distribution
(bounded Pareto distribution is used for analytical derivations
and numerical simulation), and examine the conditions when
pure 1/ f noise can be observed. We find that the range of fre-
quencies over which 1/ f noise is observed does nontrivially
depend on the characteristic duration of the pulses. In Sec. V
we explore the implications of finite observation time on the
reported results, which yields a weakly nonergodic process
exhibiting 1/ f noise with low-frequency cutoff observable
only for the extremely low frequencies. A summary of the
obtained results is provided in Sec. VI.

II. POWER SPECTRAL DENSITY OF THE SEQUENCE
OF NONOVERLAPPING PULSES

We investigate a stochastic process generating a sequence
of nonoverlapping pulses with random durations θk . The
pulses are separated by gaps of random duration τk . In the
general case this stochastic process generates a signal which
is given by a sum over all pulse profiles Ak (t ) when the
respective pulse occurs at time tk:

I (t ) =
∑

k

Ak (t − tk ). (1)

Note that we assume that Ak (s) may have nonzero values only
during the pulse. Before the pulse starts (s < 0) and after
the pulse ends (s > θk), Ak (s) is assumed to be zero. The
truncation of pulse profiles and the gaps between the pulses
ensure that the pulses never overlap or touch. As the pulses
are nonoverlapping, tk is given by a sum of previous pulse and
gap durations:

tk =
k−1∑
q=0

(θq + τq). (2)

FIG. 1. Sample signal constructed from the sequence of nonover-
lapping pulses (red curve): τq respective gap durations, θq respective
pulse durations, tk respective pulse occurrence time, a height of the
rectangular pulses.

Here, for notational simplicity, we have chosen that θ0 =
0. When calculating the power spectral density of the sig-
nal we ignore this artificially introduced “zeroth” pulse. In
Fig. 1 we have plotted a sample signal constructed from the
sequence of nonoverlapping pulses and highlighted the afore-
mentioned quantities. Note that if we allow pulses to be almost
instantaneous (if we take θq → 0 limit), then we obtain a point
process case.

The power spectral density of the signal I (t ) is given by

S( f ) = lim
T →∞

〈
2

T

∣∣∣∣
∫ T

0
I (t )e−2π i f t dt

∣∣∣∣
2〉

= lim
T →∞

〈
2

T

∣∣∣∣∣
∑

k

e−2π i f tk Fk ( f )

∣∣∣∣∣
2〉

, (3)

where the averaging 〈. . .〉 is performed over distinct real-
izations of the process, T is the duration of the signal, and
Fk ( f ) is the Fourier transform of the kth pulse profile. For
rectangular pulses, the Fourier transform is given by

Fk ( f ) =
∫ θk

0
Ak (u)e−2π i f udu = a

∫ θk

0
e−2π i f du

= ia

2π f

(
e−2π i f θk − 1

)
, (4)

but at this point, let us keep our derivation general until the
rectangular shape of the pulses is relevant. Let us split the
expression for the power spectral density into two terms:

S( f ) = lim
T →∞

〈
2

T

∑
k

∑
k′

e2π i f (tk′−tk )Fk ( f )F ∗
k′ ( f )

〉

= lim
T →∞

〈
2

T

∑
k

|Fk ( f )|2
〉

+ lim
T →∞

〈
2

T

( ∑
k

∑
k′>k

e2π i f (tk′−tk )Fk ( f )F ∗
k′ ( f ) +

∑
k

∑
k′<k

e2π i f (tk′−tk )Fk ( f )F ∗
k′ ( f )

)〉

= S1( f ) + S2( f ), (5)
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so we can deal with them separately. The first term trivially
simplifies to

S1( f ) = 2ν̄〈|Fk ( f )|2〉, (6)

where ν̄ is the mean number of pulses per unit time. If the pro-
cess is ergodic, and the observation time is long, then the mean
value of ν̄ can be trivially obtained from the mean values of
the pulse and gap durations, i.e., ν̄ = 1

〈θ〉+〈τ 〉 . For nonergodic
processes, or if the observation time is short, then ν̄ needs to
be defined as an empirical mean number, i.e., ν̄ = K/T (here
K is the number of observed pulses). The two sums in the
second term differ only in the sign of their imaginary parts,
thus the second term can be rearranged by considering only
the real part:

S2( f ) = 4Re

[
lim

T →∞

〈
1

T

∑
k

∑
k′>k

e2π i f (tk′−tk )Fk ( f )F ∗
k′ ( f )

〉]
.

(7)

The time difference tk′ − tk is the sum of the pulse and gap
durations in between the k′th and kth pulses:

tk′ − tk =
k′−1∑
q=k

(θq + τq). (8)

Let the durations θq and τq be independently sampled from the
arbitrarily selected distributions of pulse and gap durations,
then the second term of the power spectral density can be
rearranged as

S2( f ) = 4ν̄Re

[
〈e2π i f θk Fk ( f )〉〈F ∗

k′ ( f )〉χτ ( f )

×
∞∑

q=1

χθ ( f )q−1χτ ( f )q−1

]
. (9)

In the above, we have introduced the characteristic functions
of pulse χθ ( f ) = 〈e2π i f θk 〉 and gap χτ ( f ) = 〈e2π i f τk 〉 duration
distributions. Here we have effectively replaced averaging
over distinct realizations by averaging over the distribution of
either pulse or gap durations.

Evaluating the summation over q simplifies the second
term further:

S2( f ) = 4ν̄Re

[
〈e2π i f θk Fk ( f )〉〈F ∗

k′ ( f )〉 χτ ( f )

1 − χθ ( f )χτ ( f )

]
.

(10)

Thus, the general expression for the power spectral density is

S( f ) = 2ν̄〈|Fk ( f )|2〉

+ 4ν̄Re

[
〈e2π i f θk Fk ( f )〉〈F ∗

k′ ( f )〉 χτ ( f )

1 − χθ ( f )χτ ( f )

]
.

(11)

Let us now use the assumption that the pulses have rectangular
shape, inserting Eq. (4) into Eq. (11) yields

S( f ) = a2ν̄

π2 f 2
Re

[
(1 − χθ ( f ))(1 − χτ ( f ))

1 − χθ ( f )χτ ( f )

]
. (12)

Note that the above general expression for the power spec-
tral density of a signal constructed from the rectangular
nonoverlapping pulses implies that pulse and gap duration dis-
tributions are interchangeable. We will break this symmetry
in a later section of the paper by making specific assumptions
about pulse and gap duration distributions. Our conclusions
will be formulated in accordance with the assumptions, but if
the assumptions would be swapped (i.e., assumptions about
pulse duration distribution would be made about gap dura-
tion distribution and vice versa), so the conclusions could be
swapped, but otherwise would remain unchanged due to the
symmetric nature of Eq. (12).

From Eq. (11) we can obtain the power spectral density
of the shot noise. This can be achieved by taking the Poisson
point process limit, i.e., assuming infinitesimal constant pulse
durations θ , a constant pulse area B = aθ , and independent
exponentially distributed τ ,

Sshot( f ) = 2B2ν̄. (13)

As should be expected, the expression above is identical to the
well-known Schottky’s formula [54] with 〈I〉 = Bν̄.

For the low frequencies f � (2π〈θ〉)−1 and f �
(2π〈τ 〉)−1, when the distributions of the pulse and gap du-
rations have finite variance σ 2

θ = 〈θ2〉 − 〈θ〉2 < ∞ and σ 2
τ =

〈τ 2〉 − 〈τ 〉2 < ∞, the characteristic functions can be ex-
panded in the power series

χθ ( f ) = 〈e2π i f θ 〉 ≈ 1 + 2π i f 〈θ〉 − 2π2 f 2〈θ2〉,
χτ ( f ) = 〈e2π i f τ 〉 ≈ 1 + 2π i f 〈τ 〉 − 2π2 f 2〈τ 2〉. (14)

Then from Eq. (12) it follows that the white noise will be
observed for the low frequencies

S( f ) ≈ 2a2ν̄
〈θ〉2σ 2

τ + 〈τ 〉2σ 2
θ

(〈θ〉 + 〈τ 〉)2 . (15)

On the other side of the frequency spectrum, when
χθ ( f ) → 0 and χτ ( f ) → 0, from Eq. (12) Brownian-like
noise is obtained:

S( f ) ≈ a2ν̄

π2
× 1

f 2
. (16)

For the intermediate frequencies the power spectral density
will depend on the explicit choice of pulse and gap dura-
tion distributions. In the following sections we investigate
the possibility to observe 1/ f noise, i.e., the signal with the
power spectrum S( f ) ∼ f −β with β � 1, in an arbitrarily
broad range of intermediate frequencies.

III. EXPONENTIALLY DISTRIBUTED PULSE
AND GAP DURATIONS

Let us first consider pulse durations sampled from the
exponential distribution

p(θ ) = 1

θc
exp

(
− θ

θc

)
. (17)
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FIG. 2. Power spectral density of the signal when pulse and gap
durations are sampled from exponential distribution. Red curve cor-
responds to a numerical simulation conducted with a = 1 and θc =
τc = 1 (or, alternatively, γθ = γτ = 1). Black curve corresponds to
Eq. (20).

In the above, we have introduced a notation for the mean
duration of a pulse θc = 〈θ〉. The characteristic function of
the exponential pulse duration distribution is

χθ ( f ) = 1

1 − 2π iθc f
. (18)

The exponential distribution is our first choice as it is com-
monly observed in physical systems (e.g., the lifetime of
conductive electrons in semiconductors is known to be ex-
ponentially distributed [55], chemical reactions are often
modeled assuming exponential interevent times [56]), and
socioeconomic systems (e.g., times between goals scored by
a football team seems to follow exponential distribution [57],
infection times in the classical SIR model and adoption times
in the Bass diffusion model also follow exponential distribu-
tion [58]).

Inserting Eq. (18) into Eq. (12) yields

S( f ) = 4a2ν̄θ2
c Re

[
1

1 − χτ ( f ) − 2π i f θc

]
. (19)

If gap durations are also sampled from the ex-
ponential distribution, but with mean τc, then from
Eq. (19) it follows that Brownian-like noise will be
observed:

S( f ) = 4a2ν̄

(γθ + γτ )2 + 4π2 f 2
. (20)

In the above γθ = θ−1
c and γτ = τ−1

c are the corresponding
relaxation rates (inverses of the mean durations). As can be
seen in Fig. 2, Eq. (20) agrees with numerically simulated
power spectral density rather well.

IV. POWER-LAW DISTRIBUTED GAP DURATIONS

Power-law distributions are observed universally across
a variety of empirical datasets from both natural and so-
cial sciences [59–62]. Some of the experiments, such as

quantum dot fluorescence [50,63], single-particle tracking
in biological systems [64], and animal movement observa-
tions [65], also exhibit signals with nonoverlapping pulses,
signatures of anomalous diffusion, and long-range memory.
There are also earlier theoretical works which suggest that
1/ f β noise will be observed when pulse or gap durations
are sampled from power-law distributions [13,35,36,39,40].
While some of the aforementioned works focus on model-
ing of particular systems, there are no obvious limitations
to interpret the reported results more broadly. Therefore let
us investigate how the power spectral density of the sig-
nal with nonoverlapping rectangular pulses changes when
the gap durations are sampled not from the exponential
distribution, but from the power-law distribution. In con-
trast to earlier works in this section we will show that
point processes (with instantaneous pulses) cannot yield
pure 1/ f noise, while a processes generating nonoverlapping
rectangular pulses under certain conditions will yield pure
1/ f noise.

Let us consider gap durations being sampled from the
bounded Pareto distribution

p(τ ) =
{

ατα
min

1−( τmin
τmax )α × 1

τα+1 for τmin � τ � τmax,

0 otherwise,
(21)

with α > 0. Instead of sharp cutoffs, one could consider
smooth, e.g., exponential cutoffs. Smooth cutoffs would not
significantly impact the expressions we derive further, but here
we derive expressions for the sharp cutoffs as they are easier
to deal with analytically and numerically. Also note that we
could have alternatively assumed that pulse durations are be-
ing sampled from the bounded Pareto distribution instead. The
choice which durations are sampled from the bounded Pareto
distribution does not matter as the general expression for the
power spectral density [Eq. (12)] is symmetric in respect to
the characteristic functions.

The characteristic function of the bounded Pareto gap du-
ration distribution is given by

χτ ( f ) = α(−2π i f τminτmax)α

τα
max − τα

min

[�(−α,−2π i f τmin)

− �(−α,−2π i f τmax)]. (22)

In the above, �(s, x) is the upper incomplete Gamma function,
defined as �(s, x) = ∫ ∞

x t s−1e−t dt .
For 0 < α < 2, with notable exception of α = 1, and

1
2πτmax

� f � 1
2πτmin

the characteristic function can be ap-
proximated as

χτ ( f ) = α(−2π i f τminτmax)α

τα
max − τα

min

�(−α,−2π i f τmin)

≈ 1+ α

α − 1
× (2π i f τmin) − �(1−α) × (−2π i f τmin)α.

(23)

Inserting this approximation of the gap duration distribution
characteristic function into Eq. (19) yields
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S( f ) = 4a2ν̄θ2
c Re

[
1

1 − α
α−1 × (2π i f τmin) + �(1 − α) × (−2π i f τmin)α − 2π i f θc

]

≈ 4a2ν̄θ2
c (2π f τmin)α cos

(
πα
2

)
�(1 − α)

4π2 f 2

(α−1)2 [(α − 1)θc + ατmin]2 + (2π f τmin)2α�(1 − α)2
. (24)

Assuming that the pulse durations are short (θc � τmin),
two distinct cases are obtained: for 0 < α < 1 the power
spectral density can be approximated by

S( f ) = 4a2ν̄θ2
c

cos
(

πα
2

)
(2πτmin)α�(1 − α)

× 1

f α
, (25)

while for 1 < α < 2 the power spectral density can be approx-
imated by

S( f ) = 4a2ν̄θ2
c

(α − 1)2 cos
(

πα
2

)
�(1 − α)

α2(2πτmin)2−α
× 1

f 2−α
. (26)

The peculiar dependence of the power-law slope of the power
spectral density is a result of different terms in the numerator
of Eq. (24) becoming important for the low frequencies: for
0 < α < 1 the f 2α term is the most significant, while for 1 <

α < 2 the f 2 term dominates.
If pulse durations are long in comparison to gap durations

(θc � τmin), then f 2 term dominates, and thus the power spec-
tral density can be approximated by

S( f ) = 4a2ν̄
τ α

min�(1 − α) cos
(

πα
2

)
(2π )2−α

× 1

f 2−α
. (27)

The approximations above suggest that in α = 1 case 1/ f
noise should be observed, but the approximations diverge (and
thus do not apply) in that case. The obtained approximations
are qualitatively consistent with Refs. [35,36], though the
distinction between comparatively short θc � τmin and com-
paratively long θc � τmin pulses was not made in the earlier
papers.

With α = 1 and for 1
2πτmax

� f � 1
2πτmin

the characteristic
function of the gap duration distribution can be instead ap-
proximated by

χτ ( f ) = 1 − π2 f τmin + [1 − Cγ

− ln (2π f τmin)] × (2π i f τmin). (28)

In the above, Cγ = 0.577 . . . is the Euler’s gamma constant.
Inserting Eq. (28) into Eq. (19) yields

S( f ) = a2ν̄τmin(
πτmin
2θc

)2 + {
1 + τmin

θc
[1 − Cγ − ln (2πτmin f )]

}2 × 1

f
.

(29)

Then for the short pulses θc � τmin, ln( f ) term is non-
negligible and thus the 1/ f dependence will be perverted by

an additional term dependent logarithmically on f :

S( f ) = a2ν̄θ2
c

τmin
{(

π
2

)2 + [1 − Cγ − ln (2πτmin f )]2
} × 1

f
. (30)

While assumption that the pulse durations are long in compar-
ison to the gap durations, θc � τmin yields pure 1/ f noise:

S( f ) = a2ν̄τmin × 1

f
. (31)

For the comparatively long pulses θc � τmin, most reasonable
parameter sets and ranges of frequencies ln( f ) term will be
negligible. The logarithmic term is non-negligible only for
extremely low frequencies:

f � f (c) = 1

2πτmin
exp

[
−(

√
2 − 1)

θc

τmin

]
. (32)

As shown in Fig. 3, the logarithmic term has significant impact
in distorting 1/ f dependence when pulses are short, while
for the comparatively long pulses pure 1/ f noise is observed.
Influence of the logarithmic term is not observed in our sim-
ulation with the comparatively long pulses, because for the
selected parameter values f (c) ≈ 10−180, which is well outside
the reasonably observable range of frequencies.

As long as pulse durations aren’t short, pure 1/ f noise
should be observed with any other pulse duration distribu-
tion, as for f � 1

2πτmin
the characteristic function of the pulse

duration distribution cancels out from Eq. (12). Thus from
Eqs. (12) and (28) we have that

FIG. 3. Comparison of the power spectral densities in the α = 1
case. Red curve shows the case with the comparatively long ex-
ponential pulse durations (simulated with a = 1, θc = 103), while
green curve shows the case with the comparatively short exponential
pulse durations (simulated with a = 103, θc = 10−3). Black curves
correspond to Eqs. (31) (solid) and (30) (dashed). Other simulation
parameters: τmin = 1 and τmax = 104.
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S( f ) = a2ν̄

π2 f 2
Re

[
(1 − χθ ( f )) × (π2 f τmin − [1 − Cγ − ln (2π f τmin)] × (2π i f τmin))

1 − χθ ( f ) × (1 − π2 f τmin + [1 − Cγ − ln (2π f τmin)] × (2π i f τmin))

]

≈ a2ν̄

π2 f 2
Re

[
(1 − χθ ( f )) × (π2 f τmin − [1 − Cγ − ln (2π f τmin)] × (2π i f τmin))

1 − χθ ( f )

]

= a2ν̄τmin × 1

f
. (33)

This result matches what we have obtained for exponentially
distributed pulse durations [Eq. (31)] and is further confirmed
by the numerical simulations shown in Fig. 4. Indeed, this
general result should hold well for the different possible se-
lections of pulse duration distributions for an arbitrarily broad
range of frequencies with extremely low cutoff frequency,
max( 1

2πτmax
, 1

2πτmin
exp[−(

√
2 − 1) θc

τmin
]) � f � 1

2πτmin
.

V. AGING EFFECTS IN WEAKLY NONERGODIC CASE

As the approximation of the power spectral density
[Eq. (31)] doesn’t explicitly depend on the maximum bound of
the gap duration distribution τmax, gap durations could also be
sampled from the Pareto distribution without an upper bound.
Sampling from the Pareto distribution would yield a weakly
nonergodic process similar to the one analyzed in Ref. [13].
The issue is that the approximation Eq. (31) does implicitly
depend on τmax via ν̄. Thus, sampling from the Pareto distri-
bution should introduce aging effects (i.e., integral of power
spectral density will depend on the observation time T ). In this
section, we first derive an approximation for ν̄ in the ergodic
case, and then we consider the weakly nonergodic case when
the gap durations are sampled from the Pareto distribution.

FIG. 4. Power spectral densities of a signal with rectangular
pulses obtained sampling pulse durations from various distributions:
exponential (red curve), degenerate (green), uniform (blue), and
bounded Pareto (magenta) distributions. Gap durations were sampled
from bounded Pareto distribution with α = 1, τmin = 1 and τmax =
104. Dashed black lines have 1/ f slope. Other simulation parame-
ters: a = 1 and θc = 103 (with exponential distribution), a = 10−1

and θc = 102 (degenerate distribution), a = 3, θmin = 0 and θmax =
103 (uniform distribution), a = 3, αθ = 1, θmin = 1, and θmax = 104

(bounded Pareto distribution).

The mean of the bounded Pareto gap duration distribution
is given by

〈τ 〉 =
⎧⎨
⎩

τmaxτmin
τmax−τmin

ln
(

τmax
τmin

)
for α = 1,

α
α−1 × τα

maxτ
α
min

τα
max−τα

min
× (

1
τα−1

min
− 1

τα−1
max

)
otherwise.

(34)

For τmax � τmin it can be approximated as:

〈τ 〉 ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τmin ln
(

τmax
τmin

)
for α = 1,

α
1−α

τmax
(

τmin
τmax

)α
for 0 < α < 1,

α
α−1τmin for α > 1.

(35)

Note that for α > 1 case the approximation of the mean is
independent of τmax and matches the mean of the Pareto dis-
tribution without the upper bound.

If we assume that pulse duration is sampled from the ex-
ponential distribution or another narrow distribution, then we
can approximate the mean number of pulses per unit time as

ν̄ = 1

〈θ〉 + 〈τ 〉 ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

θc+τmin ln
(

τmax
τmin

) for α = 1,

1−α
ατmax

(
τmax
τmin

)α
for 0 < α < 1,

1
θc

for α > 1.

(36)

In the above we have simplified the approximation by using
the assumption that pulse duration is comparatively long,
θc � τmin. We are focusing on this particular case because
pure 1/ f noise will be observed only if this assumption holds.
As can be seen from Eq. (36), in T � τmax case ν̄ will take
a constant value dependent only on the physical parameters
of the process. As shown in the earlier sections in the ergodic
case, pure 1/ f noise can be observed over an arbitrarily broad
range of frequencies, which is limited by the selection of
θc, τmin and τmax. In the low frequency range power spectral
density of the process devolves into white noise, and in the
high frequency range power spectral density of the process
will become Brownian-like. Thus, in the ergodic case the
power spectral density is trivially integrable independently
of the selected pulse and gap duration distributions or their
parameters.

We can partially eliminate low-frequency cutoff by sam-
pling gap durations from the Pareto distribution without an
upper bound, but in this case we need to consider finiteness of
the observation time T and the integrability paradox. Note that
the low-frequency cutoff may still be observed if 1

T � f (c), but
otherwise pure 1/ f noise will be observed starting from the
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smallest observable frequency (see Fig. 5 for the simulated
power spectral density).

If T � τmax then the observed distribution of gap durations
is effectively bounded by T , and thus the mean number of
pulses would be given by Eq. (36), but with τmax replaced by
T . Notably, for α � 1 mean number of pulses depends on the
observation time

ν̄ ∝

⎧⎪⎪⎨
⎪⎪⎩

1
ln (T ) for α = 1,

T α−1 for 0 < α < 1,

const for α > 1.

(37)

Note that T � τmax assumption doesn’t affect the derivations
presented in the earlier sections, or their implications. Results
similar to those shown in Fig. 5 could be also obtained with
the ergodic model, but with an obvious low-frequency cutoff.
Equation (31) and, more generally, Eq. (33) apply to the
weakly nonergodic case as well as they do for the ergodic
case. Introduction of finite observation time T only changes
the fact that for the most parameter sets the low-frequency cut-
off will be unobservable. It also introduces aging effects into
the power spectral densities. Integrating the power spectral
density for the comparatively long pulse duration case θc �
τmin, combining the approximations Eq. (27) and Eq. (16),
yields

∫ ∞

1/T
S( f )df ≈ 4a2ν̄ × τα

min�(1 − α) cos
(

πα
2

)
(2π )2−α

×
∫ 1

2πτmin

1/T

df

f 2−α
+ a2ν̄

π2

∫ ∞

1
2πτmin

df

f 2

= 2

π
a2ν̄τmin +

⎧⎨
⎩

a2ν̄τmin × ln
(

T
2πτmin

)
for α = 1,

a2ν̄τ α
min × 4�(1−α) cos ( πα

2 )
(2π )2−α × T 1−α−(2πτmin )1−α

1−α
otherwise.

(38)

Inserting Eq. (37) into Eq. (38) we can see that the power
spectral density is integrable and finite, but depends on the
observation time

∫ ∞

1/T
S( f )df ∝

⎧⎪⎪⎨
⎪⎪⎩

1
ln (T ) for α = 1,

1
T 1−α for 0 < α < 1,

1
T α−1 for α > 1.

(39)

Similar observations of aging effects in the power spectral
densities of signals with rectangular pulses were made in
the experiments involving blinking quantum dots and their
theoretical modeling treatments [50–52]. Aging effects are
not as clearly visible in Fig. 5, because we have focused on
the case reproducing 1/ f noise, while in this case the de-
pendence on the observation time is logarithmically slow. For

FIG. 5. Comparison of the power spectral densities in the weakly
nonergodic case. Different curves correspond to different observa-
tions times: T = 104 (red circles), 106 (green triangles), 108 (blue
squares), and 1010 (magenta diamonds). Gap durations were sampled
from the Pareto distribution (with α = 1 and τmin = 1), unit size (a =
1) pulse durations were sampled from the exponential distribution
(with θc = 102). Dashed black line has 1/ f slope.

the other choices of α, the dependence would be much more
obvious.

VI. CONCLUSIONS

We have investigated the power spectral density of a signal
consisting from nonoverlapping rectangular pulses. We have
also considered point process limit of the process and found
that point processes can not yield pure 1/ f noise. To obtain
pure 1/ f noise one needs to have power-law distributed gap
(or pulse) durations, while the characteristic pulse (or gap)
duration needs to be long in comparison to characteristic
gap (or pulse) duration. If the characteristic pulse (or gap)
duration is short, extreme case corresponding to a point pro-
cess, then 1/ f dependence will be perverted by an additional
term logarithmically dependent on f . In our analysis we have
assumed that gap durations are sampled from the bounded
Pareto distribution, while pulse durations may be sampled
from various distributions with short or long characteristic
durations. Due to the symmetry of the general expression for
the power spectral density [Eq. (12)] in respect to the charac-
teristic functions of pulse and gap duration distributions, our
analysis and conclusions remain valid even if the assumptions
about gap and pulse duration distributions would be swapped.
Our result to certain extent supplements and contrasts earlier
investigations into the power-law distributed pulse (or gap)
durations (such as Refs. [13,39,40]).

As the approximation of the power spectral density
[Eq. (31)] doesn’t explicitly depend on the maximum bound
of the gap duration distribution τmax, gap durations could
also be sampled from the Pareto distribution without a max-
imum bound. This leads to a weakly nonergodic case of
the process similar to the one considered in Ref. [13]. In
contrast to Ref. [13] we predict that cutoff may be found,
but at extremely low frequency f (c). It arises due to log-
arithmic term present in Eq. (28), and consequently in
Eq. (29), becoming non-negligible at frequencies lower than
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f (c). Though due to implicit dependence of ν̄ on the τmax,
when T � τmax aging effects will be observed as discussed
in Refs. [50–52].

Future extensions of the approach presented here could
include consideration of general pulse shapes, overlaps be-
tween the pulses, and multiple trap or particle dynamics (a
signal is then constructed from multiple telegraphlike signals
or single-particle systems).

All of the code used to perform the reported numerical
simulations is available in Ref. [66].

Author contributions from A.K. include software, val-
idation, original draft writing, review, and editing, and
visualization. Author contributions from B.K. include concep-
tualization, methodology, original draft writing, review, and
editing.
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