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Deformed random walk: Suppression of randomness and inhomogeneous diffusion
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We study a generalization of the random walk (RW) based on a deformed translation of the unitary step,
inherited by the q algebra, a mathematical structure underlying nonextensive statistics. The RW with deformed
step implies an associated deformed random walk (DRW) provided with a deformed Pascal triangle along with
an inhomogeneous diffusion. The paths of the RW in deformed space are divergent, while those corresponding
to the DRW converge to a fixed point. Standard random walk is recovered for q → 1 and a suppression of
randomness is manifested for the DRW with −1 < γq < 1 and γq = 1 − q. The passage to the continuum of
the master equation associated to the DRW led to a van Kampen inhomogeneous diffusion equation when the
mobility and the temperature are proportional to 1 + γqx, and provided with an exponential hyperdiffusion that
exhibits a localization of the particle at x = −1/γq consistent with the fixed point of the DRW. Complementarily,
a comparison with the Plastino-Plastino Fokker-Planck equation is discussed. The two-dimensional case is also
studied, by obtaining a 2D deformed random walk and its associated deformed 2D Fokker-Planck equation,
which give place to a convergence of the 2D paths for −1 < γq1 , γq2 < 1 and a diffusion with inhomogeneities
controlled by two deformation parameters γq1 , γq2 in the directions x and y. In both the one-dimensional and the
two-dimensional cases, the transformation γq → −γq implies a change of sign of the corresponding limits of the
random walk paths, as a property of the deformation employed.
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Random walks represent one of the most illustrative mod-
els in statistical physics that contain fundamental aspects
of randomness, diffusion, and dynamical features of master
equations in a unified manner [1].

Let start by reviewing the basics of the one-dimensional
RW. We assume that the walker starts at x = 0 and without
restrictions (unrestricted RW) so he can continue along the
infinite line with no obstacles. Thus, the RW is equivalent to a
sequence of Bernoulli trials, so if Xi is the distance moved on
the ith step then the probability of Xi = ±1 is

P(Xi = +1) = p, P(Xi = −1) = 1 − p. (1)

Since it is assumed the trials are independent and identically
distributed as Bernoulli variables, we have the expectation and
variance of Xi:

E (Xi ) = 2p − 1, Var(Xi ) = 4p(1 − p). (2)

and the position after n steps is

Sn = X1 + X2 + . . . + Xn =
n∑

i=1

Xi (3)

with S0 = 0. In Fig. 1 it is shown a path of the walker after
100 steps with x0 = 0 and p1 = p2 = 1/2. Some global pre-
dictions can be made about the position of the walker after n
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steps. More precisely, we have

E (Sn) = E

(
n∑

i=1

Xi

)
=

n∑
i=1

E (Xi ) = n(2p − 1) (4)

and

Var(Sn) = Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi ) = 4np(1 − p) (5)

for the expectation and the variance of Sn. Also, we can
construct the Pascal triangle associated to the random walk
that describes all the positions with their occurrences and
probabilities. In Table I we see that the probability P(k, n) that
the position of the walker is k after n steps obeys the binomial
distribution

P(k, n) =
(

n

m

)
pm(1 − p)n−m (6)

with m = (1/2)(n + k). In addition, when n → ∞ with λ =
np and small p, we have P(k, n) → Poisn(k) = λke−λ/k! so
the number of arrivals of the RW in a fixed period of time of
length k is described by the Poisson distribution.

Given a real number x, let

xq = 1

γq
ln(1 + γqx) (7)

be the deformation of x [2,3] with γq = 1 − q, and q the
entropic parameter associated to the Tsallis entropy [4,5].

Sq = kB
∑N

i=1
pq

i −1
1−q (with {pi} a discrete probability distribu-

tion,
∑

i pi = 1, pi � 0). In other words, xq = ln(ex
q) is a
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FIG. 1. Path of the walker after n = 100 steps starting at x = 0
with p = 1 − p = 1/2.

transformation of x inherited by the nonextensive entropy
Sq, satisfying xq → x in the limit q → 1. Here ex

q = [1 +
(1 − q)x]1/(1−q) stands for the q exponential, a nonextensive
generalization of the exponential ex. In the limit q → 1,

the Boltzmann-Gibbs entropy S = −kB
∑N

i=1 pi ln(pi ) and ex

are recovered. It should be noted that Tsallis entropy Sq is
an important object of applications and theoretical develop-
ments in which the standard statistical mechanics shows some
limitations to describe phenomena like driven anomalous dif-
fusion [6], dynamics at the onset of chaos [7], and nonergodic
regimes [8], among others.

Our strategy is to consider the deformation of the distance
Xi (or equivalently, the description of the RW in the deformed
space xq) in order to study the resultant dynamics in the
standard space x. At this point we warn that the RW in the
transformed space xq is simply a mathematical artifice with
the aim to map a dynamics in the standard x space. This will be
clarified in the next steps. We postulate the probability of the
deformed position (Xi )q being the same of the RW in standard
space; that is

P((Xi )q = (+1)q) = p P((Xi )q = (−1)q) = 1 − p, (8)

and using (7)

(+1)q = 1

γq
ln(1 + γq) (−1)q = 1

γq
ln(1 − γq). (9)

Equation (8) means that we are assuming a RW dynamics in
the transformed space xq. To prevent eventual divergences in
the arguments of the logarithms of (9), in what follows we
restrict the range of values of γq to the interval −1 < γq < 1.
The deformed position (Sn)q after n steps is

(Sn)q = (X1 + X2 + . . . + Xn)q =
n∑

i=1

(Xi )q. (10)

Identical predictions of the RW in x space can be exported for
the RW in xq space by making the substitutions +1 → (+1)q

and −1 → (−1)q. For instance, Eqs. (2), (4), and (5) turn out

E ((Xi )q) = p(+1)q + (1 − p)(−1)q

V ((Xi )q) = ((+1)q − (−1)q)2 p(1 − p)
(11)

E ((Sn)q) = n(p(+1)q + (1 − p)(−1)q)

Var((Sn)q) = n((+1)q − (−1)q)2 p(1 − p),

TABLE I. Pascal triangle for the first five steps of the RW with
p = 1/2. As the number of steps increases the probability is concen-
trated around the values −1, 0, 1, as expected due to the randomness
and E (Xi ) = 0 for all i = 1, . . . , n. The probability distribution fol-
lows a binomial distribution.

k −5 −4 −3 −2 −1 0 1 2 3 4 5

P(S0 = k) 0
2P(S1 = k) 1 1
22P(S2 = k) 1 2 1
23P(S3 = k) 1 3 3 1
24P(S4 = k) 1 4 6 4 1
25P(S5 = k) 1 5 10 10 5 1

which reduces to (2), (4), and (5) in the limit q → 1. Since
(+1)q �= (−1)q we see that (11) is equivalent to a RW with
two different steps (+1)q and (−1)q. Now a natural question
arises: What kind of RW results in standard space from the
RW in xq space given by Eqs. (10) and (11)? Here a cru-
cial property of the q deformation appears to respond to the
question. The sum of two q-deformed numbers xq and yq can
be expressed by means of the q-deformed sum ⊕q of the q
algebra [3]

x ⊕q y = x + y + γqxy (12)

that represents a polynomial deformation of the usual sum
x + y that is recovered for γq = 1 − q → 0. It is worth noting
that polynomial deformed sums like (12) have been general-
ized within the group entropy theory [9]. Using (7) and (12) it
follows that the q sum satisfies

xq + yq = (x ⊕q y)q. (13)

By applying the inverse of the q deformation (7) in (13) we
obtain

x ⊕q y = eγq (xq+yq ) − 1

γq
(14)

which applied repeatedly in the deformed position (Sn)q al-
lows to find out the expression of Sn(Sn)q after n steps is

Sn = X1 ⊕q X2 ⊕q . . . ⊕q Xn = eγq (
∑n

i=1(Xi )q ) − 1

γq
. (15)

Equation (15) contains the dynamics of a deformed random
walk (DRW) inherited by the RW in deformed space xq given
by (10). It is instructive to explicit some terms of (15) in order
to visualize the dynamics generated. We have

S1 = X1,

S2 = X1 + X2 + γqX1X2, . . . = . . . (16)

Sn =
n∑

i=1

Xi + γq

n∑
i< j

XiXj + γ 2
q

n∑
i< j<k

XiXjXk + . . . ,

which expresses that the deformed position Sn = ⊕n
i=1Xi rep-

resents a generalization of the nondeformed position
∑n

i=1 Xi

provided with corrections of order γ i
q (i = 1, . . . , n) in terms

of all the sums of nonrepeated products X1X2 · · · Xi. Moreover,
due to the independence of the variables X1, . . . , Xn each sum
of the right hand of (16) does not add correlations between the
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TABLE II. Deformed Pascal triangle for the first five steps
(counting down and being each file in step, zero step X0 = 0) of the
DRW with p = 1/2 and γq = 1/2. The value of the possible steps
are indicated with their corresponding frequencies in parenthesis.
The tendency is a rapid convergence to x = −2, in accordance with
Fig. 2. For simplicity the values were truncated up the second deci-
mal place.

0
−1 1

−1.5 (1) −0.5 (2) 2.5 (1)
−1.7 (1) −1.2 (3) 0.2 (3) 5 (1)
−1.9 (1) −1.6 (4) −0.9 (6) 1.4 (4) 8.1 (1)

−1.9 (1) −1.8 (5) −1.4 (10) −0.3 (10) 3.1 (5) 13.2 (1)

Xi to the RW but only corrections of all the orders less than or
equal to n. In addition, for small deformations |γq| << 1 the
formula (16) can be interpreted as a series perturbation with
γq the perturbation parameter. In Table II we see the asym-
metrical behavior of the DRW in virtue of the deformation
parameter γq = 1/2 for the first five steps. The convergence
to the value x = −2 = −γ −1

q is observed in accordance with
Fig. 2 for a few steps, which can be interpreted as a suppres-
sion of randomness due to the effect of the deformed sum
⊕q that introduce corrections in the form of a perturbation
expansion in function of the parameter γq. Qualitatively, we
can argue that the suppression of randomness is performed ex-
ponentially. By definition of the DRW we have Xn+1 − Xn =
±1 ± γqXn so when passing to a continuous time step X (t )
this relation turns out dX

dt ≈ ±1 ± γqX . In order to have a
convergence for −1 < γq < 1 we require

dX

dt
≈ 1 − |γq|X, X (0) = 0, (17)

whose solution is X (t ) = (e−|γq|t − 1)/γq. This exponential
asymptotic behavior is observed in Fig. 2 for γq = ±0.5 from
n � 100, which expresses a rapid convergence of the DRW.

FIG. 2. Path of the walker after n = 100 steps starting at x = 0
with p = 1 − p = 1/2 for the deformed random walk with γq = 0.5
(black dashed line) and γq = −0.5 (gray dashed line). We see that
the convergence to −γ −1

q is very fast, as a consequence of the cor-
rections up to the order γ 100

q expressed by (16) for n = 100. Solid
lines indicate their corresponding exponential asymptotic behavior
X (t ) = (e−|γq |t − 1)/γq.

FIG. 3. Path of the walker after n = 100 steps starting at x = 0
provided with deformed steps {(−1)q, (+1)q} and with p = 1 − p =
1/2. We see the divergence to −∞ for γq = 0.5 (black) and to +∞
for γq = −0.5 (gray).

More generally, we can demonstrate general conditions for
the convergence of the deformed random walk for |γq| < 1.
This is the content of the following result.

Theorem 1: Let f+, f− : R → R be the functions
f+(x) = x ⊕q 1 = x(1 + γq) + 1 and f−(x) = x ⊕q (−1) =
x(1 − γq) − 1. Let Xn be the position of the walker at instant
t = n. Then,

(i) Xn+1 = f+(Xn) or Xn+1 = f−(Xn) for all n ∈ N.
(ii) If |γq| < 1 then limn→∞ Xn = −γ −1

q .
Proof. (i) By definition, we have Xn+1 = Xn ⊕q (±1) =

f±(Xn) being Xn+1 = f+(Xn) if +1 or Xn+1 = f−(Xn) if −1.
(ii) From the definition of Xn we have Xn+1 − Xn =

±1 ± γqXn so it follows |Xn+1 − Xn| = |1 + γqXn| for all
n ∈ N. Also, Xn is obtained from n − k and k applications
of f+ and f− over x = 0 respectively (with 1 � k � n).
More precisely, we have Xn = f n−k

+ ( f k
−(0)) and then

Xn+1 − Xn = f n+1−k
+ ( f k

−(0)) − f n−k
+ ( f k

−(0)) or Xn+1 − Xn =
f n−k
+ ( f k+1

− (0)) − f n−k
+ ( f k

−(0)). Since f m
± (x) − f m

± (y) = ±
(x − y)γ m

q for all m ∈ N0 this implies that Xn+1 − Xn =
±(−1)kγ n

q , where we used f±(0) = ±1. Hence, if |γq| < 1
and using |Xn+1 − Xn| = |1 + γqXn|, it follows that
limn→∞ Xn+1 − Xn = 0 and then limn→∞ |Xn+1 − Xn| =
limn→∞ |1 + γqXn| = 0, which proves (ii).

It is also instructive to study the RW in the deformed space
provided with the deformed steps {(−1)q, (+1)q}. Just note
that the randomness is the same as in the standard case so
we expect, using Eqs. (9), (11), and p = 1/2, that (Xn)q ≈
E ((Sn)q) = (n/2)(1/γq) ln(1 − γ 2

q ) for n � 1. Thus, consid-
ering |γq| < 1 we see that when the number of steps n goes
to infinity (Xn)q tends to −∞ (+∞ respectively) if γq > 0
(γq < 0 respectively). This behavior is shown in Fig. 3, in
which RW in the deformed space is illustrated for γq = ±1/2.

Now we analyze the dynamics of the DRW in terms of
the master equation framework [10,11]. We follow the same
prescription than in the DRW, i.e., by considering the master
equation in the deformed space xq for the deformed probabil-
ity distribution P (xq, t ) we obtain the motion equation of the
probability distribution P(x, t ) in standard space of the walker
at the position x and time t . The relation between P (xq, t )
and P(x, t ) is established from the conservation of probability
for a volume dx in standard space, or equivalently, having a
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volume dxq = dx/(1 + γqx) in the deformed space

P(x, t )dx = P (xq, t )dxq 	⇒ P(x, t ) = P (xq(x), t )

1 + γqx
. (18)

It should be noted that the derivatives and integrals in the
deformed space xq results affected by the deformation. The
q derivative Dq and the q integral

∫
q are the corresponding

analogues of the usual derivative and integral, given by [3,12]

Dq f (x) = df

dxq
= (1 + γqx)

df

dx
(19)∫

q
f =

∫
f (x)dxq =

∫
{x>−γ −1

q }
f (x)

dx

1 + γqx
. (20)

In other words, the q integral is nothing but the Riemann-
Stieltjes integral with the weight function w(x) = 1/(1 +
γqx). Let us consider a random walk on a one-dimensional
deformed lattice where the jumps occur in regular intervals of
time �t , being p and 1 − p the probability of a right jump
(+a)q and of a left jump (−a)q with a the parameter of the
nondeformed lattice. Thus, the master equation for P (xq, t ) is
given by

P (xq, t + �t ) = pP (xq + (+a)q, t )

+ (1 − p)P (xq + (−a)q, t ). (21)

As usual, the admit to the continuum of (21) is performed by
letting a → 0. For comparing with the DRW (16) we take p =
1/2 in (21). In the limit a → 0 we have the approximations

(±a)q = 1

γq
ln(1 ± γqa) ≈ ±a,

P (xq + (+a)q, t ) ≈ P + (+a)qDqP + 1

2
((+a)q)2D2

qP,

P (xq + (−a)q, t ) ≈ P + (−a)qDqP + 1

2
((−a)q)2D2

qP,

P (xq, t + �t ) ≈ P + �t
∂P
∂t

. (22)

Substituting (22) in (21) we arrive at the deformed Fokker
Planck equation (DFPE), employed recently in [13], with a
null drift term

∂P (xq, t )

∂t
= �D2

qP (xq, t ), (23)

where � = a2/(2�t ) is the diffusion coefficient of the nonde-
formed standard case. Alternatively, the DFPE can be written
in standard space

∂P(x, t )

∂t
= �

∂

∂x
(1 + γqx)

∂

∂x
(1 + γqx)P(x, t ) (24)

which is a particular case of the van Kampen diffusion equa-
tiontype (equation (5) of [14])

∂P(x, t )

∂t
= ∂

∂x
[μ(x)V ′(x)P(x, t )] + ∂

∂x
μ(x)

∂

∂x
T (x)P(x, t )

(25)

with V ′(x) = 0 and the conditions

μ(x)

μ0
= T (x)

T0
= 1 + γqx, � = μ0T0 (26)

for a mobility and temperature that are position-dependent.
Here μ0, T0 are the values of the mobility and the temperature
of the homogeneous case. A detailed discussion of the DFPE
(23) and its relationships with the van Kampen diffusion [14],
the superstatistics FPE [15,16], and the nonlinear Langevin
equation [17] is included in [13]. Other generalized Fokker-
Planck equations have been studied highlighting the role of
the nonextensive statistics [18–20] and employing fractional
derivatives [21]. We also stress that, recently, inhomogeneities
in general have been characterized in the context of super-
statistics by means of an effective position-dependent mass
[22]. For studying the stationary regime in this case [with
V (x) = 0] we cannot take advantage of the formula of the
stationary solution of the van Kampen equation (25)

Ps(x) = C

T (x)
exp

(
−

∫
V ′(x)

T (x)
dx

)
(27)

due to the fact that 1/T (x) = 1/(T0(1 + γqx)) is not normal-
ized in (−∞,∞). Noting that the deformed solution P (xq, t )
of the DFPE (23) corresponds to the free particle in the de-
formed space xq

P (xq, t ) = 1√
2π�t

exp

(
− x2

q

2�t

)
, (28)

then using (18) it follows the solution P(x, t )

P(x, t ) = 1

1 + γqx

1√
2π�t

exp

(
− ln2(1 + γqx)

(2�t )γ 2
q

)
(29)

for all t . From the normalization condition (18), the DFPE
solution (29), and Fig. 4 it follows that the stationary solution
is

Ps(x) = δ(x + 1/γq) with x > −1/γq if γq > 0 or

x < −1/γq if γq < 0. (30)

Moreover, the divergence of the DFPE solution (29) at
x = −1/γq is a consequence of the deformed space dxq =
dx/(1 + γqx) and can be physically interpreted as a region
of localization of the particle due to the asymmetric inhomo-
geneous diffusion. By letting l0 a constant with dimensions
of length, τ = 1/(γ 2

q �) and with the aim of showing the
asymptotic behavior of P(x, t ), in Fig. 4 it is illustrated P(x, t )
for times t/τ = 0.01, 1, 4, 8 and for γq = ±0.5 with the initial
condition P(x, t = 0) = δ(x). The domain of the diffusion is
restricted to the interval x > −|γq|−1 if γq > 0 or x < |γq|−1 if
γq < 0. The probability distribution P(x, t ) converges rapidly
to the stationary solution Ps(x) = δ(x + 1/γq) as we can see
in Fig. 4, where the dashed curves in gray show more clearly
the limit limt→∞ P(x, t ) = Ps(x). In order to classify the type
of diffusion we calculate the first and second moments of the
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FIG. 4. Profiles of the probability distribution P(x, t ) of the DFPE [Eq. (29)] for times t/τ = 0.01, 1, 4, 8 with γq = 0.5 (left panel) and
γq = −0.5 (right panel) with the initial condition P(x, t = 0) = δ(x). The gray dashed lines illustrate the asymptotic behavior of P(x, t ) →
δ(x + 1/γq ), exhibiting asymmetry and a localization at x = −1/γq due to the deformation.

solution P(x, t ) [by calling sg(γq) the sign of γq]

〈x(t )〉 =
∫

{x>−sg(γq )|γq|−1}
xP(x, t )dx

=
∫

{x>−sg(γq )|γq|−1}

1

1 + γqx

x√
2π�t

× exp

(
− ln2(1 + γqx)

(2�t )γ 2
q

)
dx

= e�tγ 2
q /2 − 1

γq
, (31)

〈x(t )2〉 =
∫

{x>−sg(γq )|γq|−1}
x2P(x, t )dx

=
∫

{x>−sg(γq )|γq|−1}

1

1 + γqx

x2

√
2π�t

× exp

(
− ln2(1 + γqx)

(2�t )γ 2
q

)
dx

= e2�tγ 2
q − 2e�tγ 2

q /2 + 1

γ 2
q

. (32)

Joining Eqs. (31) and (32) we obtain the mean standard devi-
ation (MSD)

〈(�x)2(t )〉 = 〈x2(t )〉 − 〈x(t )〉2 = e2�tγ 2
q − e�tγ 2

q

γ 2
q

, (33)

which exhibits two regimes regarding the characteristic
time τ = 1/(γ 2

q �): (i) normal diffusion behavior 〈(�x)2〉 ≈
�t for t � τ and (ii) exponential hyper diffusion 〈(�x)2〉 ∝
e2t/τ for t � τ . In Fig. 5 we illustrate behavior of the MSD
with the values γql0 = 0, 0.2, 0.4, 0.8. Since the characteristic
time τ is symmetric in γq, it is enough with illustrating for
positive values of γql0. We can see that the effect of the
deformation is to increase the exponential hyper-diffusion,
while for a short time interval t � τ the diffusion is indistin-
guishable from the normal diffusion. It is instructive to show
that the linear diffusion in the deformed space

〈(�xq)2(t )〉 = 〈x2
q (t )〉 − 〈xq(t )〉2 = 〈x2

q (t )〉 = �t (34)

leads to the relation in standard space〈
ln2(1 + γqx)

γ 2
q

〉
= �t, (35)

where the mean values 〈. . .〉 are taken over the solution
P(x, t ). Equations (33) and (35) show the relationship be-
tween the exponential hyper-diffusion in standard space x and
the linear diffusion in deformed space xq.

We end the analysis of the one-dimensional case with
a comparison between the deformed Fokker Planck equa-
tion (24) and the Plastino-Plastino Fokker-Planck equation for
nonadditive systems with null drift term, given by [18,19,23]

∂P(x, t )

∂t
= �(2 − q)

∂

∂x

{
[P(x, t )]1−q ∂P(x, t )

∂x

}
, (36)

with q the entropic parameter that allows to recover the stan-
dard FPE when q → 1. By means of the nonlinear Nobre
derivative [24]

D̃q f (x) = [ f (x)]1−q df

dx
(37)

FIG. 5. Time evolution of the mean standard deviation for γql0 =
0, 0.2, 0.4, 0.8 of the deformed Fokker-Planck eqaution (24). The
black straight line indicates the normal diffusion case 〈(�x)2(t )〉 =
�t , corresponding to null deformation γql0 = 0. As the deformation
parameter increases the exponential hyper-diffusion is more pro-
nounced, which is consistent with the localization of the particle at
x = −1/γq and with the deformed random walk (Fig. 2).
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TABLE III. Some properties of the deformed FPE and the
Plastino-Plastino FPE reflecting the interplay between the character
of the FPE (linear/nonlinear), the type of diffusion, the entropy
associated and the generalize derivative employed.

Property Deformed FPE Plastino-Plastino FPE

Equation ∂tP = �D2
qP ∂t Pq = �(2 − q)D̃2

qP
Character
of the Linear Nonlinear
FPE

Generalized Deformed derivative Nobre derivative
derivative Dq f = (1 + γqx) df

dx D̃q f = [ f (x)]1−q df
dx

associated

Asymptotic ∝ exp(2�tγq ) ∝ t2/(1+q)

MSD exponential power-law
behavior hyper-diffusion diffusion [23]

Entropy Deformed Tsallis
associated Boltzmann entropy [18,19,23]

to Gibbs entropy [13] Sq =
∫

P(x)qdx−1
1−q

H theorem S = − ∫
P lnPdxq

we can recast the Plastino-Plastino FPE (36) in the compact
form

∂P(x, t )q

∂t
= �(2 − q)D̃2

qP(x, t ) (38)

where we have used the definition

D̃2
q f (x) ≡ [ f (x)]1−q d

dx

{
[ f (x)]1−q df

dx

}
, (39)

i.e., D̃2
q f (x) �= D̃q[D̃q f (x)] and higher order derivatives are

defined analogously. In Table III are listed some characteris-
tics of the DFPE (24) and the Plastino-Plastino FPE (36), that
result as a consequence of the underlying derivative structures
given by the linear deformed derivative Dq and the nonlinear
Nobre derivative D̃q.

We generalize our previous results for the two-dimensional
case. The novelty of the two-dimensional case is that we can
choose different deformations for each one of the directions
x and y. More precisely, we postulate the probability distribu-
tion of the deformed vector position ((Xi )q1 , (Yi )q2 ), i.e.,

P
((

(Xi )q1 , (Yi )q2

) = (
(+1)q1 , (+1)q2

)) = p1

P
((

(Xi )q1 , (Yi )q2

) = (
(+1)q1 , (−1)q2

)) = p2

P
((

(Xi )q1 , (Yi )q2

) = (
(−1)q1 , (+1)q2

)) = p3 (40)

P
((

(Xi )q1 , (Yi )q2

) = (
(−1)q1 , (+1)q2

)) = 1 − p1 − p2 − p3.

By repeating the same arguments as in the one-dimensional
case it is straightforward to show that the deformed vector
position after n steps

((Sx
n )q1 , (Sy

n)q2 ) =
(

n∑
i=1

(Xi )q1 ,

n∑
i=1

(Yi )q2

)
(41)

which can be recasted in standard space (x, y) as

(
Sx

n, Sy
n

) = (
X1 ⊕q1 . . . ⊕q1 Xn,Y1 ⊕q2 . . . ⊕q2 Yn

)
=

⎛⎝eγq1

(∑n
i=1(Xi )q

)
− 1

γq1

,
eγq2

(∑n
i=1(Yi )q

)
− 1

γq2

⎞⎠. (42)

Here γqi = 1 − qi is the deformation parameter in the i direc-
tion with i = 1, 2. Also, we have for Sx

n and Sy
n

Sx
1 = X1

Sx
2 = X1 + X2 + γq1 X1X2 . . . = . . .

Sx
n =

n∑
i=1

Xi + γq1

n∑
i< j

XiXj + γ 2
q1

n∑
i< j<k

XiXjXk + . . . (43)

and

Sy
1 = Y1

Sy
2 = Y1 + Y2 + γq2Y1Y2 . . . = . . .

Sy
n =

n∑
i=1

Yi + γq2

n∑
i< j

YiYj + γ 2
q2

n∑
i< j<k

YiYjYk + . . . . (44)

Since the coordinates Xn and Yn of the two-dimensional DRW
are uncorrelated the same argument of the one-dimensional
DRW applies so we have

dX

dt
≈ 1 − |γq1 |X, X (0) = 0,

(45)
dY

dt
≈ 1 − |γq2 |Y, Y (0) = 0,

whose solution is (X (t ),Y (t )) = (e−|γq1 |t − 1)/γq1 , e−|γq2 |t −
1)/γq2 ). This exponential asymptotic behavior is observed for
γq1 = 0.5 and γq2 = −0.5. Analogously, Theorem 1 for the
one-dimensional DRW remains valid in the two-dimensional
case.

Theorem 2: Let f+, f− : R → R be the functions
f+(x) = x ⊕q1 1 = x(1 + γq1 ) + 1, f−(x) = x ⊕q1 (−1) =
x(1 − γq1 ) − 1, g+(x) = y ⊕q2 (−1) = y(1 + γq2 ) − 1, and
g−(y) = y ⊕q2 (−1) = y(1 − γq2 ) − 1. Let (Xn,Yn) be the
vector position of the walker at instant t = n. Then,

(i) Xn+1 = f+(Xn) or Xn+1 = f−(Xn) and Yn+1 = g+(Yn) or
Yn+1 = g−(Yn) for all n ∈ N.

(ii) If |γq1 |, |γq2 | < 1 then limn→∞(Xn,Yn) =
(−γ −1

q1
,−γ −1

q2
).

Proof. Repeat the steps of the demonstration of Theorem 1
for Xn and Yn separately.

At this point some kind of generalization of the DFPE to
the two-dimensional case is also expected. We begin with the
master equation of the 2D case for the deformed probability
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FIG. 6. Paths of the walker after n = 100 steps starting at (x, y) = (0, 0) provided p1 = p2 = p3 = 1/4.
Top left shows the two-dimensional RW and top right shows the RW provided with deformed steps
{((+1)q1 , (+1)q2 ), ((+1)q1 , (−1)q2 ), ((−1)q1 , (+1)q2 ), ((−1)q1 , (−1)q2 )} for γq1 = γq2 = 0.5 (black) and γq1 = γq2 = 0.5 (gray). Again,
divergent paths are manifested. The plot below illustrates the two-dimensional DRW with a mixture of deformations γq1 = 0.5 and
γq2 = −0.5, whose convergence to the fixed point (−2, 2) is observed and the gray straight line indicates the exponential asymptotic behavior
(X (t ),Y (t )) = ((e−|γq1 |t − 1)/γq1 , (e−|γq2 |t − 1)/γq2 ).

distribution P (xq1 , yq2 , t ) :

P (xq1 , yq2 , t + �t ) = p1P
(
xq1 + (+a)q1 , yq2 , t

)
+ p2P

(
xq1 + (−a)q1 , yq2 , t

) + p3

× P
(
xq1 , yq2 + (+b)q2 , t

)
+ (1 − p1 − p2 − p3)

× P
(
xq1 , yq2 + (−b)q2 , t

)
. (46)

Here we are considering that a and b are the parameters of
the nondeformed lattice. In the limit a, b → 0 we have the
approximations

(±a)q1 = 1

γq1

ln(1 ± γq1 a) ≈ ±a

(±b)q2 = 1

γq2

ln(1 ± γq2 b) ≈ ±b

× P
(
xq1 + (+a)q1 , yq2 , t

) ≈ P + (+a)q1 Dx,q1P

+ 1

2
((+a)q1 )2D2

x,q1
P

× P (xq1 + (−a)q1 , yq2 , t ) ≈ P + (−a)q1 Dx,q1P

+ 1

2

(
(−a)q1

)2
D2

x,q1
P

× P (xq1 , yq2 + (+b)q2 , t ) ≈ P + (+b)q2 Dy,q2P

+ 1

2
((+b)q2 )2D2

x,q2
P

× P
(
xq1 , yq2 + (−b)q2 , t

) ≈ P + (−b)q2 Dy,q2P

+ 1

2

(
(−b)q2

)2
D2

y,q2
P

× P
(
xq1 , yq2 , t + �t

) ≈ P + �t
∂P
∂t

, (47)

with Dx,q1 = (1 + γq1 x)∂/∂x and Dy,q2 = (1 + γq2 y)∂/∂y the
q1,2-partial derivatives. Substituting (47) in (46) we obtain the
two-dimensional DFPE

∂P (xq1 , yq2 , t )

∂t
=�1D2

x,q1
P

(
xq1 , yq2 , t

) + �2D2
y,q2

P
(
xq1 , yq2 , t

)
(48)

with �� = (�1, �2) = (a2/(2�t ), b2/(2�t )) the vector diffu-
sion. Again, we have an expression of the two-dimensional
DFPE (48) in standard space (x, y)

∂P(x, y, t )

∂t
= �1

∂

∂x

(
1 + γq1 x

) ∂

∂x
(1 + γq1 x)P(x, y, t )

+ �2
∂

∂y

(
1 + γq2 y

) ∂

∂y
(1 + γq2 y)P(x, y, t )

(49)

giving place to a inhomogeneous two-dimensional diffusion
equation, which in principle does not admit a correspondence
with any two-dimensional version of the van Kampen equa-
tion (25). Noting that (49) is separable, the solution is simply
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FIG. 7. Contours of the probability distribution P(x, y, t ) of the two-dimensional DFPE [Eq. (50)] for times t/τ = 0.1, 0.5, 5, 10 with
γq1 = 0.5 and γq2 = −0.5 with the initial condition P(x, y, t = 0) = δ(x)δ(y). In white and black are indicated the regions with low and high
probability density.

the product of (29) in x and y

P(x, y, t ) = 1

1 + γq1 x

1√
2π�1t

exp

(
− ln2(1 + γq1 x)

(2�1t )γ 2
q1

)

× 1

1 + γq2 y

1√
2π�2t

exp

(
− ln2(1 + γq2 y)

(2�2t )γ 2
q2

)
,

(50)

with the stationary solution

Ps(x, y) = δ(x + 1/γq1 )δ(y + 1/γq2 ), with

x > −1/γq1 if γq1 > 0 or x < −1/γq1 if γq1 < 0,

y > −1/γq2 if γq2 > 0 or y < −1/γq2 if γq2 < 0.

(51)

For illustrating we set �1τ/l2
1 = �2τ/l2

2 = 2, γq1 l1 = 0.5, and
γq2 l2 = −0.5, being l1, l2 constants with dimension of length
and τ = 1/(γ 2

q1
�) = 1/(γ 2

q2
�) the same characteristic time in

both directions x and y due to the choice γq1 = −γq2 = 0.5. In
Fig. 7 it is shown P(x, y, t ) for times t/τ = 0.1, 0.5, 5, 10 with
the initial condition P(x, y, t = 0) = δ(x)δ(y). The domain
of the diffusion is restricted to the rectangle x > −|γq1 |−1 if
γq1 > 0 or x < |γq1 |−1 if γq1 < 0 for the coordinate x and y >

−|γq2 |−1 if γq2 > 0 or y < |γq2 |−1 if γq2 < 0 for the coordinate

y. The probability distribution P(x, y, t ) converges rapidly to
the stationary solution Ps(x, y) = δ(x + 1/γq1 )δ(y + 1/γq2 ),
as we can see from Fig. 7, where it is shown the behavior
limt→∞ P(x, y, t ) = Ps(x, y).

We have presented a generalization of the random walk
in the presence of a deformed translation of the unitary step
based on the deformed sum of the q-algebra, a mathematical
structure inherited by nonextensive statistics. We enumerate
the contributions of this work as follows.

(a) A suppression of the randomness is observed for −1 <

γq < 1, with γq = 1 − q and q the entropic index, provided
with a convergence to x = −γ −1

q for any path Xn starting
at x = 0 (Fig. 2). In addition, this behavior has been shown
mathematically by means of Theorem 1.

(b) The deformed sum ⊕γq does not affect the randomness
of the deformed position Sn but only adds contribution terms
of the order γ n−1

q [Eq. (16)], thus resulting a series expansion
being the deformation γq the perturbation parameter.

(c) A deformed Pascal triangle arises for −1 < γq <

1 showing the convergence Xn → −γ −1
q , in compatibility

with Theorem 1, by means of the corresponding frequencies
(Table II).

(d) The master equation of the deformed random walk
(21) led to a deformed Fokker-Planck equation (24) that is
a special case of the van Kampen equation (25), when the
mobility and the temperature are proportional to 1 + γqx,
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that describes inhomogeneous diffusion controlled by the de-
formation parameter γq. Alternatively, the deformed Fokker
Planck (24) can be expressed as a linear homogeneous FPE
(23) provided with deformed coordinates and derivatives.

(e) The exponential convergence Xn → −γ −1
q for the paths

of the deformed random walk (Fig. 2) is represented in the
continuous limit by the asymptotic behavior of the probability
distribution of the deformed Fokker-Planck equation (Fig. 4).

(f) An exponential hyper-diffusion emerges as a result of
the q-deformation dxq = dx/(1 + γqx).

(g) By comparing the deformed FPE (24) and the Plastino-
Plastino FPE (36), an interplay between the linear/nonlinear
character of the FPE, the type of diffusion, the entropy asso-
ciated to H theorem, and the generalized derivative structure
is evidenced (Table III).

(h) The main results of the one-dimensional case are
generalized to the two-dimensional case, thus obtaining
2D convergent paths (Xn,Yn) → (−γ −1

q1
,−γ −1

q2
) for −1 <

γq1 , γq2 < 1 (Fig. 6) along with a 2D deformed Fokker-Planck
equation [deduced by the 2D master equation (46)] that
currently does not find an analog with van Kampen diffu-
sion, but only exhibiting an inhomogeneous diffusion with
the asymptotic behavior illustrated in Fig. 7. The real and
continuous parametersγq1 , γq2 control the inhomogeneities in
the directions x and y and due to the uncorrelation of Xn

and Yn Theorem 1 is generalized in a straightforward way
(Theorem 2).

(i) For both the one-dimensional and two-dimensional
cases, the deformed calculus (q calculus) is shown to be
compatible with inhomogeneous diffusion, more specifically
of the van Kampen type.

(j) As a property of the deformation employed, in both
the one-dimensional and the two-dimensional cases, the
transformation γq → −γq implies a change of sign of the
corresponding limits of the random walk paths (Figs. 1–5).

(k) Random walks in multiple contexts have been studied
in the literature [25–27] and the formalism presented in this
work shows a simple generalization deduced from the prop-
erty of the q-sum belonging to the q-algebra [Eq. (13)].

The results of this work are potentially generalizable to
other types of deformations, for instance the deformation
inherited by the κ statistics [28]. Moreover, the structure of
the deformed position Sn [Eq. (16)] could be used to model
Hamiltonians with interacting terms like Ising models or per-
turbed Hamiltonians. We hope these ideas will be useful for
further developments and other researches.
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