
PHYSICAL REVIEW E 107, 034114 (2023)

Emergent centrality in rank-based supplanting process
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We propose a stochastic process of interacting many agents, which is inspired by rank-based supplanting
dynamics commonly observed in a group of Japanese macaques. In order to characterize the breaking of
permutation symmetry with respect to agents’ rank in the stochastic process, we introduce a rank-dependent
quantity, overlap centrality, which quantifies how often a given agent overlaps with the other agents. We give a
sufficient condition in a wide class of the models such that overlap centrality shows perfect correlation in terms
of the agents’ rank in the zero-supplanting limit. We also discuss a singularity of the correlation in the case of
interaction induced by a Potts energy.
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I. INTRODUCTION

One of the promising candidates for going a step further in
studying a many-body system is to construct a lattice model
of interacting elements or agents which describes a many-
body system. This strategy is applied not only to equilibrium
systems [1] but also nonequilibrium systems [2]. Such atten-
tion has been given to nonequilibrium lattice models such as
driven lattice gas [3], the asymmetric simple exclusion process
(ASEP) [4], the ABC model [5], the zero range process [6,7],
etc., where an emergent macroscopic property such as phase
transition is one of the topics to be elucidated. Recent de-
velopments on active matter have focused on experimentally
realizable systems such as colloidal or biological systems
showing various phase transitions such as flocking transition,
lane formation, or motility-induced phase separation [8–10].
In the framework of statistical physics, it is of interest to
look for an analytically tractable and minimal model for such
phenomena [11–13].

Apart from such model-based studies, in the context of
network theory, the concept of centrality plays one of the
important roles in studying a given network induced by a
many-body system consisting of inhomogeneous agents. Cen-
trality has been particularly used in the literature of social
network analysis to characterize which element on a network
is the most influential. Depending on the purpose of network
analysis, various measures of centrality such as degree cen-
trality, closeness centrality, PageRank, eigenvector centrality,
etc., have been proposed and found to be useful to characterize
network structures [14–17].

As an example of inhomogeneous agents, primate species
often live through interacting with members in a group [18].
It has been reported in a primate species that the individuals,
which we call agents, with high rank in social dominance
tend to have high rank also in the eigenvector centrality of
adjacency matrix for a graph composed from agents’ positions
[19,20]. In particular, Japanese macaques (Macaca fuscata)
form a group living together, and each agent in a group has its

rank along the linear social dominance in the group, leading
to rank-dependent repulsion between two agents [21,22]. This
is the so-called supplanting phenomenon which we mainly
focus on.

In this paper, we focus on one of the intersections be-
tween lattice models and network theory from the viewpoint
of inhomogeneous agents. We propose a type of nonequi-
librium lattice model, which is inspired by a supplanting
phenomenon occurring between two agents in a group of
Japanese macaques. The main objective of this paper is to
show that a certain type of macroscopic correlation appears
when a supplanting process, which is a rank-based interaction
with broken detailed balance, is added to an equilibrium sys-
tem. It turns out that this problem can be mapped to computing
a type of centrality, which we call overlap centrality, for
a complete graph derived naturally from the correlations of
agents’ positions.

This paper consists of five sections. In Sec. II we introduce
a class of models with broken permutation symmetry that we
study in this paper. In Sec. III focusing on the case of the
model where the interaction induced by the Potts energy is
assumed, we provide a brief review of the equilibrium prop-
erties, introduce overlap centrality, and compute it by exact
diagonalization of transition matrix. In Sec. IV we provide the
proof for the main result that overlap centrality characterizing
how often a given agent overlaps with the other agent shows
perfect correlation with respect to the ranking of the given
agent in the zero-supplanting limit. This result holds rather
generally, which is not limited to the case where the Potts
energy is assumed as the source of an equilibrium interaction.
Further, a conjecture about the existence of a singularity of
the correlation is discussed for the case of the Potts energy. In
Sec. V as concluding remarks, we summarize the results and
some subjects of future considerations.

II. MODEL

Let N � 2 be the number of agents, and L � 3 be
the length of the one-dimensional lattice X := Z/LZ =

2470-0045/2023/107(3)/034114(24) 034114-1 ©2023 American Physical Society

https://orcid.org/0000-0003-0449-9841
https://orcid.org/0000-0002-4461-6152
https://orcid.org/0000-0002-8815-9037
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.107.034114&domain=pdf&date_stamp=2023-03-09
https://doi.org/10.1103/PhysRevE.107.034114


SHIMOMURA, ISHITSUKA, AND OHTA PHYSICAL REVIEW E 107, 034114 (2023)

{0, 1, . . . , L − 1}. Let us denote by i ∈ {1, 2, . . . , N} an agent,
and by the integer xi ∈ X the position of agent i. We also
regard the number i identifying an agent as the rank of that
agent. We say that rank i is higher (lower) than j if i < j
(i > j); for example, rank i is higher than rank i + 1. Let us
also write the collection of elements ai labeled by 1 � i � n
as (ai )n

i=1 or the bold symbol a. In particular we write a set
of positions of agents as x = (xi )N

i=1. Hereafter, we call x =
(xi )N

i=1 a configuration. We consider a hopping map f ±
i such

that f ±
i x := (x j ± δ(i, j))N

j=1, where δ(i, j) is the Kronecker
delta. Note that the periodic boundary condition in terms of
positions is automatically assumed by definition of X .

A. Equilibrium dynamics

We consider a general class of energy function E (x) =
E (x1, x2, . . . , xN ) which is permutation symmetric in the fol-
lowing sense:

E (x1, x2, . . . , xN ) = E (xσ (1), xσ (2), . . . , xσ (N ) ) (1)

for any permutation σ ∈ SN of N elements, where SN is the
symmetric group of order N . In addition, let β be a parameter
determining the magnitude of the energy including the sign ±.

As an example of the models belonging to the above class,
one can consider the following L-state Potts energy E (x) on
the complete graph where each agent connects with all agents
[23]:

E (x) = −2(L − 1) log(L − 1)

L − 2

1

2N

N∑
i=1

N∑
j=1

δ(xi, x j ). (2)

This case means that an agent interacts with the other agents
only if they have overlaps. In this sense, this Potts model on
the complete graph is equivalent to the agents with an on-site
interaction in one dimension, which may be a simple model to
describe interacting agents. The coefficient of (2) is adjusted
so that the phase transition point βc in the equilibrium state is
equal to 1, which we will discuss in more detail in Sec. III A.

Let us consider a Markov process with discrete time t ,
where during one time step between t and t + 1, only one of
the following possible transitions may occur. The transition
probability T0(x → f ±

i x) from each configuration x to the
configuration f ±

i x for any agent i is

T0(x → f ±
i x) = 1

2N

1

1 + exp[βD±
i E (x)]

, (3)

where

D±
i E (x) := E ( f ±

i x) − E (x). (4)

This leads to that the joint probability Pt (x) of configura-
tion x at time t satisfies the following master equation:

Pt+1(x) =
∑
x′ �=x

Pt (x′)T0(x′ → x)

+ Pt (x)

⎡⎣1 −
∑
x′ �=x

T0(x → x′)

⎤⎦, (5)

where the summation over x′ is done for all of the possible
configurations such that T0(x → x′) and T0(x′ → x) are de-
fined above.

The Gibbs distribution

Pcan(x) := 1

ZN (β )
exp [−βE (x)], (6)

where ZN (β ) := ∑
x exp[−βE (x)], is the stationary solution

Pst (x) of the master equation (5), satisfying∑
x′

Pst (x′)T0(x′ → x) = Pst (x)
∑
x′ �=x

T0(x → x′), (7)

because the Gibbs distribution satisfies the detailed balance
condition:

Pcan(x)T0(x → x′) = Pcan(x′)T0(x′ → x), (8)

for any pair x, x′ realized by the above dynamics.

B. Broken detailed balance by supplanting

Next, we consider to add a supplanting process to the equi-
librium dynamics introduced above, which breaks the detailed
balance condition.

Let us imagine a process in which an agent i hops to a
position yi = xi ± 1 from position xi in accordance with the
equilibrium transition probability T0, and then an agent at yi,
which has a rank j such that i < j, is stochastically forced to
hop to the position yi + 1 for d = +, or yi − 1 for d = −. In
this process, an agent with a higher rank i supplants another
agent with a lower rank j. This is why we call such a process
the supplanting process. Note that the configuration x turns
to be the configuration f d

j f ±
i x through the whole supplanting

process. See Fig. 1 for a graphical reference of the process.
For convenience, let us introduce the following set:

S(x, i,±) := {i < j � N | x j = xi ± 1}, (9)

which is a set of every agent whose rank is lower than i at
position xi ± 1. That is, those agents could be supplanted by
the agent i when the agent i hops to position xi ± 1.

Suppose that every agent in S(x, i,±) has the same chance
to be chosen as the supplanted one, and that the direction d of
hopping by supplanting is determined with equal probability
1/2. Explicitly, we define the transition probability from x to
f d

j f ±
i x for d ∈ {+,−} and j ∈ S(x, i,±):

T
(
x → f d

j f ±
i x
) = p

2

1

1 + p#S(x, i,±)
T0(x → f ±

i x), (10)

where p ∈ R+ := [0,∞) is the parameter of supplanting rate
and #S is the number of all the elements of a set S. When
p → 0, supplanting rarely occurs, and when p → ∞, sup-
planting almost always occurs. Note that at most one agent
is supplanted in a single transition regardless of the value
of p.

On the other hand, for the case of j /∈ S(x, i,±), it holds
that

T
(
x → f d

j f ±
i x
) = 0. (11)
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FIG. 1. Schematic illustration of a transition step from a config-
uration described by (a) to a configuration described by (c) in the
model. From (a) to (b), agent 2 hops to the right site, and from (b) to
(c), agent 3 among two possibly supplanted agents, which are 3 and
5, is supplanted by agent 2 and hops to the left site. Four arrows in
(b) mean that, in the above transition, two agents 3 and 5 in S(x, 2, +)
could be supplanted, and the direction of supplanting process could
be either to the left or to the right.

Further, the probability of transition T (x → f ±
i x) is modified

from T0 as

T (x → f ±
i x) = 1

1 + p#S(x, i,±)
T0(x → f ±

i x). (12)

Totally, the following holds:

T0(x → f ±
i x) = T (x → f ±

i x) +
∑

j∈S(x,i,±)
d=±

T
(
x → f d

j f ±
i x
)
.

(13)

Then the master equation for the joint probability Pt (x)
governing the above stochastic process is as follows:

Pt+1(x) =
∑

x′
Pt (x′)T (x′ → x)

+ Pt (x)

⎡⎣1 −
∑
x′ �=x

T (x → x′)

⎤⎦, (14)

where the summation over x′ is done for all of the possible
configurations such that T (x′ → x) and T (x → x′) are de-
fined. Since T (x → f ±

i x) is positive for any x and i with finite
β, p, N, L, and E , any state can reach any state in this stochas-
tic process; that is, the stochastic process defined above is an
irreducible Markov process.

In the presence of p > 0, the supplanting process does not
hold the detailed balance condition because of the asymmetric
property in terms of agents’ rank; when a supplanting occurs
in one step, i.e., an agent supplants another agent, the reverse
process never occurs in any single step. Thus, obviously the

stationary solution Pst (x) is no longer the Gibbs distribution of
a given energy function. Note that in the limit of p → 0, the
detailed balance condition in terms of a given energy function
is recovered. Thus, we can also regard p as the strength of
violation of detailed balance condition.

III. THE CASE OF THE POTTS ENERGY

In this section we focus on the case of the Potts energy
defined by (2). We briefly review the known equilibrium prop-
erties and compute nonequilibrium stationary distribution by
exact diagonalization of the transition matrix corresponding
to the master equation (14). Further, we introduce overlap
centrality and its correlation with agents’ rank, which are
calculated using the computed stationary distribution.

A. Computation of partition function at equilibrium

As a preliminary, we consider the equilibrium case with
p = 0. The equilibrium ferromagnetic Potts model on the
complete graph has two phases: one is the ordered phase
for stronger interaction, and another is the disordered phase
for weaker interaction, which are separated by a first-order
transition point if L � 3 [23]. In the context of this paper,
the ordered state can be regarded as the condensate state of
agents, that is, the state where all agents are located at the
same position.

Let us look in more detail at the computation of the
above results. When p = 0 and interaction strength β is
positive (β > 0), corresponding to the case of attractive inter-
action, the partition function ZN (β ) := ∑

x exp[−βE (x)] for
N → ∞ can be explicitly expressed, by which the equilibrium
transition point is computed exactly. Concretely, by perform-
ing the Stratonovich-Hubbard transformation [24,25] with

exp

⎡⎣Kβ

2N

∑
x∈X

(
N∑

i=1

δ(xi, x)

)2
⎤⎦

=
∏
x∈X

√
NKβ

2π

∫
R

dq exp

[
−NKβ

2
q2 + Kβq

N∑
i=1

δ(xi, x)

]
,

(15)

we obtain

ZN (β ) =
(

NKβ

2π

)L/2 ∫
RL

dLq exp[−Nβ fβ (q)], (16)

fβ (q) = K

2

∑
x∈X

q2
x − β−1 log

(∑
x∈X

exp (Kβqx )

)
, (17)

where

K = 2(L − 1) log(L − 1)

L − 2
. (18)

For N � 1, the minimal value of fβ (q) as a function of the or-
der parameter q behaves effectively as the free energy density
of the Potts model as follows:

lim
N→∞

−β−1 log ZN (β )

N
= min

q∈RL
fβ (q). (19)
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Taking ∂ fβ
∂qx

(q) = 0 to minimize fβ (q), we obtain the sta-
tionary condition

qy exp(−Kβqy) =
(∑

x∈X

exp(Kβqx )

)−1

(20)

for each y ∈ X . From (20), we see that

qx exp(−Kβqx ) = qy exp(−Kβqy ), (21)

for any x, y ∈ X . This indicates that there is a constant c such
that qx exp(−Kβqx ) = c, which has at most two real solutions
a, b as an equation for qx. Then we have qx ∈ {a, b} for each
x ∈ X . From (20), we also have∑

x∈X

qx = 1. (22)

Thus, a necessary condition for the order parameter q to
minimize fβ (q) is described below. Keeping with (21) and
(22), one of the following conditions (i) and (ii) is satisfied:

(1) It holds that q = q̃(0) := 1
L (1, 1, . . . , 1).

(2) There exist an integer n ∈ {1, . . . , L − 1} and two dis-
tinct real numbers an = an(β ), bn = bn(β ) satisfying

an exp(−Kβan) = bn exp(−Kβbn), (23)

nan + (L − n)bn = 1. (24)

Moreover, n components of q are an and remaining (L − n)
components of q are bn.

For example, if n = 1, the solutions are described by q =
q̃(α) for 1 � α � L, where

q̃(α)
x :=

{
a1(β ) (if x ≡ α mod L)

b1(β ) (if x �≡ α mod L)
. (25)

In Ref. [26] it has been shown that the set of the global
minimum points q of fβ (q) corresponds to the case of q = q̃(0)

or n = 1, depending on β. Concretely, the set is described as⎧⎪⎪⎨⎪⎪⎩
{
q̃(1)(β ), q̃(2)(β ), . . . , q̃(L)(β )

}
(if 0 < β < 1){

q̃(0), q̃(1)(1), . . . , q̃(L)(1)
}

(if β = 1){
q̃(0)
}

(if β > 1).

(26)

Note that Eqs. (23) and (24) with n = 1 determine the value
a1 �= b1 uniquely, and the resulting functions a1(β ), b1(β ) are
differentiable in the region 0 < β < 1.

The expectation value of energy density is also expressed
as

lim
N→∞

〈E〉can

N
=
{

∂
∂β

β fβ (q̃(1)(β )) (if 0 < β < 1)
∂
∂β

β fβ (q̃(0) ) (if β > 1).
(27)

Thus, one can show that the energy density (27) exhibits a
discontinuous jump at β = 1, which is the phase transition
point of the Potts model.

B. State vector description

Let us move onto the model with general p � 0. In this
case, we need to explicitly consider the dynamics in order to
compute the stationary distribution of the model. We would
like to describe the stochastic process by transition matrices

with some basic linear operators. For more detailed descrip-
tion and derivation, see Appendix A 3.

Let HX be the one-agent state space, which is of dimension
L. It is considered as a complex vector space with inner prod-
uct 〈·|·〉 and has an orthonormal basis {|x〉 | x ∈ X } over the
set of complex numbers C. Then the N-times self-tensored
space H⊗N

X can be identified with the N-agent state spaces,
which is of dimension LN . For a configuration of agents
x = (x1, x2, . . . , xN ) ∈ X N , the corresponding state vector is
|x〉 = |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xN 〉. The space H⊗N

X has a natural
inner product induced by 〈·|·〉, and the set of the state vectors
{|x〉}x∈X N is an orthonormal basis. We use the same symbol
〈·|·〉 to write the inner product on H⊗N

X .
We associate the probability P(x) for agents’ configuration

x with a state |P〉 ∈ H⊗N
X as follows:

〈x|P〉 = P(x) (28)

or

|P〉 =
∑
x∈X N

P(x)|x〉. (29)

For a given state |Pt 〉 at time t , the time evolution of the state
is described as follows:

|Pt+1〉 = T̂ |Pt 〉, (30)

where T̂ is a transition matrix on H⊗N
X such that (30) is

equivalent to the master equation (14) for the joint probability.
Similarly, T̂0 is the transition matrix T̂ when p = 0.

We introduce some basic operators. A hopping map f ±
i to

the right (resp. the left) corresponds to the operator defined by
�̂±

i ; for x = (x1, x2, . . . , xN ) ∈ X N ,

�̂+
i |x〉 = | f +

i x〉
= |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xi + 1〉 ⊗ · · · ⊗ |xN 〉, (31)

�̂−
i |x〉 = | f −

i x〉
= |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xi − 1〉 ⊗ · · · ⊗ |xN 〉. (32)

Next we define projection operators. For a site y ∈ X and an
agent 1 � i � N , we define 	̂

y
i by

	̂
y
i |x〉 =

{|x〉 (if xi = y)

0 (if xi �= y),
(33)

for x = (x1, x2, . . . , xN ) ∈ X N . Then for a configuration y ∈
X N , we define the operator 	̂y as

∏
1�i�N 	̂

yi
i . Finally, we

denote îdH (resp. îd
⊗N
H ) as the identity operator on HX (resp.

H⊗N
X ).

Using these notions, we can describe the transition matri-
ces T̂0 and T̂ . First, T̂0 is

T̂0 =
∑

1�i�N
d=±

∑
x∈X N

[
T0
(
x → f d

i x
)
�̂d

i

+
(

1

2N
− T0

(
x → f d

i x
))

îd
⊗N
H

]
	̂x. (34)
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Then T̂ is written as

T̂ =
∑

1�i�N
d=±

∑
x∈X N

⎡⎢⎢⎣ ∑
j∈S(x,i,d )

d ′=±

T
(
x → f d ′

j f d
i x
)
�̂d ′

j �̂d
i + T

(
x → f d

i x
)
�̂d

i +
(

1

2N
− T0

(
x → f d

i x
))

îd
⊗N
H

⎤⎥⎥⎦	̂x (35)

= T̂0 +
∑

1�i�N
d=±

∑
x∈X N

∑
j∈S(x,i,d )

d ′=±

T
(
x → f d ′

j f d
i x
)(

�̂d ′
j − îd

⊗N
H

)
�̂d

i 	̂
x, (36)

where we used (13). For the definition of coefficients, see (3),
(10), and (12).

On this setting, the transition matrix T̂ = T̂ (β, p) is natu-
rally regarded as a linear operator on H⊗N

X . Let |P(β, p)〉 be
the unique stationary state of T̂ (β, p) satisfying

T̂ (β, p)|P(β, p)〉 = |P(β, p)〉. (37)

One can show that, since T̂ is irreducible, |P(β, p)〉 exists and
is uniquely determined by the Perron-Frobenius theorem.

For the latter discussion, let us consider the symmetry of
the transition matrices T̂0 and T̂ . We introduce permutation
operators 
̂σ on H⊗N

X . For a given element σ ∈ SN of the
symmetry group SN of agents, we define


̂σ |x〉 := |σ−1(x)〉, (38)

where σ−1(x) := (xσ−1( j) )N
j=1. Then we have


̂†
σ T̂0
̂σ = T̂0, (39)


̂†
σ T̂ 
̂σ �= T̂ , (40)

where 
̂†
σ is the Hermitian conjugate of 
̂σ [see (A54) and

(A74)]. Note that 
̂σ is unitary: 
̂†
σ = 
̂−1

σ = 
̂σ−1 . In the
sense of relation (39), the equilibrium dynamics described by
T̂0 holds permutation symmetry. In contrast, the whole dynam-
ics by T̂ breaks the permutation symmetry, as described by
(40).

C. Exact diagonalization of transition matrices

We perform exact diagonalization for the transition matrix
T̂ to obtain the eigenvalues and their corresponding eigen-
vectors. Thus, the stationary distribution corresponds to the
eigenvector with the maximum real part, which is 1, of the
eigenvalue. Note that the number of the states is LN , which
gets exponentially large as a function of N .

As shown in Fig. 2 with p = 0, at β = 0, the joint
probability of each configuration shows the same value. As
β is increased from 0, the joint probability of condensate
configuration (0,0,0) is much higher than that of the other
configurations. Conversely, as β is decreased from 0, the
joint probability of the configuration (0,1,2), where all the
agents are separated, is much higher than that of the other
configurations. On the other hand, the joint probability of
configuration with a pair of two agents overlapping at the
same site and the other located at a different site such as
(1, 0, 0), (0, 1, 0), (0, 0, 1) does not depend on the pair for
p = 0.

When p = 10, the joint probabilities of configurations
(1,0,0), (0,1,0), (0,0,1) are distinct. Concretely, those prob-
abilities with β = 2 and β = −1 increase and decrease,
respectively, in the order of (1,0,0), (0,1,0), and (0,0,1). This
means that higher-ranked agents (resp. lower-ranked agents)
tend to overlap more frequently for β = 2 (resp. for β = −1).
This can be interpreted as a typical consequence of supplant-
ing process.

In order to discuss how the configuration is condensed,
let us introduce the normalized expectation value of the Potts
energy in terms of a probability distribution P(x) as follows:

M := 1

N2

∑
x

N∑
i=1

N∑
j=1

δ(xi, x j )P(x). (41)

Note that by definition, M takes 1 as the maximum value in the
case of P(x) = ∏N

k=1 δ(x, xk ). In Fig. 3, using the computation
of the stationary distribution by the exact diagonalization, M
is shown as a function of p and β.

Relating to Sec. III A, in the case of the equilibrium distri-
bution corresponding to the case with p = 0, M is rewritten

FIG. 2. Probabilities of the configurations determined by station-
ary distribution for β = 2 (circles), β = 0 (rectangles), and β = −1
(diamonds); p = 0 (blue or the left at each column) and p = 10 (red
or the right); N = L = 3. The state of (0,0,0) means that three agents
are located at the same site. The state of (0,1,2) means that each
of three agents is located at the different position, respectively. The
other three states mean that two agents are located at the same site,
and another agent is located at one of the different sites.
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FIG. 3. The β dependence of the normalized expectation value of
the energy M = 1

N2

∑
x

∑
i, j δ(xi, x j )〈x|P(β, p)〉 for various values

of p with L = 6, N = 6.

by using 〈E〉can as

M = − 2

NK

∑
x

E (x)
e−βE (x)

ZN (β )
= − 2

K

〈E〉can

N
, (42)

which means that M is also discontinuous at the equilib-
rium phase transition point β = 1 in the thermodynamic limit
N → ∞.

D. Overlap centrality and its correlation coefficient

In order to characterize the correlation among agents, we
may consider the neighbor matrix R := (ri j )i, j defined as

ri j :=
∑

x

δ(xi, x j )P(x). (43)

For example, if P(x) is the uniform distribution then ri j =
1/L, and if P(x) = ∏N

k=1 δ(x, xk ) then ri j = 1. The latter gives
the maximum value of ri j . Note that r j j = 1 for any j.

The entry ri j means how often agent i and j are located at
the same site under the distribution P(x). In Fig. 4 we show
heatmaps of neighbor matrices computed from the stationary
distribution. It demonstrates that at β = 1, the agents with
higher rank have more overlaps with the other agents, and
conversely at β = −1, the agents with lower rank have more
overlaps with the other agents.

In order to quantify how often a given agent overlaps with
the other agents in total, we introduce the overlap centrality as
a function of rank i using the entries of the neighbor matrix:

Oi :=
∑

1� j�N
j �=i

ri j . (44)

That is, we regard the agent i having larger value of the overlap
centrality as a more influential agent compared to the other
agents having lower values of the overlap centrality. When the
probability distribution P(x) is permutation symmetric, i.e.,
P(σ (x)) = P(x) for any σ ∈ SN , the overlap centrality does
not depend on rank i. Note that

M = 1

N2

N∑
i=1

Oi + 1

N
(45)

FIG. 4. Heatmap of neighbor matrix R determined by the sta-
tionary distribution with the diagonal components left out. The color
corresponds to ri j for pair of two agents (i, j). Parameters: (top) β =
−1, p = 1, L = 6, N = 6; (bottom) β = 1, p = 1, L = 6, N = 6.

holds by the definition. As shown in Fig. 5, we compute
the overlap centrality Oi computed from the stationary distri-
bution, showing that the overlap centrality has a plus slope
at attractive interaction of β = 1 and has a minus slope at
repulsive interaction of β = −1.

In order to quantify the class of the overlap centrality in
terms of the slope, we measure the correlation coefficient φ

of the overlap centrality with respect to agents’ rank. This is
defined as

φ := 1

N

N∑
i=1

(
Oi − 1

N

∑N
j=1 Oj

)(
i − 1

N

∑N
j=1 j

)
sOsI

, (46)

where we define

s2
O := 1

N

∑
i

⎛⎝Oi − 1

N

N∑
j=1

Oj

⎞⎠2

, (47)

s2
I := 1

N

∑
i

(
i − 1

N

N∑
j=1

j

)2

= (N − 1)(N + 1)

12
. (48)
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FIG. 5. The overlap centrality Oi determined by the stationary distribution obtained by the exact diagonalization as a function of agent i
for L = N = 6. The solid lines are linear regressions for Oi and i. The parameters are set as follows; p = 0.1 (left) and p = 10.0 (right); β = 1
(top), β = 0 (center), and β = −1 (bottom), respectively. For negative β, φ is close to 1 regardless of the value of p.

By definition, when |φ| = 1, Oi is a linear function of i. We
check the condition when this quantity φ is not defined. Since
we set N � 2, the denominator of φ is zero exactly when
s2

O = 0. This corresponds to the case when Oi is constant as
a function of i. In this case, we say that the quantity φ is
singular.

In Fig. 6 we show the β dependence of the correlation
coefficient φ. In the weak supplanting condition with p � 1
such as p = 0.1 or p = 0.01, φ is close to +1 for negative β.
As β increases, φ sharply changes its sign around β = 0, and
turns out to be −1 for positive β. We will discuss this behavior
in a more general setting in Sec. IV.

IV. ANALYTIC RESULTS FOR OVERLAP CENTRALITY

Let us discuss the weak-supplanting limit of p � 1, where
general results in terms of overlap centrality are available.
Although we have focused on only the Potts energy as E (x)

in Sec. III, hereafter we consider all of the models which
belong to the general class of energy functions satisfying the
permutation symmetry condition (1). The neighbor matrix
R (43), the overlap centrality Oi (1 � i � N ) (44), and the
correlation coefficient φ of the overlap centrality with agents’
rank (46) can also be defined for the general cases in the same
manner. These are indeed the main subject in this section and
this paper. Hereafter, we use the state vector description, fix
parameters β, L, N as arbitrary values, and consider p depen-
dence of the dynamics unless otherwise specified.

The main goal in this section is to derive perfect correla-
tion, which means that the correlation coefficient (46) satisfies
φ = ±1 in the weak-supplanting limit of p → 0 as long as φ

is not singular in the sense mentioned after the definition of
φ. In order to take a step forward, we start with introducing
auxiliary stochastic processes (49), by which the transition
matrix of the model can be completely reconstructed. Then,
using this decomposition property (50), we construct another
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FIG. 6. Correlation coefficient φ as a function of β for L = N = 6.

decomposition form (53) of the transition matrix, which we
call beta decomposition, where the asymptotic behaviors in
terms of p → 0 can be rigorously estimated. Note that the as-
sumption of (1) is essential in the derivation of key properties
(78) and (80).

A. Decompositions of transition matrix

In this subsection we would like to introduce beta decom-
position (53) of the operator T̂ . This decomposition enables
us to investigate an asymptotic behavior of T̂ for p � 1 be-
cause of an asymptotic property (55). To describe it, first we
introduce another decomposition, called supplanting decom-
position. This is relatively easy to describe and simplifies the
description of beta decomposition. For details, see Appendix
A 4 and A 5.

Let us define the partial sum in (35). For an integer 1 �
n � N − 1, we define

T̂n :=
∑

1�i�N
d=±

∑
x∈X N

δ(#S(x, i, d ), n)

×

⎡⎢⎢⎣ ∑
j∈S(x,i,d )

d ′=±

T
(
x → f d ′

j f d
i x
)(

�̂d ′
j − îd

⊗N
H

)⎤⎥⎥⎦�̂d
i 	̂

x.

(49)

This operator T̂n is the second term in (36) restricting in-
dices x, i, d to those with #S(x, i, d ) = n. For any subset S ⊆
{1, 2, . . . , N − 1}, the matrix T̂0 +∑

i∈S T̂i is also a stochastic
matrix. For example, the matrix T̂0 + T̂n represents the sup-
planting process only when #S(x, i, d ) = n. By definition, we
have

T̂ = T̂0 + T̂1 + T̂2 + · · · + T̂N−1. (50)

This is a decomposition of the operator T̂ , which we call the
supplanting decomposition. Note that the coefficients 〈y|T̂n|x〉
of nth term T̂n for n � 1 are estimated as

|〈y|T̂n|x〉| � p

2
. (51)

For details, see Appendix A 4 b. In particular, the coefficients
of T̂n are estimated by O(p) when p → +0. Moreover, since

at most one of 〈y|T̂n|x〉 (1 � n � N − 1) is nonzero for fixed
x and y, we also have

|〈y|(T̂ − T̂0)|x〉| � p

2
. (52)

Though we explicitly estimate the coefficients of T̂n in
(51), the supplanting decomposition does not give effective
truncation of T̂ in terms of small p. Thus, we look for another
decomposition of T̂

T̂ = T̂0 + Û1 + · · · + ÛN−1 (53)

satisfying

〈y|Ûm|x〉 = O(pm) as p → +0. (54)

If we find such an expansion, we have

T̂ = T̂0 + Û1 + · · · + Ûm + O(pm+1) (55)

for 1 � m � N − 1.
It would not be straightforward to practically find such an

expansion. Nevertheless, in this case, through a rather tricky
procedure as shown in Appendix A 5 b, one can prove that (53)
and (54) are satisfied by the following definition of Ûm:

Ûm := (−1)m+1B(m, 1 + 1/p)

p

∑
m�n�N

(
n − 1

m − 1

)
(1 + np)T̂n,

(56)

for 1 � m � N − 1. Here B(a, b) is the beta function and(n−1
m−1

)
is the binomial coefficient. See (A96) and (A113) of

Appendix A for the detail of the derivation; see also Remark
A.2 for the motivation of this decomposition. We call this ex-
pansion beta decomposition. Note that, for an integer m � 1,

B

(
m, 1 + 1

p

)
= (m − 1)!pm

(1 + p)(1 + 2p) · · · (1 + mp)
. (57)

By substituting (49) and (57) into (56) with certain sets of
transformations in Appendix A 4 c and A 5 d, we reach another
representation of Ûm as in (A87) and (A123):

Ûm = (−1)m−1(m − 1)!pm

2(1 + p)(1 + 2p) · · · (1 + mp)

×
∑

1�i<i1<···<im�N

⎡⎣ ∑
1�k�m

(
�̂+

ik
+ �̂−

ik
− 2 îd

⊗N
H

)⎤⎦
× 	̂i,i1,...,im T̂ i

0,move, (58)

where we define

T̂ i
0,move :=

∑
d=±

∑
x∈X N

T0
(
x → f d

i x
)
�̂d

i 	̂
x, (59)

	̂i,i1,...,im
:=
∑
x∈X

	̂x
i 	̂

x
i1 · · · 	̂x

im . (60)

This representation of Ûm is suitable for the further calculation
related to permutation symmetry in Sec. IV B. In the follow-
ing sections, Û1 is the one we mainly consider in the weak
supplanting limit p → +0.
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Recall that 
̂σ defined in (38) denotes the permutation
operator corresponding to a permutation σ ∈ SN . In Ap-
pendix A 3 e and A 3 g, we obtain commutation relations
between permutation operators and other operators:


̂σ �̂±
i1

= �̂±
σ (i1 )
̂σ , (61)


̂σ 	̂i0,i1 = 	̂σ (i0 ),σ (i1 )
̂σ , (62)


̂σ T̂ i0
0,move = T̂ σ (i0 )

0,move
̂σ . (63)

These relations will be used in (80).

B. Existence of perfect correlation

By using beta decomposition of the transition matrix ob-
tained above, we are going to show that the correlation
coefficient φ exhibits perfect correlation |φ| = 1 in the limit
of p → 0.

One can use the Brillouin-Wigner-type perturbation theory
[27] to rewrite the stationary state |P(β, p)〉 of T̂ (β, p) as a
perturbation expansion from the stationary state of T̂0. For
that purpose, we introduce some symbols. Let |Pcan(β )〉 be
the stationary state of T̂0(β ), i.e., the state corresponding to
the Gibbs distribution (6):

|Pcan(β )〉 :=
∑

x

exp[−βE (x)]

Z (β )
|x〉, (64)

which satisfies

T̂0(β )|Pcan(β )〉 = |Pcan(β )〉 (65)

and ∑
x

〈x|Pcan(β )〉 = 1. (66)

Note that |Pcan(β )〉 is invariant under a permutation, that is, it
holds that


̂σ |Pcan(β )〉 = |Pcan(β )〉 (67)

for any σ ∈ SN , because of the permutation symmetry con-
dition (1) for energy function. Let p̂r(β ) be a projection
operator on H⊗N

X to the orthogonal complement of the sub-
space C|Pcan(β )〉:

p̂r(β ) := îd
⊗N
H −|Pcan(β )〉〈Pcan(β )|

〈Pcan(β )|Pcan(β )〉 , (68)

and Ĝ0(β ) be a linear operator from H⊗N
X to itself:

Ĝ0(β ) := (
îd

⊗N
H −T̂0(β )

)−1
p̂r(β ). (69)

Here we need to set the coefficient of the term îd
⊗N
H in Ĝ0(β )

as the eigenvalue 1 corresponding to the eigenvector |P(β, p)〉
of T̂ (β, p) [see (37)]. With the above notations, |P(β, p)〉 can
be written as follows:

|P(β, p)〉=C(β, p)

[
|Pcan(β )〉 +

∞∑
n=1

(Ĝ0(T̂ − T̂0))n|Pcan(β )〉
]
,

(70)

where C(β, p) is the positive normalization factor of |P(β, p)〉
such that

∑
x∈X N 〈x|P(β, p)〉 = 1. Since T̂ − T̂0 = O(p), one

can estimate that C(β, p) = 1 + O(p).

As obtained in (53) and (58), within the asymptotic regime
of small p, T̂ − T̂0 is can be expanded with powers of p, and
then we have

T̂ − T̂0 = Û1 + O(p2), (71)

where

Û1 = p/2

1 + p

∑
1�i0<i1�N

(
�̂+

i1
+ �̂−

i1
− 2 îd

⊗N
H

)
	̂i0,i1 T̂ i0

0,move.

(72)

By substituting (72) into (70), we have

|P(β, p)〉
= C(β, p)[|Pcan(β )〉 + Ĝ0Û1|Pcan(β )〉 + O(p2)]

= C(β, p)

⎡⎣|Pcan(β )〉 + p

1 + p

∑
1�i0<i1�N

B̂i0,i1 |Pcan(β )〉
⎤⎦

+ O(p2), (73)

where we define

B̂i0,i1 := 1
2 Ĝ0

(
�̂+

i1
+ �̂−

i1
− 2 îd

⊗N
H

)
	̂i0,i1 T̂ i0

0,move. (74)

This operator B̂i0,i1 is dependent on β but independent of p.
Thus, using rii = 1 for any i, the overlap centrality can be
written as follows:

Oi =
∑

1� j�N

∑
x∈X N

δ(xi, x j )〈x|P(β, p)〉 − 1

= C(β, p)

⎡⎣A0(i) + p

1 + p

∑
1�i0<i1�N

A1(i, i0, i1)

⎤⎦− 1

+ O(p2), (75)

where

A0(i) =
∑

1� j�N

∑
x∈X N

δ(xi, x j )〈x|Pcan(β )〉, (76)

A1(i, i0, i1) =
∑

1� j�N

∑
x∈X N

δ(xi, x j )〈x|B̂i0,i1 |Pcan(β )〉. (77)

Here A0(i) and A1(i, i0, i1) are constant as a function of p.
Recall that 
̂σ is the permutation operator corresponding

to a permutation σ ∈ SN [see (38) for a definition]. By using
(67), we have

A0(i) =
∑

1� j�N

∑
x∈X N

δ(xi, x j )〈x|
̂σ |Pcan(β )〉

=
∑

1� j�N

∑
x∈X N

δ(xσ (i), xσ ( j) )〈x|Pcan(β )〉

=
∑

1� j�N

∑
x∈X N

δ(xσ (i), x j )〈x|Pcan(β )〉

= A0(σ (i)). (78)

This means that A0(i) does not depend on i:

A0(i) = A0(1) =: B0. (79)
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FIG. 7. The overlap centrality Oj computed by the exact diagonalization for L = N = 6 is expressed by Oj � a(p) j + b(p), where
coefficient a(p) and b(p) are determined by linear regression. These two figures plot the regression coefficient a(p) vs p/(1 + p) for
p = 0.001, 0.002, . . . , 0.01; β = −1 (left) and β = 1 (right). The correlation coefficient between a(p) and p/(1 + p) is 0.9999998 . . . for
β = −1 and −0.99997 . . . for β = 1. Note that p dependence of the first term in (85) corresponds to that the correlation coefficient is equal to
1 for β = −1 and −1 for β = 1, respectively.

Moreover, by using (61), (62), (63), and (67), we have

̂σ B̂i0,i1 = B̂σ (i0 ),σ (i1 )
̂σ . Therefore, it follows that

A1(i, i0, i1)

=
∑

1� j�N

∑
x∈X N

δ(xi, x j )〈x|
̂−1
σ B̂σ (i0 ),σ (i1 )
̂σ |Pcan(β )〉

=
∑

1� j�N

∑
x∈X N

δ(xσ (i), xσ ( j) )〈x|B̂σ (i0 ),σ (i1 )|Pcan(β )〉

=
∑

1� j�N

∑
x∈X N

δ(xσ (i), x j )〈x|B̂σ (i0 ),σ (i1 )|Pcan(β )〉

= A1(σ (i), σ (i0), σ (i1)) (80)

for any σ ∈ SN . In this sense, A1 preserves permutation sym-
metry in spite of the permutation-symmetry breaking of T̂ . By
this equation, we obtain

A1(i, i0, i1) =

⎧⎪⎨⎪⎩
A1(1, 1, 2) =: B1 (if i = i0)

A1(2, 1, 2) =: B2 (if i = i1)

A1(3, 1, 2) =: B3 (if i �= i0, i1)

(81)

for any i and any pair i0 < i1. These quantities B1,B2, and B3

are independent of p.
Note that for a given agent i, the number of pairs (i0, i1)

which satisfies each of the above conditions corresponding
with B1, B2, and B3 is N − i, i − 1, and (N − 1)(N − 2)/2,
respectively. Therefore, we obtain∑

1�i0<i1�N

A1(i, i0, i1)

= (N − i)B1 + (i − 1)B2 + (N − 1)(N − 2)

2
B3. (82)

Substituting (82) into (75), we find that

Oi = p

1 + p
C(β, p)(B2 − B1)i + c0 + O(p2), (83)

where c0 is a real number independent of rank i:

c0 = p

1 + p
C(β, p)

(
NB1 − B2 + (N − 1)(N − 2)

2
B3

)
+ C(β, p)B0 − 1. (84)

With the estimation of C(β, p) = 1 + O(p), we can rewrite
(83) as

Oi = p

1 + p
(B2 − B1)i + c0 + O(p2). (85)

Note that, in (75), (83), and (85), the terms in O(p2) could
depend on i. As shown in Fig. 7, we have confirmed that
p dependence in the first term of (85) is consistent to that
computed by the exact diagonalization. Moreover, as shown
in Fig. 8, we can see good agreement of the value B2 − B1 by
two distinct methods: one method is by definition (81). The
other is by comparing Oi computed by the exact diagonaliza-
tion with rank dependence in (85).

We write the remaining term in (85) as

εi(β, p) := Oi − p

1 + p
(B2 − B1)i − c0 = O(p2). (86)

FIG. 8. B2 − B1 as a function of β for L = N = 3. The line
corresponds to the computation through its definition (81). The blue
crosses correspond to the estimation through (85) where Oi is cal-
culated by the exact diagonalization. Practically, the estimated value
is calculated as ã(β ) where a(p) � ã(β ) p

1+p + b̃(β ) through linear
regression.
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Let us suppose B2 �= B1. The remainder term εi can be
ignored when p � 1 compared to the term p

1+p (B2 − B1)i.
After ignoring εi, the overlap centrality Oi is a linear function
with respect to rank i. Therefore the perfect correlation holds:

φ →
{

+1 (if B1 < B2)

−1 (if B1 > B2)
as p → +0. (87)

This is consistent with the observation in Fig. 6 as long as p
is small because the value of φ approaches +1 or −1 very
closely.

The above discussion gives another indication. Ignoring εi,
the linear dependency of the overlap centrality Oi with re-
spect to rank i comes from permutation symmetry (80) in A1.
Note that, as mentioned by (40), the permutation symmetry is
broken in the transition matrix if p �= 0, but this symmetry is
partially recovered in the quantity A1. Note that one can also
derive

M = p

1 + p

(
N − 1

2N
(B1 + B2) + (N − 1)(N − 2)

2N
B3

)
+ C(β, p)

B0

N
+ O(p2) (88)

by using (45).
Evaluating the sign of φ requires concrete calculation of

both B1 and B2, but it gets complicated to obtain their analytic
expressions for a given energy function such as the Potts
energy (2). Nevertheless, it is still feasible to perform such
a calculation in the case of β = 0 as discussed in the next
subsection. It is because at β = 0, transition matrix T̂0(β )
gets independent of the form of energy function, resulting in
getting close to that of the free random walk process.

C. Singularity in φ at β = 0

One can calculate the overlap centrality at β = 0 for the
asymptotic regime of small p concretely. As a result, we show
that at β = 0, B1 = B2 holds, which means that the correlation
coefficient φ is singular at β = 0.

From the definitions of B1, B2 in (81) and A1 in (77), we
have

B1 =
∑

1� j�N

∑
x∈X N

δ(x1, x j )〈x|B̂1,2|Pcan(β )〉, (89)

B2 =
∑

1� j�N

∑
x∈X N

δ(x2, x j )〈x|B̂1,2|Pcan(β )〉. (90)

In order to calculate B1 and B2 at β = 0, we need to derive an
explicit expression of 〈x|B̂1,2|Pcan(0)〉. First, let us define

|k) :=
∑
x∈X

eikx

√
L

|x〉 ∈ HX , (91)

for k = 2πn/L and n ∈ Z/LZ. The orthonormal system {|k)}k

spans the whole space HX over C. In particular

|Pcan(0)〉 =
( |0)√

L

)⊗N

(92)

holds. Note that, for k = (k1, k2, . . . , kN ) with ki = 2πni/L
and ni ∈ Z/LZ with 1 � i � N ,

|k) := |k1) ⊗ · · · ⊗ |kN ) ∈ H⊗N
X (93)

is an eigenvector of T̂0(β = 0) with an eigenvalue

1

N

(
cos2 k1

2
+ · · · + cos2 kN

2

)
. (94)

The vector |k) is also an eigenvector of Ĝ0(β = 0), and the
eigenvalue is

N

(
sin2 k1

2
+ · · · + sin2 kN

2

)−1

(95)

for any k �= 0 = (0, 0, . . . , 0).
Next, substituting the definition (74) of B̂1,2 into the term

〈x|B̂1,2|Pcan(0)〉, we obtain

〈x|B̂1,2|Pcan(0)〉 = 1
2 〈x|Ĝ0(0)

(
�̂+

2 + �̂−
2 − 2 îd

⊗N
H

)
× 	̂1,2T̂ 1

0,move(β = 0)|Pcan(0)〉. (96)

In order to obtain more explicit expression, let us multiply

|Pcan(0)〉 by T̂ 1
0,move, 	̂1,2, (�̂+

2 + �̂−
2 − 2 îd

⊗N
H ), and Ĝ0(0)

from the left, successively. Reminding of the definition (59)
of T̂ 1

0,move, we have

T̂ 1
0,move(0)|Pcan(0)〉 = 1

2N
|Pcan(0)〉 (97)

and can show that

	̂1,2|Pcan(0)〉 =
∑
x∈X

|x〉
L

⊗ |x〉
L

⊗
( |0)√

L

)⊗(N−2)

= 1

L2

∑
k1

|k1) ⊗ |−k1) ⊗
( |0)√

L

)⊗(N−2)

. (98)

By using (97) and (98), we obtain(
�̂+

2 + �̂−
2 − 2 îd

⊗N
H

)
	̂1,2T̂ 1

0,move(0)|Pcan(0)〉

= − 1

2N

1

L2

∑
k1

4 sin2 k1

2
|k1) ⊗ |−k1) ⊗

( |0)√
L

)⊗(N−2)

.

(99)

Substituting (99) into (96), and using (95), we find

〈x|B̂1,2|Pcan(0)〉 = − 1

2L2

∑
k1 �=0

eik1x1

√
L

e−ik1x2

√
L

(
1

L

)N−2

= − 1

2LN+1
[Lδ(x1, x2) − 1]. (100)

Recalling (89) and (90) with∑
x∈X N

δ(xi, x j )[Lδ(x1, x2) − 1]

=
{

LN−1(L − 1) [if (i, j) = (1, 2) or (2, 1)]
0 (otherwise),

(101)

one can calculate

B1 = B2 = −L − 1

2L2
. (102)

Thus, it turns out that φ is singular at β = 0.
One can also calculate B0 = N/L, and using (101), B3 = 0.

By substituting the value of B
 (
 = 0, 1, 2, 3) into (84) and
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(85), the overlap centrality Oi is O(N/L). This is consistent
with the uniform distribution corresponding to the case of
β = 0. Therefore, it is reasonable that B0 = O(N/L) and B1 =
B2 = O(L−1) as functions of N and L. Note that one can also
evaluate

M = 1

L

(
C(0, p) − p

2(1 + p)

N − 1

N

L − 1

L

)
+ O(p2).

(103)

D. Comparison between exact diagonalization
and analytic result

In this subsection, we shall illustrate the behavior of the
correlation coefficient φ computed by exact diagonalization
in comparison with analytic discussion in Sec. IV.

In order to consider β dependence of φ, let us fix p as a
small but nonzero value and change the value of β. When the
parameter β varies with satisfying the condition

B2(β, p) − B1(β, p) = O(εi(β, p)), (104)

the linear term (B2 − B1)i in Oi is no longer dominant in the
rank dependence. As a result, φ could change continuously
from φ = −1 to φ = 1. In this case, (87) does not necessarily
hold. Exact diagonalization indicates that the range of β,
where φ takes a value close to ±1, is wider as p is smaller.

Let us recall the observation in the exact diagonalization in
the case of the Potts energy that the value of φ sharply changes
around β = 0 for small p as shown in Fig. 6. Assuming that
this observation is universal for sufficiently small p, by com-
bining the existence of perfect correlation and the singularity
of φ at β = 0, it may be a reasonable conjecture that, at least,
in the case of the Potts energy, φ becomes discontinuous at
β = 0 as a function of β in the limit of p → +0.

E. Correspondence between overlap centrality
and eigenvector centrality

Let us discuss the relation between the overlap centrality
O = (Oi )N

i=1 and the other existing ways to define centrality.
First, the overlap centrality has a connection to another

existing centrality in the following sense. Let us consider a
weighted complete graph, where each agent is regarded as a
vertex, and an element ri j of the neighbor matrix R for the
pair of agents i, j is regarded as the weight of the edge (i, j).
Then the overlap centrality defined above is equivalent to the
strength centrality of the complete graph constructed above,
which has been introduced in the field of network science
[14,16].

Second, one can also define the eigenvector centrality of
the complete graph mentioned above as the eigenvector V =
(Vi )1�i�N of R with the maximum eigenvalue. Indeed, one
may show that the eigenvector centrality is directly related to
the overlap centrality when p � 1 in the following manner:

V ∝ 1

N3/2c
O − γ × (1, 1, . . . , 1)T + O(p2), (105)

where c and γ are constants with O(1). In particular, combin-
ing with (85), we have

Vi ∝ p

1 + p

B2 − B1

N3/2c
i +

(
c0

N3/2c
− γ

)
+ O(p2), (106)

where the coefficient of proportionality is independent of i.
Thus, the eigenvector centrality as well as the overlap cen-
trality depends on the rank i linearly if the term of O(p2) is
ignored in (105). Remarkably, that relation (105) holds for
general probability distribution which breaks the permutation
symmetry of agents weakly. See Appendix B for the explicit
two conditions to hold the relation (105) in a more general
form. As shown in Fig. 9, one can see better agreement of
both centralities for smaller p.

V. CONCLUDING REMARKS

In this paper, we have proposed a stochastic process
without both detailed balance and permutation symmetry,
which is inspired by the supplanting phenomenon of Japanese
macaques. We have introduced a type of centrality, which
we call overlap centrality, to characterize a rank-dependent
correlation of agents’ positions. Then we have found that this
model of interacting ranked agents exhibits the unexpected
linearity (85) with respect to the agent’s rank i in overlap
centrality Oi at a small supplanting condition, which could
be regarded as a type of collective phenomenon. Precisely
speaking, when B1 �= B2, the perfect correlation correspond-
ing to the linearity mentioned above appears between Oi

and rank i in the regime of weak supplanting limit p →
+0. Even for small but nonzero p, concrete analysis by
exact diagonalization shows that φ is very close to the per-
fect correlation in the case of the Potts energy if β is far
from 0.

One might ask about the meaning of perfect correlation. So
far, we do not have a clear answer to this question. However,
one might have speculation that the perfect correlation implies
divergence of characteristic scale in ranking. From this view-
point, it could be intriguing to quantify such a characteristic
scale in future studies.

Another problem on the singular behaviors of φ around
β = 0 is to identify the effects which essentially cause those
singular behaviors. Compared to the equilibrium Potts model,
the model with supplanting process does not have permutation
symmetry in terms of agents and also does not have detailed
balance. In our derivation of perfect correlation, broken per-
mutation symmetry is one of essential parts, but we are not
aware of the effects from broken detailed balance. Concerning
this point, one can consider an equilibrium model keeping
with detailed balance without permutation symmetry by, for
example, an energy function

∑
i, j Ji, jδ(xi, x j ), where Ji, j is

a function of agents i, j such as i × j. If one could prove
that there does not exist the singularity of φ for such general
equilibrium models, one could presumably expect that both
permutation symmetry breaking and broken detailed balance
are essential for causing the singularity. Such a motivation has
been raised for broken rotational symmetry observed in active
matter [28]. Indeed, it has been proven for a general class of
systems having potentials dependent on position and velocity
that rotational symmetry cannot be broken in equilibrium.
This implies that the observed phase transitions associating
with broken rotational symmetry in active matters are caused
purely by nonequilibrium effects such as broken detailed bal-
ance. We will need somewhat similar ideas. We remark that
the term permutation symmetry has been used in this paper in
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FIG. 9. The overlap centrality (blue circles) Oi and the normalized eigenvector centrality (black crosses) determined by the stationary
distribution obtained by the exact diagonalization as a function of agent i for L = N = 6. The parameters are set as follows; p = 0.1 (left) and
p = 10.0 (right); β = 1 (top), β = 0 (center), and β = −1 (bottom), respectively. The eigenvector centrality is normalized so that the two data
points of i = 1 and i = 2 in the ranking axis are perfectly matched. The overlap centrality gets closer to the eigenvector centrality for p = 0.1
compared to the case of p = 10.0.

various manners depending on the quantity to which the term
is applied. See the list of the various ways the term is applied
in Table I.

Let us briefly discuss the obtained results in the context of
linear response theory. If one defines a susceptibility of M as

χ (p) := dM/d p in terms of p, we can obtain

χ (0) = N − 1

2N
(B1 + B2) + (N − 1)(N − 2)

2N
B3

+ ∂pC(β, 0)B0. (107)

TABLE I. How to use the term permutation symmetry depending on the classes of quantity. For example of each class, the case (a) is
applied to (80), (b) to (1), (c) to (67), and (d) to (39).

Class of quantity Definition for the quantity to be permutation symmetric

(a) Function f (i1, i2, . . . , in) depending on ranks i1, i2, . . . , in f (σ (i1), σ (i2), . . . , σ (in)) = f (i1, i2, . . . , in)
(b) Function f (x) depending on agents’ configuration x ∈ X N f (σ (x)) = f (x)
(c) State vector |ψ〉 ∈ H⊗N

X 
̂σ |ψ〉 = |ψ〉 for any σ ∈ SN

(d) Linear operator Â from H⊗N
X to itself 
̂σ Â
̂−1

σ = Â
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Note that the coefficient ∂pC(β, 0) of B0 is described as

−
(

N

2

) ∑
x∈X N

〈x|B̂i0,i1 |Pcan(β )〉 (108)

for some 1 � i0 < i1 � N . By a similar computation to (80),
we can find that (108) does not depend on i0, i1, and p. So
far, it is not obvious for us to connect those quantities with the
other known quantities, which remains an open problem.

Whereas our above discussions focus on the case of small
p � 1, we move to the case of any p. The result of exact diag-
onalization implies that perfect correlation with φ = 1 would
hold for negative β sufficiently far from 0. This behavior is of
interest in that the strong correlation effect originating from
hard core repulsion may stabilize perfect correlation with
φ = 1. However, our strategy of the perturbation with respect
to p is unavailable for not small p �� 1. For this reason, it is
not clear whether the perfect correlation is derived by use of
permutation symmetry in a similar way to the case of p � 1.
In order to tackle this problem, the situation with restricted
values of L and N is to be considered. As an example, let
us take the case satisfying N = L + 1 with the Potts energy.
In this case, if the repulsion is sufficiently strong, then each
site is occupied by at least an agent, and there is a single
site occupied by two agents. Then one of the two agents
occupying the site can hop in accordance with the equilibrium
dynamics, while all of the other agents cannot hop effectively.
This leads to reduction of the transition of states and could
help us to analyze the overlap centrality of this model. Note
that the above discussion is based on the Potts energy and is
not necessarily applied to the other case with a general energy
form. It remains for future work to perform further numerical
calculations for energy functions other than the Potts energy
as well as to explore analytic methods for general p.

Let us briefly discuss the possibility of phase transition
lines in parameter space (β, p) for nonzero p. First, the equi-
librium phase transition point β = βc with p = 0 for the case
of Potts energy might extend toward nonzero p as a nonequi-
librium phase transition line β = βc(p) where M shows a
singular jump. Second, the point β = 0 with p → +0 where
the correlation coefficient shows singularity might also extend
toward nonzero p as another nonequilibrium phase transition
line β = β0(p) where φ shows a singular jump. However,
since our analysis is limited to the parameter region close
to p = 0, it is necessary to perform large-scale numerical
simulations or develop other analytical methods in order to
capture the true limiting behavior of large system size for
nonzero p. This remains to be an intriguing future study.

From a mathematical viewpoint, beta decomposition of the
transition matrix could be useful in a more general context.
This expression gives the exact lowest order of the transition
matrix in terms of p. Nevertheless, the concrete expression of
it looks complicated, and then it would not be straightforward
to use the expression for a given purpose. Further, it should be
noted that the minor modification of the supplanting process
prevents us from obtaining the beta decomposition. In this
sense, the present version of the supplanting process can be
regarded as a specially tractable case. It remains an open ques-
tion how beta decomposition can be applied to calculation of

the other quantities and whether one can find other tractable
cases in this direction.

Let us remark on the direct relation between eigenvec-
tor centrality and strength centrality. Unifying two relations
among centralities discussed in Sec. IV E, one can also have
another conclusion in the context of network theory. Consider
a complete graph whose edges are weighted by the same value
with small fluctuation. Then the neighbor matrix R whose
entries are weights of edges has a decomposition R̃(1) + R̃(2)

similar to (B5), and the graph holds a linear relation similar
to (105) between the strength centrality and the eigenvector
centrality.

Last, we mention the results in this paper relevant to behav-
iors of members in a group of primate species. Ranking has
been widely known to be one characteristic structure which
primates species have when they live as a group [18]. Indeed,
it has been found that ranking affects the spatial location of the
members in a group [19,20,29,30] and the distance between
the members [31,32]. The overlap centrality observed in the
model proposed in this paper might shed light on how one
could estimate the ranking structures of such a group and its
environmental conditions.
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APPENDIX A: DERIVATION OF TWO DECOMPOSITIONS
OF TRANSITION MATRIX

In this section we would like to explain, in detail, the
derivations of two decompositions of transition matrix T̂ ,
which we call supplanting decomposition and beta decompo-
sition as mentioned in Sec. IV A. To do this, we give a detailed
account of our models in terms of operators. Hereafter, in
order to make this Appendix self-contained, many definitions
in the main text are repeated.

1. Notations

For a set S, the number of elements is denoted as #S. The
Kronecker’s delta δ(i, j) is defined as

δ(i, j) =
{

1 (if i = j)
0 (if i �= j).

(A1)

We consider any vector space appearing in this section as
complex vector space. We denote the set of complex numbers
as C, and the set of real numbers as R.

2. Describing the model

In this subsection, as a preliminary, we introduce basic
concepts which are necessary to explain the model.

a. Agents and states

We consider N � 2 agents labeled by 1, 2, . . . , N . They
have a total ordering (i.e., linear dominance) meaning that if
1 � i < j � N , agent i is higher than agent j. The set of all
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agents is written as

[N] := {1, 2, . . . , N}. (A2)

The agents lie in the lattice X = Z/LZ = {0, 1, . . . , L −
1} with L � 3. For an agent i, the position is written as xi ∈ X .
Thus, the configuration space of agents is described by

X N = {x = (x1, x2, . . . , xN ) | xi ∈ X }. (A3)

b. Hopping map

We define a map f +
i : X N → X N (resp. f −

i : X N → X N ) of
configurations as the increment (resp. decrement) of position
of agent i under a periodic boundary condition. Explicitly, we
have

f +
i (x1, x2, . . . , xi, . . . , xN ) := (x1, x2, . . . , xi + 1, . . . , xN ),

(A4)

f −
i (x1, x2, . . . , xi, . . . , xN ) := (x1, x2, . . . , xi − 1, . . . , xN ).

(A5)

c. The permutation-invariant energy function

We take an energy function E (x) = E (x1, x2, . . . , xN )
which is symmetric in the following sense:

E (x1, x2, . . . , xN ) = E (xσ (1), xσ (2), . . . , xσ (N ) ) (A6)

for any permutation σ ∈ SN of N elements in [N]. The sym-
metry will be used in Appendix A 3 e and A 5 e and is essential
in (78) and (80). For example, in (2), we take the normalized
Potts model

E (x) = − (L − 1) log(L − 1)

N (L − 2)

∑
1�i, j�N

δ(xi, x j ) (A7)

as an energy function.
To simplify the notation, we introduce the (i, d )-th differ-

ence of the energy function E for 1 � i � N and d ∈ {+,−}:

Dd
i E (x) := E

(
f d
i x
)− E (x). (A8)

d. Describing the hopping by equilibrium dynamics

First, we describe the hopping by equilibrium dynamics as
follows.

(a) Determine an agent 1 � i � N with equal probability
1/N .

(b) Choose a direction d = + or − with equal probability
1/2.

(c) Decide whether the agent i stays or hops to the direc-
tion d:

The probability that the agent i hops to direction d is

1

1 + exp
[
βDd

i E (x)
] . (A9)

FIG. 10. Probability tree of hopping by equilibrium dynamics.

The probability that the agent i stays is

1 − 1

1 + exp
[
βDd

i E (x)
] = 1

1 + exp
[−βDd

i E (x)
] .
(A10)

For a graphical explanation, see Fig. 10.

e. Describing the hopping by supplanting process

For a given configuration x ∈ X N , an agent i ∈ [N], and
a direction d ∈ {+,−}, we define the set S(x, i, d ) ⊆ [N] as
follows:

S(x, i,±) := {i < j � N | x j = xi ± 1}. (A11)

In other words, S(x, i, d ) is defined as a set of agents j ∈ [N]
satisfying the two conditions: (1) j ∈ S(x, i, d ) is lower than
i (in other words j > i) and (2) sits on the site xi + 1 (when
d = +) or xi − 1 (when d = −).

Let us fix the supplanting rate 0 � p < ∞. After step (c)
of the first hopping, we define the supplanting process as
described below.

(d) One of the following events occurs in the probabilities
described below:

The agent j ∈ S(x, i, d ) hops with the probability

p

1 + p#S(x, i, d )
. (A12)

In a probability

1

1 + p#S(x, i, d )
, (A13)

no one hops.
(e) If a hopping occurs in (d), choose a direction d ′ = +

or − of the hopping of the agent j with uniform probability
1/2.

Note that if p = 0 or S(x, i, d ) is empty, then no supplant-
ing occurs. The diagram in Fig. 11 describes the probability
tree after the first hopping of the agent i.

3. Transition matrices

In this subsection, we write the transition matrices as linear
operators on a state space.
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FIG. 11. Probability tree of supplanting process after the first
hopping.

a. State vector spaces

The state space HX is the complex vector space with a basis

|0〉, |1〉, . . . , |L − 1〉 (A14)

corresponding to sites 0, 1, . . . , L − 1 ∈ X , respectively.
Similarly the multistate space HX N is the complex vector

space with a basis |x〉 corresponding to configurations x ∈ X N .
It is identified with the tensor space H⊗N

X with a map

HX N → H⊗N
X := HX ⊗ HX ⊗ · · · ⊗ HX︸ ︷︷ ︸

N

;

|x〉 �→ |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xN 〉. (A15)

With this identification, we freely use tensor notation to notate
operators.

We introduce the inner product 〈·|·〉 on HX such that the
basis (|x〉)x∈X is orthonormal. This induces an inner product
on H⊗N

X , and the basis (|x〉)x∈X N on H⊗N
X is orthonormal. We

use the same symbol 〈·|·〉 to write this induced inner product
on H⊗N

X .

b. Coefficients of operators

An operator Â : H⊗N
X → H⊗N

X is described by its coeffi-
cients. The (x, y)-th coefficient of Â is written by 〈y|Â|x〉. In
other words, we can write

Â|x〉 =
∑
y∈X N

|y〉〈y|Â|x〉. (A16)

c. Shift operators

As pieces of transition matrices, we define notations of
shift operators.

The shift operators �̂+
i and �̂−

i on H⊗N
X for 1 � i � N are

defined as

�̂+
i |x〉 := | f +

i x〉 (A17)

= |x1〉 ⊗ |x2〉 · · · ⊗ |xi + 1〉 ⊗ · · · ⊗ |xN 〉, (A18)

�̂−
i |x〉 := | f −

i x〉 (A19)

= |x1〉 ⊗ |x2〉 · · · ⊗ |xi − 1〉 ⊗ · · · ⊗ |xN 〉, (A20)

for x = (x1, x2, . . . , xN ) ∈ X N . In terms of coefficients, the
following hold:

〈y|�̂+
i |x〉 =

{
1 (if y = f +

i x)

0 (otherwise),
(A21)

〈y|�̂−
i |x〉 =

{
1 (if y = f −

i x)

0 (otherwise).
(A22)

d. Projection operators

We denote the identity operator on the state space HX as
îdH . Then we can write the identity operator on the multistate

space H⊗N
X as îd

⊗N
H .

The projection operator 	̂
y
i on H⊗N

X for 1 � i � N and y ∈
X is defined as

	̂
y
i |x〉 :=

{|x〉 (if xi = y)

0 (otherwise).
(A23)

This projection operator checks whether xi = y or not; if
xi = y it returns |x〉, otherwise it returns the zero vector. For a
configuration x = (x1, x2, . . . , xN ) ∈ X N , we define

	̂x :=
∏

1� j�N

	̂
x j

j . (A24)

It satisfies

	̂y|x〉 =
{|x〉 (if x = y)

0 (otherwise).
(A25)

and, in terms of coefficients,

〈y|	̂z|x〉 =
{

1 (if y = x = z)

0 (otherwise).
(A26)

The operator 	̂z checks whether x = z.
We define some other projection operators: first, for x ∈ X

and ∅ �= S ⊆ [N],

	̂S :=
{∑

x∈X

∏
i∈S 	̂x

i (if S �= ∅)

îd
⊗N
H (if S = ∅).

(A27)

The operator 	̂S checks whether all of the agents in S sit on
the same site. Explicitly,

	̂S|x〉 =
{|x〉 (if xi = x j for any i, j ∈ S)

0 (otherwise).
(A28)

If S is empty, it checks nothing; it is the identity operator.
Another projection operator ϒ̂i;S for 1 � i � N and S ⊆

{i + 1, i + 2, . . . , N} checks two conditions: (1) x j = xi if j ∈
S, and (2) x j′ �= xi if j′ �∈ S and j′ > i. Explicitly, it is defined
as

ϒ̂i;S|x〉 :=
{|x〉 (if x j = xi for j ∈ S, and xi �∈ {x j′ } j′>i

j′ �∈S
)

0 (otherwise).
(A29)
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In terms of 	̂x
i and 	̂S, this operator is written as

ϒ̂i;S =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
x∈X 	̂x

i ·∏ j∈S 	̂x
j ·∏ j′>i

j′ �∈S

(
îd

⊗N
H −	̂x

j′
)

(if S �= ∅ and S �= {i + 1, i + 2, . . . , N})∑
x∈X 	̂x

i ·∏ j′>i

(
îd

⊗N
H −	̂x

j′
)

(if S = ∅ and i � N − 1)∑
x∈X 	̂x

i ·∏ j∈S 	̂x
j (if S �= ∅ and S = {i + 1, i + 2, . . . , N})∑

x∈X 	̂x
i (if S = ∅ and i = N )

(A30)

=
∑

S⊆S′⊆{i+1,...,N}
(−1)#S′−#S	̂S′ . (A31)

A relation between these operators is

	̂{i}∪S =
∑

S⊆S′⊆{i+1,...,N}
ϒ̂i;S. (A32)

e. Permutation operators

For a permutation σ ∈ SN of [N] = {1, 2, . . . , N}, we de-
fine

σ (x) := (xσ (1), xσ (2), . . . , xσ (n) ) (A33)

for x = (x1, x2, . . . , xn) ∈ X N . Let 
̂σ be the corresponding
matrix to σ−1. Explicitly,


̂σ |(x1, x2, . . . , xn)〉 = |σ−1(x1, x2, . . . , xn)〉 (A34)

= |(xσ−1(1), xσ−1(2), . . . , xσ−1(N ) )〉. (A35)

For an operator Â on H⊗N
X , the daggered symbol Â† denotes

the Hermitian conjugate of Â. Then we have 
̂†
σ = 
̂−1

σ =

̂σ−1 . We also have some commutation relations as follows:

�̂±
j 
̂σ = 
̂σ �̂±

σ ( j), (A36)

	̂x
j
̂σ = 
̂σ 	̂x

σ ( j), (A37)

	̂S
̂σ = 
̂σ 	̂σ (S). (A38)

We remark that ϒ̂i;S has a factor
∏

j>i
j �∈S

(îd
⊗N
H −	̂

j
x ). Since this

factor involves an ordering j > i, it does not satisfy a simple
relation in terms of permutation operators. A key procedure in
our calculation is to rewrite an operator ϒ̂i;S in terms of 	̂{i}∪S.
This enables us to use the commutation relations in terms of
permutations.

Besides, since the energy function depends only on the
numbers of agents on each site, the energy function does not
depend on the labeling of the agents. In other terms,

E
[

f d
σ (i)(xσ−1(1), xσ−1(2), . . . , xσ−1(N ) )

]= E
[

f d
i (x1, x2, . . . , xN )

]
.

(A39)

f. Other commutation relations of operators

The shift operators (resp. the projection operators) are
commutative at each other, while a shift operator and a pro-
jection operator does not necessarily commute. Explicitly, it

holds that

	̂x
i �̂

+
j =

{
�̂+

j 	̂x
i (if i �= j)

�̂+
j 	̂x−1

i (if i = j),
(A40)

	̂x
i �̂

−
j =

{
�̂−

j 	̂x
i (if i �= j)

�̂−
j 	̂x+1

i (if i = j).
(A41)

g. Transition matrix for the first hopping

According to the description in Appendix A 2 d, the transi-
tion matrix T̂0 for the first hopping can be described as

T̂0 :=
∑

1�i�N

1

N

∑
d=±

1

2

∑
x∈X N

(
�̂d

i

1 + exp
[
βDd

i E (x)
]

+ îd
⊗N
H

1 + exp
[−βDd

i E (x)
])	̂x. (A42)

For the latter use, we introduce some symbols. First, for x ∈
X N , 1 � i � N , and d ∈ {+,−}, we write the coefficient of T̂0
as

cβ (x, i, d ) := 1

2N
{
1 + exp

[
βDd

i E (x)
]} . (A43)

Then we have

1

2N
− cβ (x, i, d ) = 1

2N
{
1 + exp

[−βDd
i E (x)

]} . (A44)

Since exp(x) > 0 for any real x ∈ R, we can estimate

0 < cβ (x, i, d ) � 1

2N
(A45)

for any β, E , x, i, d, N , and L. We define a set of operators:
for d ∈ {+,−},

T̂ i,d
0,move :=

∑
x∈X N

cβ (x, i, d )�̂d
i 	̂

x, (A46)

T̂ i,d
0,stay :=

∑
x∈X N

(
1

2N
− cβ (x, i, d )

)
	̂x, (A47)

T̂ i
0,move := T̂ i,+

0,move + T̂ i,−
0,move, (A48)

T̂ i
0,stay := T̂ i,+

0,stay + T̂ i,−
0,stay. (A49)
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Then we have

T̂0 =
∑

1�i�N

(
T̂ i

0,move + T̂ i
0,stay

)
(A50)

=
∑

1�i�N
d=±

(
T̂ i,d

0,move + T̂ i,d
0,stay

)
. (A51)

Note that, using relations in Appendix A 3 e, we have


̂†
σ T̂ i,d

0,move
̂σ = T̂ σ (i),d
0,move, (A52)


̂†
σ T̂ i,d

0,stay
̂σ = T̂ σ (i),d
0,stay , (A53)


̂†
σ T̂0
̂σ = T̂0. (A54)

h. Transition matrix for supplanting process

According to Appendix A 2 e, in order to describe the
transition matrix T̂ for the supplanting process, it suffices to
replace �̂d

i 	̂
x appearing in T̂ i

0,move by

∑
j∈S(x,i,d )

1

#S(x, i, d )

∑
d ′=±

1

2

(
p#S(x, i, d )

1 + p#S(x, i, d )
�̂d ′

j + 1

1 + p#S(x, i, d )
îd

⊗N
H

)
�̂d

i 	̂
x (A55)

=
∑

j∈S(x,i,d )
d ′=±

1

2#S(x, i, d )

(
p#S(x, i, d )

1 + p#S(x, i, d )
�̂d ′

j + 1

1 + p#S(x, i, d )
îd

⊗N
H

)
�̂d

i 	̂
x (A56)

=

⎛⎜⎜⎝̂�d
i +

∑
j∈S(x,i,d )

d ′=±

p

2(1 + p#S(x, i, d ))

(
�̂d ′

j − îd
⊗N
H

)
�̂d

i

⎞⎟⎟⎠	̂x. (A57)

Thus, by (A51), the transition matrix T̂ is written as

T̂ =
∑

1�i�N
d=±

∑
x∈X N

⎡⎢⎢⎣cβ (x, i, d )

⎛⎜⎜⎝�̂d
i +

∑
j∈S(x,i,d )

d ′=±

p

2(1 + p#S(x, i, d ))

(
�̂d ′

j − îd
⊗N
H

)
�̂d

i

⎞⎟⎟⎠	̂x + T̂ i,d
0,stay

⎤⎥⎥⎦ (A58)

= T̂0 +
∑
x∈X N

∑
1�i�N

d=±

∑
j∈S(x,i,d )

d ′=±

pcβ (x, i, d )

2(1 + p#S(x, i, d ))

(
�̂d ′

j − îd
⊗N
H

)
�̂d

i 	̂
x. (A59)

i. Coefficients of two operators

From the descriptions of operators �̂d
i , 	̂

x in (A21), (A22),
and (A26), we obtain

〈y|�̂d
i 	̂

z|x〉 =
{

1 (if x = z and y = f d
i z)

0 (otherwise),
(A60)

〈y|�̂d ′
j �̂d

i 	̂
z|x〉 =

{
1 (if x = z and y = f d ′

j f d
i z)

0 (otherwise).
(A61)

Using this and (A51), the coefficients of T̂0 is

〈y|T̂0|x〉 =

⎧⎪⎨⎪⎩
cβ (x, i, d ) (if y = f d

i x)

1 −∑
1�i�N

d=±
cβ (x, i, d ) (if y = x)

0 (otherwise).

(A62)

Similarly by (A59), the coefficients of T̂ is

〈y|T̂ |x〉 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

pcβ (x,i,d )
2(1+np) (if y = f d ′

j f d
i x and j ∈ S(x, i, d ))

2pcβ (x,i,d )
2(1+np) (if y = f d

i x)

1 −∑
1�i�N

d=±
cβ (x, i, d ) (if y = x)

0 (otherwise).

(A63)

j. The broken permutation symmetry of transition matrix

In this subsection, we explain an example of the broken
permutation symmetry of transition matrix T̂ by using com-
mutative relations. Recall that, for an operator Â on H⊗N

X , the

daggered symbol Â† denotes the Hermitian conjugate of Â.
By (A63), for i ∈ [N] and j ∈ S(x, i, d ), we have〈

f d ′
j f d

i x
∣∣T̂ |x〉 = pcβ (x, i, d )

2[1 + p#S(x, i, d )]
. (A64)
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On the other hand, for a transposition σ = (i j) ∈ SN , one
has 〈

f d ′
j f d

i x
∣∣
̂†

σ T̂ 
̂σ |x〉 = 〈x|�̂d,†
i �̂

d ′,†
j 
̂†

σ T̂ 
̂σ |x〉 (A65)

= 〈x|(
̂σ �̂d ′
j �̂d

i

)†
T̂ 
̂σ |x〉. (A66)

Using the commutative relation (A36), one can see

〈x|(
̂σ �̂d ′
j �̂d

i

)†
T̂ 
̂σ |x〉 = 〈x|(�̂d ′

σ ( j)�̂
d
σ (i)
̂σ

)†
T̂ 
̂σ |x〉

(A67)

= 〈x|(�̂d ′
i �̂d

j 
̂σ

)†
T̂ 
̂σ |x〉 (A68)

= 〈x|
̂†
σ �̂

d,†
j �̂

d ′,†
i T̂ 
̂σ |x〉. (A69)

Proceeding with the transformation using (A33), it follows
that

〈x|
̂†
σ �̂

d,†
j �̂

d ′,†
i T̂ 
̂σ |x〉 = 〈σ−1(x)|�̂d,†

j �̂
d ′,†
i T̂ |σ−1(x)〉

(A70)

= 〈
f d ′
i f d

j σ−1(x)
∣∣T̂ |σ−1(x)〉. (A71)

Since j ∈ S(x, i, d ), we have j > i, hence i �∈ S(x, j, d ). With
(A63), we obtain〈

f d ′
i f d

j σ−1(x)
∣∣T̂ |σ−1(x)〉 = 0. (A72)

Thus, since cβ (x, i, d ) �= 0, we obtain the broken permutation
symmetry of T̂ with respect to the permutation of compo-
nents: 〈

f d ′
j f d

i x
∣∣
̂†

σ T̂ 
̂σ |x〉 �= 〈
f d ′

j f d
i x
∣∣T̂ |x〉. (A73)

This shows that, for any energy function E (x) as in Ap-
pendix A 2 c and any transposition σ = (i j) ∈ SN , we find
that


̂†
σ T̂ 
̂σ �= T̂ . (A74)

In fact, for any nontrivial permutation σ ∈ SN , we can
show (A74). Explicitly, for a nontrivial permutation σ ∈ SN ,
we can find the following four data (i, j, x, d ) satisfying the
following two conditions: (1) i < j with σ (i) > σ ( j) and (2)
x ∈ X N and d = + or − such that j ∈ S(x, i, d ). Then, in
parallel, the above argument works to show (A73) and thus
(A74) for the permutation σ .

4. The supplanting decomposition

From here to the next section, we introduce two decompo-
sitions of the operator T̂ . The idea of our first decomposition
of T̂ is to split the sums by the number #S(x, i, d ).

a. The nth term

First we note that a coefficient in (A59),

pcβ (x, i, d )

2[1 + p#S(x, i, d )]
, (A75)

TABLE II. A part of (x, y)-th coefficients of T̂ − T̂0 and T̂n with
y = f d ′

j f d
i x.

#S(x, i, d ) T̂ − T̂0 T̂1 T̂2 T̂3 T̂4 · · · T̂n

1
pcβ

2(1+p)
pcβ

2(1+p) 0 0 0 · · · 0

2
pcβ

2(1+2p) 0
pcβ

2(1+2p) 0 0 · · · 0

3
pcβ

2(1+3p) 0 0
pcβ

2(1+3p) 0 · · · 0

4
pcβ

2(1+4p) 0 0 0
pcβ

2(1+4p) · · · 0

n
pcβ

2(1+np) 0 0 0 0 · · · pcβ

2(1+np)

does not depend on j ∈ S(x, i, d ) and d ′ ∈ {+,−}. Recalling
(A59), equivalently,

T̂ − T̂0 =
∑
x∈X N

∑
1�i�N

d=±

∑
j∈S(x,i,d )

d ′=±

pcβ (x, i, d )

2[1 + p#S(x, i, d )]

× (
�̂d ′

j − îd
⊗N
H

)
�̂d

i 	̂
x, (A76)

we define the operators

T̂n :=
∑
x,i,d

δ(#S(x, i, d ), n)
∑

j∈S(x,i,d )
d ′=±

pcβ (x, i, d )

2(1 + np)

× (
�̂d ′

j − îd
⊗N
H

)
�̂d

i 	̂
x, (A77)

where 1 � n � N − 1. Then we obtain

T̂ = T̂0 + T̂1 + T̂2 + · · · + T̂N−1. (A78)

b. Coefficients of nth terms

Next we describe coefficients of T̂n as in (A16). Using
(A60) and (A61), we have

〈y|T̂n|x〉 =

⎧⎪⎨⎪⎩
pcβ (x,i,d )
2(1+np) (if y = f d ′

j f d
i x and #S(x, i, d ) = n)

−2npcβ (x,i,d )
2(1+np) (if y = f d

i x and #S(x, i, d ) = n)
0 (otherwise).

(A79)

By the estimate (A45), using n < N and 1 + np � 1, we see
that

0 � |〈y|T̂n|x〉| � np

2N (1 + np)
<

p

2
. (A80)

This shows that the nonzero coefficients of T̂n are estimated
as O(p) as p → +0, independent of n. See Table II for the
coefficients 〈y|T̂n|x〉 if y = f d ′

j f d
i x.

c. Another description of nth terms

Here we give another description (A88) of nth terms.
We change the ordering of summations in (A77) as fol-
lows: we first choose 1 � i0 � N , an n-elements set S =
{i1 < · · · < in} ⊂ [N] with i0 < i1, and then configurations
x = (x1, x2, . . . , xN ) so that S(x, i0, d ) = S. Then explicitly
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we reach

T̂n =
∑

1�i0�N

∑
S={i0<i1<···<in�N}

∑
x

S(x,i0,d )=S
d=±

pcβ (x, i0, d )

2(1 + np)

∑
j∈S(x,i0,d )

d ′=±

(
�̂d ′

j − îd
⊗N
H

)
�̂d

i0	̂
x (A81)

= p

2(1 + np)

∑
1�i0�N

∑
S

∑
x

S(x,i0,d )=S
d=±

cβ (x, i0, d )

⎡⎢⎢⎣∑
j∈S

d ′=±

(
�̂d ′

j − îd
⊗N
H

)⎤⎥⎥⎦�̂d
i0	̂

x (A82)

= p

2(1 + np)

∑
1�i0�N

∑
S

⎡⎢⎢⎣∑
j∈S

d ′=±

(
�̂d ′

j − îd
⊗N
H

)⎤⎥⎥⎦ ∑
x

S(x,i0,d )=S
d=±

cβ (x, i0, d )�̂d
i0	̂

x. (A83)

Using ϒ̂i0;S defined in (A29), we can write∑
x

S(x,i0,d )=S
d=±

cβ (x, i0, d )�̂d
i0	̂

x = ϒ̂i0;S

∑
d=±

∑
x

cβ (x, i0, d )�̂d
i0	̂

x

(A84)

= ϒ̂i0;ST̂ i0
0,move. (A85)

By putting P̂∅ = 0 and

P̂S :=
∑
j∈S

d ′=±

(
�̂d ′

j − îd
⊗N
H

)
(A86)

=
∑
j∈S

(
�̂+

j + �̂−
j − 2îd

⊗N
H

)
, (A87)

we can write

T̂n = p

2(1 + np)

∑
1�i0�N

∑
S⊆{i0+1,...,N}

δ(#S, n)P̂Sϒ̂i0;ST̂ i0
0,move.

(A88)

5. The beta decomposition

In this section, we introduce the second decomposition
(A96) of T̂ which we call the beta decomposition. The co-
efficients of mth term in the beta decomposition is estimated
as O(pm) [see (A113)].

a. Definition of beta terms

Here we give a definition of mth term Ûm of beta de-
composition by using T̂n which appear in the supplanting
decomposition [see (A77)]. For 1 � m � N − 1, we define

Ûm := (−1)m−1B(m, 1 + 1/p)

p

∑
m�n�N−1

(
n − 1

m − 1

)
(1 + np)T̂n.

(A89)

Here B(a, b) is the beta function:

B(a, b) := �(a)�(b)

�(a + b)
(A90)

=
∫ 1

0
xa−1(1 − x)b−1 dx. (A91)

In particular, we have

B

(
m, 1 + 1

p

)
= �(m)�(1 + 1/p)

�(m + 1 + 1/p)
(A92)

= (m − 1)!

(1 + 1/p)(2 + 1/p) · · · (m + 1/p)
(A93)

= (m − 1)!pm

(1 + p)(1 + 2p) · · · (1 + mp)
. (A94)

By these descriptions, one can write

Ûm = (−1)m−1(m − 1)!pm−1

(1 + p)(1 + 2p) · · · (1 + mp)

×
∑

m�n�N−1

(
n − 1

m − 1

)
(1 + np)T̂n. (A95)

b. The beta decomposition

We can prove the following decomposition:

T̂ = T̂0 +
∑

1�m�N−1

Ûm. (A96)

In fact,

∑
1�m�N−1

Ûm =
∑

1�m�N−1

(−1)m−1B(1 + 1/p, m)

p

×
∑

m�n�N−1

(
n − 1

m − 1

)
(1 + np)T̂n (A97)

=
∑

1�n�N−1

[ ∑
1�m�n

(−1)m−1 B(1 + 1/p, m)

p

×
(

n − 1

m − 1

)]
(1 + np)T̂n. (A98)
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Then the following lemma is enough to show the desired
decomposition (A96).

Lemma A.1.∑
1�m�n

(−1)m−1B(1 + 1/p, m)

p

(
n − 1

m − 1

)
= 1

1 + np
. (A99)

Sketch of proof. We only sketch the proof. With two gen-
erating series of exponential type

F0(t ) :=
∑
m�0

am
tm

m!
, (A100)

F1(t ) := F0(t )et , (A101)

where the coefficients of F0(t ) is

am := (−1)mB(1 + 1/p, m + 1)

p
(A102)

= (−1)mm!pm

(1 + p)(1 + 2p) · · · [1 + (m + 1)p]
, (A103)

it is enough to prove

F1(t ) =
∑
r�0

1

1 + (r + 1)p

tr

r!
. (A104)

Since a0 = F0(0) = (1 + p)−1 and

(1 + (m + 2)p)am+1 = (−1)(m + 1)pam (A105)

⇐⇒ (m + 1)am+1 + (m + 1)am = −
(

1 + 1

p

)
am+1

(A106)

for m � 0, we have a differential equation for F0(t )

t

(
dF0

dt
(t ) + F0(t )

)
= −1

p
[(1 + p)F0(t ) − 1]. (A107)

Thus F1(t ) = F0(t )et satisfies

t
dF1

dt
(t ) = −

(
1 + 1

p

)
F1(t ) + 1

p
et . (A108)

Now Eq. (A104) can be proved by comparison of
coefficients. �

c. Coefficients of beta terms

With our description (A79) of coefficients of T̂n, we can
write the coefficients of Ûm.

For y = f d ′
j f d

i x or f d
i x, the coefficients 〈y|T̂n|x〉 of T̂n is

zero when n �= #S(x, i, d ). Hence we have

〈y|Ûm|x〉 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(n−1

m−1

) (−1)m+1B(1+1/p,m)
2 cβ (x, i, d )

(
if y = f d ′

j f d
i x and #S(x, i, d ) = n � m

)
−2n

(n−1
m−1

) (−1)m+1B(1+1/p,m)
2 cβ (x, i, d )

(
if y = f d

i x and #S(x, i, d ) = n � m
)

0 (otherwise).

(A109)

Using the description

B(m, 1 + 1/p) = (m − 1)!pm

(1 + p)(1 + 2p) · · · (1 + mp)
, (A110)

we can write those coefficients in another form:

〈y|Ûm|x〉 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(n−1
m−1

) (−1)m+1(m−1)!pm

2(1+p)(1+2p)···(1+mp) cβ (x, i, d )
(
if y = f d ′

j f d
i x and #S(x, i, d ) = n � m

)
−2n

(n−1
m−1

) (−1)m+1(m−1)!pm

2(1+p)(1+2p)···(1+mp) cβ (x, i, d )
(
if y = f d

i x and #S(x, i, d ) = n � m
)

0 (otherwise).

(A111)

This allows us to estimate the coefficients of Ûm. With p → 0
and fixing other parameters β, N, L, and E , we have

〈y|Ûm|x〉 = O(pm). (A112)

In particular, we have

T̂ = T̂0 + Û1 + · · · + Ûm + O(pm+1) (A113)

for 1 � m � N − 1. See Table III for the coefficients 〈y|Ûm|x〉
if y = f d ′

j f d
i x.

d. Another decomposition of beta terms

Substituting (A88) into (A95), we can give a combinatorial
decomposition of beta terms: for m � 1,

Ûm =
∑

m�n�N−1

(−1)m+1(m − 1)!pm−1(1 + np)

(1 + p)(1 + 2p) · · · (1 + mp)

(
n − 1

m − 1

)
p

2(1 + np)

∑
1�i0�N

∑
S⊆{i0+1,...,N}

δ(#S, n)P̂Sϒ̂i0;ST̂ i0
0,move (A114)

= (−1)m+1(m − 1)!pm

2(1 + p)(1 + 2p) · · · (1 + mp)

∑
1�i0�N

[ ∑
S⊆{i0+1,...,N}

#S�m

(
#S − 1

m − 1

)
P̂Sϒ̂i0;S

]
T̂ i0

0,move. (A115)
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TABLE III. A part of (x, y)-th coefficients of T̂ − T̂0 and Ûm with y = f d ′
j f d

i x.

#S(x, i, d ) T̂ − T̂0 Û1 Û2 Û3 Û4 · · · Ûm

1
pcβ

2(1+p)

(0
0

) pcβ

2(1+p) 0 0 0 · · · 0

2
pcβ

2(1+2p)

(1
0

) pcβ

2(1+p)

(1
1

) (−1)1!p2cβ

2(1+p)(1+2p) 0 0 · · · 0

3
pcβ

2(1+3p)

(2
0

) pcβ

2(1+p)

(2
1

) (−1)1!p2cβ

2(1+p)(1+2p)

(2
2

) (−1)22!p3cβ

2(1+p)...(1+3p) 0 · · · 0

4
pcβ

2(1+4p)

(3
0

) pcβ

2(1+p)

(3
1

) (−1)1!p2cβ

2(1+p)(1+2p)

(3
2

) (−1)22!p3cβ

2(1+p)...(1+3p)

(3
3

) (−1)33!p4cβ

2(1+p)...(1+4p) · · · 0

m
pcβ

2(1+mp)

(m−1
0

) pcβ

2(1+p)

(m−1
1

) (−1)1!p2cβ

2(1+p)(1+2p)

(m−1
2

) (−1)22!p3cβ

2(1+p)...(1+3p)

(m−1
3

) (−1)33!p4cβ

2(1+p)...(1+4p) · · · (m−1
m−1

) (−1)m−1 pmcβ

2(1+p)...(1+mp)

To obtain a more convenient formula of (A115), we use
the following combinatorial equation: for S ⊆ {i0 + 1, . . . , N}
with #S � m:(

#S − 1

m − 1

)
P̂S =

∑
S′⊆S

δ(#S′, m)P̂S′ . (A116)

Then we can perform the following transformation of the part
surrounded by square brackets in (A115):∑

S⊆{i0+1,...,N}
#S�m

(
#S − 1

m − 1

)
P̂Sϒ̂i0;S (A117)

=
∑

S⊆{i0+1,...,N}
#S�m

∑
S′⊆S

δ(#S′, m)P̂S′ϒ̂i0;S (A118)

=
∑

S′⊆{i0+1,...,N}

∑
S⊆{i0+1,...,N}

S⊇S′

δ(#S′, m)P̂S′ϒ̂i0;S (A119)

=
∑

S′⊆{i0+1,...,N}
δ(#S′, m)P̂S′

∑
S⊆{i0+1,...,N}

S⊇S′

ϒ̂i0;S (A120)

=
∑

S′⊆{i0+1,...,N}
δ(#S′, m)P̂S′	̂{i0}∪S′ , (A121)

where we used (A32) in the last equality. Hence, we obtain

Ûm = (−1)m+1(m − 1)!pm

2(1 + p)(1 + 2p) · · · (1 + mp)

×
∑

1�i0�N

[ ∑
S′⊆{i0+1,...,N}

δ(#S′, m)P̂S′	̂{i0}∪S′

]
T̂ i0

0,move

(A122)

= (−1)m+1(m − 1)!pm

2(1 + p)(1 + 2p) · · · (1 + mp)

×
∑

1�i0<i1<···<im�N

P̂{i1,...,im}	̂{i0,i1,...,im}T̂
i0

0,move.

(A123)

For example when m = 1, we have

Û1 = p

2(1 + p)

∑
1�i0<i1�N

P̂{i1}	̂{i0,i1}T̂
i0

0,move (A124)

= p

2(1 + p)

∑
1�i0<i1�N

(
�̂+

i1
+ �̂−

i1
− 2 îd

⊗N
H

)
	̂{i0,i1}T̂

i0
0,move.

(A125)

When m = N − 1, we have

ÛN−1 = (−1)N N!pN−1

2(1 + p)(1 + 2p) · · · [1 + (N − 1)p]

× P̂{2,3,...,N}	̂{1,2,...,N}T̂
1

0,move. (A126)

For an agent i0 and a subset S ⊆ [N] \ {i0}, let us define

Ûi0;S := (−1)#S#S!p#S−1

2(1 + p)(1 + 2p) · · · [1 + (#S − 1)p]

× P̂S	̂{i0}∪ST̂ i0
0,move. (A127)

Then we can rewrite (A123) as

Ûm =
∑

1�i0�N

∑
S⊆{i0+1,...,N}

δ(#S, m)Ûi0;S. (A128)

Note that we can define Ûi0;S even if S �⊆ {i0 + 1, . . . , N}.
Remark A.1 (The origin of the beta decomposition).

With the operators Ûi0;S, we can define a variant model of
supplanting process. For a subset S0 ⊆ {1, . . . , N}, we define

T̂S0
:=
∑
i0∈S0

∑
S′⊆{i0+1,...,N}∩S0

Ûi0;S′ . (A129)

This operator T̂S0
represents the model where supplanting

process occurs only on pairs of agents i, j with i, j ∈ S0.
Conversely, we can define Ûi0;S from these variants T̂S0

by
the inclusion-exclusion principle:

Ûi0;S0 =
∑

S′�{i0+1,...,N}∩S0

(−1)#S′−#S0 T̂{i0}∪S′ . (A130)

The beta decomposition was originally derived from this point
of view.

e. Commutation relation between beta terms
and permutation operators

Though it is not used in the main text, here we write a
commutation relation between beta terms and permutation
operators.

Using relations in Appendix A 3 e, we have the following
forms [the third equation is equivalent to (A52)]:

P̂S
̂σ = 
̂σ P̂σ (S), (A131)

	̂{i0}∪S
̂σ = 
̂σ 	̂{σ (i0 )}∪σ (S), (A132)

T̂ i0
0,move
̂σ = 
̂σ T̂ σ (i0 )

0,move. (A133)
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With these three relations, we obtain that

Ûi0;S
̂σ = 
̂σÛσ (i0 );σ (S). (A134)

This enables us to investigate the commutation relation be-
tween Ûm and permutation operators with using (A128) or
between T̂S0

and permutation operators using (A129).

APPENDIX B: EIGENVECTOR CENTRALITY
AND OVERLAP CENTRALITY

In this Appendix we see a relation between the eigenvector
centrality and the overlap centrality of the neighbor matrix.
Let us recall the definitions of their centrality in our context.
The eigenvector centrality is defined as a normalized eigen-
vector with the maximum eigenvalue of the neighbor matrix
R. Such an eigenvector exists uniquely, and its components
can be taken to be real and positive because of the Perron-
Frobenius theorem [15,17]. The overlap centrality (44) is the
expectation value of how many agents are at the same site with
a given agent.

First we describe our settings. We take a state |P〉 ∈ H⊗N
X

corresponding to a probability distribution P(x). |P〉 does not
have to be a stationary state of a certain stochastic process.
The neighbor matrix R = (ri j )1�i, j�N of |P〉 is defined similar
to (43), explicitly

ri j =
∑

x

δ(xi, x j )〈x|P〉. (B1)

We consider a decomposition of the state |P〉
|P〉 = |P1〉 + |P2〉, (B2)

and define matrices R(
) = (r (
)
i j ) as

r (
)
i j =

∑
x

δ(xi, x j )〈x|P
〉 (B3)

for 
 = 1, 2. By definition, we also have a decomposition of
the neighbor matrix R:

R = R(1) + R(2). (B4)

We assume that the decomposition (B2) satisfies the following
two conditions:

(i) |P1〉 is symmetric under permutations: that is,

̂σ |P1〉 = |P1〉 for any σ ∈ SN . From this assumption there
is a constant c with r (1)

i j = c for any i �= j. We assume that
c �= 0.

(ii) The off-diagonal entries r (2)
i j of R(2) are sufficiently

smaller than |c|: that is, |r (2)
i j | � |c| for any i �= j.

We modify the matrices R(1),R(2) to R̃(1) = (r̃ (1)
i j ), R̃(2) =

(r̃ (2)
i j ) such that all of the diagonal entries of R̃(2) are zero and

the following decomposition of R holds:

R = R̃(1) + R̃(2). (B5)

Considering all of the diagonal entries of R are one, we can
take

r̃ (1)
i j =

{
1 (if i = j)

r (1)
i j = c (if i �= j)

and r̃ (2)
i j =

{
0 (if i = j)

r (2)
i j (if i �= j).

(B6)

From the assumption (ii), the matrix R̃(2) can be regarded as
a perturbative part in R.

The eigenvalue problem of R̃(1) can be solved easily:
eigenvalues of R̃(1) are 1 + (N − 1)c and 1 − c, and their cor-
responding eigenspaces are Cv0 and the orthogonal comple-
ment (Cv0)⊥, respectively, where v0 := 1√

N
(1, 1, . . . , 1)T ∈

CN . In particular, if R̃(2) vanishes, then the eigenvector cen-
trality of R = R̃(1) is the vector v0.

Let us use a first-order perturbation theory to calculate the
eigenvector centrality V of R. Here we introduce an orthonor-
mal system (ui )N−1

i=1 of the vector space (Cv0)⊥. According to
the Rayleigh-Schrödinger-type perturbation theory, we have

V ∝ v0 +
N−1∑
i=1

uiu
†
i R̃(2)v0

1 + (N − 1)c − (1 − c)
+ O(|r̃ (2)/c|2)

(B7)

= v0 + (1 − v0v
†
0)R̃(2)v0

Nc
+ O(|r̃ (2)/c|2) (B8)

= 1

Nc
Rv0 −

(
v†

0R̃(2)v0

Nc
+ 1 − c

Nc

)
v0 + O(|r̃ (2)/c|2)

(B9)

up to the first order of |r̃ (2)/c| := max1�i, j�N |r̃ (2)
i j /c|. Since

(Rv0)i = 1√
N

∑N
j=1 ri j = 1√

N
(Oi − 1), we obtain

V ∝ 1

N3/2c
O − γ × (1, 1, . . . , 1)T + O(|r̃ (2)/c|2), (B10)

where O = (Oi )N
i=1 is the vector consisting of the overlap

centrality, and γ is a constant which is expressed by

γ = 1√
N

(
v†

0R̃(2)v0

Nc
+ 2 − c

Nc

)
. (B11)

Thus we find that the eigenvector centrality and the overlap
centrality are equal up to multiplying by a constant and adding
a vector in C(1, 1, . . . , 1)T . Note that the higher order terms
of this perturbation can have a nontrivial O dependence, but
are ignored in the approximation.

Let us apply this result to the case of the stationary state
|P(β, p)〉 of the transition matrix T̂ (β, p). Suppose that p is
small enough to be able to perform the perturbation expansion
(70). Under this assumption, we give the decomposition of
|P(β, p)〉 as follows:

|P(β, p)〉 = |P1(β, p)〉 + |P2(β, p)〉, (B12)

|P1(β, p)〉 = C(β, p)|Pcan(β )〉, (B13)

|P2(β, p)〉 = C(β, p)
∞∑

n=1

(Ĝ0(T̂ − T̂0))n|Pcan(β )〉. (B14)

Let us check that this decomposition satisfies the above con-
ditions (i) and (ii).

(i) From (67), |P1(β, p)〉 is symmetric under permutations.
Since β, E (x) ∈ R, we have

c = C(β, p)

ZN (β )

∑
x∈X N

δ(x1, x2)e−βE (x) �= 0. (B15)
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(ii) T̂ − T̂0 = O(p) leads to r̃ (2)
i j = O(p), and c is

of order of unity in terms of p, which follows that
|r̃ (2)/c| = O(p).

Hence, the relation (B10) can be applied in the present
case, and we obtain the expression (105), in which the term

of O(|r̃ (2)/c|2) in (B10) is replaced with O(p2). Note that
the manner of such a decomposition (B12) is not unique.
In particular, one can choose the coefficient of |Pcan(β )〉 in
|P1(β, p)〉 as any form of 1 + O(p), though the values of c
and γ depend on the manner.
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[27] I. Hubač and S. Wilson, Brillouin-Wigner Methods for Many-
Body Systems, Progress in Theoretical Chemistry and Physics,
Vol. 21 (Springer, Dordrecht, 2010).

[28] H. Tasaki, Hohenberg-Mermin-Wagner-Type Theorems for
Equilibrium Models of Flocking, Phys. Rev. Lett. 125, 220601
(2020).

[29] C. H. Janson, Social correlates of individual spatial choice in
foraging groups of brown capuchin monkeys, Cebus apella,
Anim. Behav. 40, 910 (1990).

[30] M. Heesen, S. Macdonald, J. Ostner, and O. Schülke, Eco-
logical and social determinants of group cohesiveness and
within-group spatial position in wild Assamese macaques,
Ethology 121, 270 (2015).

[31] H. Sugiura, Y. Shimooka, and Y. Tsuji, Variation in spatial co-
hesiveness in a group of Japanese macaques (Macaca fuscata),
Int. J. Primatol. 32, 1348 (2011).

[32] M. Nishikawa, M. Suzuki, and D. S. Sprague, Activity and
social factors affect cohesion among individuals in female
Japanese macaques: A simultaneous focal-follow study, Am. J.
Primatol. 76, 694 (2014).

034114-24

https://doi.org/10.1103/RevModPhys.76.663
https://doi.org/10.1103/PhysRevLett.62.1772
https://doi.org/10.1007/BF01048050
https://doi.org/10.1103/PhysRevE.67.066115
https://doi.org/10.1016/0001-8708(70)90034-4
https://doi.org/10.1088/0305-4470/38/19/R01
https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1103/PhysRevE.65.021402
https://doi.org/10.1088/1742-5468/2011/02/P02029
https://doi.org/10.1103/PhysRevLett.111.078101
https://doi.org/10.1209/0295-5075/99/40006
https://doi.org/10.1103/PhysRevLett.120.268003
https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1086/228631
https://doi.org/10.1073/pnas.0400087101
https://doi.org/10.1016/j.anbehav.2011.07.020
https://doi.org/10.1002/ajp.23024
https://doi.org/10.1103/RevModPhys.54.235
https://doi.org/10.1209/0295-5075/101/60008
https://doi.org/10.1016/j.physa.2020.124415
https://doi.org/10.1016/0304-4149(90)90122-9
https://doi.org/10.1103/PhysRevLett.125.220601
https://doi.org/10.1016/S0003-3472(05)80993-5
https://doi.org/10.1111/eth.12336
https://doi.org/10.1007/s10764-011-9533-8
https://doi.org/10.1002/ajp.22263

