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The stochastic dynamics of reinforcement learning is studied using a master equation formalism. We consider
two different problems—Q learning for a two-agent game and the multiarmed bandit problem with policy
gradient as the learning method. The master equation is constructed by introducing a probability distribution
over continuous policy parameters or over both continuous policy parameters and discrete state variables (a more
advanced case). We use a version of the moment closure approximation to solve for the stochastic dynamics of
the models. Our method gives accurate estimates for the mean and the (co)variance of policy variables. For the
case of the two-agent game, we find that the variance terms are finite at steady state and derive a system of
algebraic equations for computing them directly.
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I. INTRODUCTION

The emergence of complex cognition requires the devel-
opment of ways to gather and respond to information from
a noisy environment [1]. Here we consider this problem in
the framework of reinforcement learning [2], with a focus
on the statistical physics aspects [3–14]. In this framework,
learning agents interact with the environment by taking ac-
tions and receiving rewards from the environment that weight
the relative success of the actions taken. Agents learn from
these interactions by updating their strategy of making actions
(policy) in such a way that maximizes the reward received
from the environment in the long run.

Due to the stochasticity in the received environmental cues,
the process of policy optimization will also involve fluctua-
tions. While the dynamics of average policy parameters has
been the subject of a number of previous studies [3,5,8],
our understanding of the stochastic aspects of reinforcement
learning is far from being complete. In our work, we study
the stochasticity of learning dynamics on an example of two
different problems using a master equation formalism [15],
having as the main goal the accurate estimation of fluctuations
in policy parameters.

In both cases, probabilities of the agent’s actions are spec-
ified by a vector, called Q vector, that is updated at every
learning step. The master equation is constructed for the prob-
ability distribution P(q, t ) of Q values (q from now on). Our
aim is to calculate the covariance matrix of this distribution
which will give a notion about the likelihood of whether the
learning algorithm has properly converged or not.

The paper is organized as follows. In Sec. II, we introduce
and study the first problem—Q learning in the context of a
two-player two-action game. Similar learning schemes were
considered in Refs. [3,4,8] where dynamic equations for the

*saakian@yerphi.am

policy were written and analytic results for average values
were derived. Here, we use the master equation method to
estimate the noise in policy over time. We also derive a sys-
tem of equations for directly computing the covariance terms
of Q values at steady state. Then, in Sec. III we apply the
master equation formalism to the K-armed bandit problem
where learning dynamics follows the policy gradient algo-
rithm [10,11]. In this setting, the rewards received from the
environment are continuously distributed random variables,
in contrast to those in the first problem. Applying a proper
version of the moment-closure approximation [16–18], we ob-
tain an iterative analytical method for estimating the variance
of policy values over time and verify its predictions against
simulations. We discuss our results and their implications for
the field of reinforcement learning and beyond in Sec. IV.

II. Q LEARNING IN A TWO-AGENT GAME

A. The model

The schematic of the two-agent game studied in our work
is shown in Fig. 1(a). Each player receives a reward from the
environment after taking an action. The reward of a player
not only depends on the action he takes, but also on the
other player’s action at the earlier time step. We have chosen
this version of reward allocation to get an advanced master
equation where policy update depends on the previous state
(discrete variable). If the reward depends only on the current
choice of actions, then the master equation is written for
continuous Q values alone, resulting in rather simple update
equations (see Appendix A for the discuss of this scenario).

The reward amounts in the Fig. 1(a) setting are specified
through payoff matrices A and B for the two players. The
matrix element Aln represents the reward that the first player
receives after taking action l , provided the second player per-
formed action n at the earlier step. Elements of the matrix B
are defined similarly for the second player.

2470-0045/2023/107(3)/034112(8) 034112-1 ©2023 American Physical Society

https://orcid.org/0000-0001-7073-9175
https://orcid.org/0000-0003-3849-3878
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.107.034112&domain=pdf&date_stamp=2023-03-08
https://doi.org/10.1103/PhysRevE.107.034112


VAHE GALSTYAN AND DAVID B. SAAKIAN PHYSICAL REVIEW E 107, 034112 (2023)

en
vi

ro
nm

en
t

rewards

actions

agent 2
a2,tr2 (a2,t, a1,t-1)

agent 1

learning iteration

Q
-v

al
ue

s
(a)

(b)

r1 (a1,t, a2,t-1) a1,t

Q1
a

Q1
b

Q2
a

Q2
b

agent 1
agent 2

FIG. 1. Reinforcement learning for a two-agent game. (a)
Schematic of the learning algorithm. (b) Example stochastic dynam-
ics of Q values. Parameters used in the study were α = 0.1, T = 1.0,
A = [(2, 1), (0, 1)], and B = [(1, 0), (2, 2)].

Players choose their actions probabilistically based on the
Q values. Specifically, actions l and n are taken by the first
and second players with probabilities

xa
l = exp

(
Qa

l

/
T

)
∑

l ′ exp
(
Qa

l ′
/

T
) , (1a)

xb
n = exp

(
Qb

n

/
T

)
∑

n′ exp
(
Qb

n′
/

T
) , (1b)

respectively, where summation is performed over the two pos-
sible actions of each player (l ∈ {1, 2}, n ∈ {1, 2}). Note that
here the Q values for one player depend only on the actions
he can take. In Appendix B, we demonstrate how our method
is generalized to the case where the policy parameters also
depend on the actions of the other player (i.e., where we have
Qa

l,n′ and Qb
n,l ′ ).

After taking an action and receiving a reward, each player
updates the Q value corresponding to the action taken. If the
first and second players take actions l and n, respectively, then
the corresponding Q values are updated via

Qa
l (t + α) = Qa

l (t ) + α
[
Aln̂ − Qa

l (t )
]
, (2a)

Qb
n(t + α) = Qb

n(t ) + α
[
Bnl̂ − Qb

n(t )
]
, (2b)

where l̂ and n̂ are the actions taken by the first and second
players at the previous time step. The parameter α ∈ [0, 1]
here represents the learning rate that defines the extent to
which new information (received reward) contributes to the
updated policy.

An example learning dynamics of Q values is shown in
Fig. 1(b), where the stochastic nature of the process can
be observed. Analysis of the model with differential equa-
tions performed in Ref. [8] yields only the dynamics of the
mean values and provides no information about the inherent

stochasticity, motivating the development of the master equa-
tion formulation of the problem.

B. Master equation formulation and stochastic
dynamics of learning

Our goal is to approximate the probability distribution
Pt (q) over the course of the learning dynamics. We first in-
troduce several convenient notations, namely,

x1 = xa
1, x2 = xa

2, x3 = xb
1, x4 = xb

2, (3)

X1 = xa
1xb

1, X2 = xa
1xb

2, X3 = xa
2xb

1, X4 = xa
2xb

2, (4)

where Xs stands for the probability of the joint action s ∈
{1, 2, 3, 4}. For compactness of equations, we also introduce
a four-element vector dsŝ, the kth element of which represents
the difference between the received reward and Qk if the joint
action s together with the previous joint action ŝ lead to a
change in Qk; otherwise, the element is zero. For example,
if s = 1 (a:1, b:1) and ŝ = 3 (a:2, b:1), then the changing
Q values are Qa

1 and Qb
1 and the corresponding vector is

d13 = {A11 − Qa
1, 0, B12 − Qb

1, 0}.
We write a master equation for the joint probability distri-

bution of Q values and joint actions as

Pt+1(Q, s) =
∫

dq Xs(q)
4∑

ŝ=1

δ(−Q + q + αdsŝ) Pt (q, ŝ).

(5)

Here, Pt+1(Q, s) is the probability that the joint action with
index s is taken and the Q values are updated to Q at time
t + 1. The joint action s is taken based on the current Q values
given by q; hence, the term Xs(q) in the equation. The updated
vector Q is specified by the vector q in the earlier time step
and the received rewards that depend on the joint action taken
earlier (ŝ). Integrating by Q and summing over s yields 1 on
both sides, verifying the consistency of the master equation.

Next, we introduce summary metrics E [Qk|s] and
E [QkQl |s] to stand for the expectation of Q values and their
pairwise products, conditional on the joint action taken being
s. By definition, these metrics are

E [Qk|s] =
∫

dQ QkPt+1(Q|s)

= 1

Pt+1(s)

∫
dq Xs(q)

∑
ŝ

(
qk + αd (k)

sŝ

)
Pt (q|ŝ)Pt (ŝ),

(6)

E [QkQl |s] =
∫

dQ QkQlPt+1(Q|s)

= 1

Pt+1(s)

∫
dq Xs(q)

×
∑

ŝ

(
qk + αd (k)

sŝ

)(
ql + αd (l )

sŝ

)
Pt (q|ŝ)Pt (ŝ),

(7)

where Pt+1(s) = ∫
dQ Pt+1(Q, s) is the probability of taking

the joint action s, Pt (ŝ) is the same probability at the earlier
time step, and d (k)

sŝ is the kth component of the vector dsŝ.
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We want to estimate E [Qk|s] and E [QkQl |s] together with
Pt+1(s) using their values in the previous iteration. To that end,
we introduce the covariance matrix of q, conditional on the
joint action, namely,

v(ŝ)
mn = E [qm|ŝ] E [qn|ŝ] − E [qmqn|ŝ]. (8)

Using it, we approximate integrals involving the probability
distribution Pt (q|ŝ) as∫

dq f (q)Pt (q|ŝ) ≈ f (E [q|ŝ]) + 1

2

∑
mn

f ′′
mn(E [q|ŝ])v(ŝ)

mn.

(9)

Here f (q) is any smooth function of q. When writing this
approximation, we are assuming that the third moments are
much lower (by a factor of α) than the variance.

Applying Eq. (9) to Eqs. (6) and (7), as well as to the
definition of Pt+1(s), we obtain the update equations as

E [Qk|s]Pt+1(s) ≈
∑

ŝ

X̂s
(
q̂k + αd (k)

sŝ

)
Pt (ŝ)

+ 1

2

∑
ŝ

∑
mn

X̂ ′′
s;mn

(
q̂k + αd (k)

sŝ

)
v(ŝ)

mn Pt (ŝ)

+
∑

ŝ

∑
m

X̂ ′
s;m(1 − αIsk ) v

(ŝ)
mk Pt (ŝ), (10)

E [QkQl |s]Pt+1(s)

≈
∑

ŝ

X̂s
(
q̂k + αd (k)

sŝ

)(
q̂l + αd (l )

sŝ

)
Pt (ŝ)

+ 1

2

∑
ŝ

∑
mn

X̂ ′′
s;mn

(
q̂k + αd (k)

sŝ

)(
q̂l + αd (l )

sŝ

)
v(ŝ)

mnPt (ŝ)

+
∑

ŝ

X̂s(1 − αIsk )(1 − αIsl )v
(ŝ)
kl Pt (ŝ)

+
∑

ŝ

∑
m

X̂ ′
s;m(1 − αIsk )

(
q̂l + αd (l )

sŝ

)
v

(ŝ)
mkPt (ŝ)

+
∑

ŝ

∑
m

X̂ ′
s;m

(
q̂k + αd (k)

sŝ

)
(1 − αIsl )v

(ŝ)
ml Pt (ŝ), (11)

Pt+1(s) ≈
∑

ŝ

X̂sPt (ŝ) + 1

2

∑
ŝ

∑
mn

X̂ ′′
s;mnv

(ŝ)
mnPt (ŝ), (12)

where q̂k ≡ E [qk|ŝ], X̂s ≡ Xs(q̂), and Isk = 1 if the joint action
s involves a change in qk; otherwise, Isk = 0. These results
yield the conditional expectation and covariance terms in the
next learning iteration. Specifically, V (s)

kl at time t + 1 can be
calculated as

V (s)
kl = E [QkQl |s] − E [Qk|s] × E [Ql |s]. (13)

We also consider the variance of Q vector components
irrespective of the previous state, defined via

Vkl = E [QkQl ] − E [Qk] E [Ql ]. (14)

It is expressed in terms of the conditional metrics as

Vkl =
∑

s

E [QkQl |s]Pt (s)−
∑

s

E [Qk|s]Pt (s)
∑

s

E [Ql |s]Pt (s)

= E
[
V (s)

kl

] + Cov(E [Qk|s], E [Ql |s]). (15)

We note two contributions to Vkl . The first is the state-average
of conditional variance values V (s)

kl and the second is the
covariance of conditional mean Q values. The dominant con-
tribution after a short transient comes from the first term,
while the second term decays quickly.

To verify the accuracy of our iterative analytical method
[Eqs. (10)–(12)], we simulated the learning process multiple
times and calculated the means and covariance terms from
the sampled trajectories. Comparison of estimates from the
simulation and our method is shown in Fig. 2. As can be
seen, the dynamics of both mean Q values and the different
(co)variance terms Vkl is captured accurately.

C. Steady-state fluctuations

It if often of practical interest to know the stationary be-
havior of the learning process. While the iterative approach
derived in the previous section can be applied repeatedly until
convergence is observed, it is more practical to have a system
of algebraic equations that would directly yield fluctuations
in policy at steady state. Such system of equations can be
obtained by requiring the covariance terms at consecutive
iterations to be equal to each other (Vkl = vkl ) and ignoring
higher-order terms [O(α3)] in the learning parameter α. The
steady-state solution of our equations gives

(xk + xl )vkl − xk

∑
s

∑
m

X ′
s;mvml rks

− xl

∑
s

∑
m

X ′
s;mvmk rls = αχkl

∑
s

(rks − q̄k )(rls − q̄l )Xs

(16)

for 1 � k, l � 4. Here, χkl = ∑
s XsIskIsl , rks represents the

reward associated with the change in qk when the joint action
in the previous step is s, and q̄k represent the mean-field Q
values at steady state. As shown in Fig. 3, predictions of
covariance terms via Eq. (16) accurately match the numerical
estimates from the simulated learning process. The presence
of the factor of α on the right-hand side of Eq. (16) also
suggest a linear scaling of the steady-state covariance terms
with the learning rate, as is demonstrated numerically in the
inset of Fig. 3.

III. K-ARMED BANDIT PROBLEM

The reinforcement learning model in Sec. II involved a dis-
crete set of actions with deterministic rewards. In this section,
we study the stochasticity of policy dynamics for the K-armed
bandit problem [10,11] where the rewards are now random
and sampled from a continuous distribution. We limit our
discussion to single-agent learning performed via the natural
policy gradient algorithm [12].

A. Two-armed case

We begin with a case where the agent performs one of
two possible actions and receives an action-dependent reward
sampled from a normal distribution N (ri, si ). Here, ri and si

are the mean and the standard division of the reward received
after performing action i ∈ {1, 2}.
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FIG. 2. Comparison of simulation results with those of the iterative analytical method. (a) Dynamics of Q values. Transparent trajectories
represent independent learning simulations. Dotted lines represent estimates from the iterative analytical approach. (b) Dynamics of covariance
terms (4 of the 10 independent elements are shown for clarity). Parameters used are identical to those in the caption of Fig. 1(b). Q values were
initialized at qa

init,l = qb
init,n = 0.

Action probabilities are defined via the policy parameter
Q. Specifically, action 1 is performed with probability

x(Q) = 1

1 + e−Q
. (17)

The probability of the second action is then 1 − x(Q). With
the natural policy gradient method, if action 1 is performed,
then the Q value is updated via

Q = q + αR1

F

d ln x(q)

dq
= q + αR1

x(q)
, (18)

where α is the learning rate, R1 ∼ N (r1, s1) is the corre-
sponding reward for action 1, and F is the Fisher information
metric [10]. When action 2 is made instead, the update equa-
tion becomes

Q = q + αR2

F

d ln[1 − x(q)]

dq
= q − αR2

1 − x(q)
. (19)
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FIG. 3. Comparison of steady-state covariance elements esti-
mated using simulation and analytical methods [Eq. (16)]. Inset:
Linear scaling of covariance terms with the learning rate α (obtained
from simulation).

We are interested in studying the stochastic dynamics of Q
values which are updated according to the above rules.

To that end, we start off my writing the master equation for
the probability distribution Pt+1(Q), namely,

Pt+1(Q) =
∫

dq
∫

dR1 x(q) ρ1(R1)

× δ

(
−Q + q + αR1

x(q)

)
Pt (q)

+
∫

dq
∫

dR2 (1 − x(q)) ρ2(R2)

× δ

(
−Q + q − αR2

1 − x(q)

)
Pt (q). (20)

Here, ρi(Ri ) is the normal distribution of rewards received
after action i. Implementing the methodology for evaluating
the moments outlined in the previous section, we immediately
obtain the update equations for the mean and the variance
of Q:

E [Q] = E [q] + α(r1 − r2), (21)

V = v + α2

[
λ2

1

x
+ λ2

2

1 − x
− (r1 − r2)2

]

+ α2

2

(
λ2

1
1 − x

x
+ λ2

2
x

1 − x

)
v, (22)

where x is evaluated at q = E [q], and λ2
i = r2

i + s2
i is intro-

duced for convenience.
Additionally, using the moments of q, the mean and the

variance of the action 1 probability x(q) can be approximated
via

E [x(q)] = x + 1
2 x′′v, (23)

Var[x(q)] = (x′)2v − 1
4 (x′′)2v2, (24)

where x′ = x(1 − x) and x′′ = x(1 − x)(1 − 2x), both evalu-
ated at the expected value q = E [q].

To test the validity of our method, we performed numerical
simulations of the learning process and compared the statistics
with the predictions of the analytical update equations (see
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FIG. 4. Estimating the stochastic learning dynamics in the two-
armed bandit problem. (a) Policy parameter q and (b) action 1
probability x(q) as a function of the learning iteration. Transparent
trajectories represent example stochastic realizations of the learning
process. (c) Variance of the policy parameter and (c) variance of
the action 1 probability estimated via simulation (solid lines) vs our
iterative analytical approach (dashed lines). Parameters and initial
conditions used: r1 = 1, r2 = −1, s1 = s2 = 1, and q(0) = 0.

Fig. 4). We observe a close match between them up to V ∼ 1.
Our iterative analytical estimate begins to deviate from sim-
ulation results beyond that point where the growth of the
variance in Q is exponentially fast.

B. General case

We next consider the more general scenario where the
agent can perform K different actions, with the probability of
action i given by

xi(Q) = exp(Qi )∑K
k=1 exp(Qk )

. (25)

Here, Q is a K-element vector of policy parameters. If action
i is performed, the corresponding Q value is updated via

Qi = qi + αRi

xi(q)
, (26)

where Ri ∼ N (ri, si ) represents the stochastic reward received
for action i.

As in the two-armed case, we first write the master
equation characterizing the exact stochastic dynamics of the
learning process, namely,

Pt+1(Q) =
∫

dq
∫

dR
∑

k

xk (q) ρk (Rk )

× δ(−Q + q + αdk )Pt (q), (27)

where di
k = δikRk/xk . In this multidimensional case, we want

to estimate the updated means of the Q-vector components,
together with the K × K covariance matrix. During our
derivations, we use the following identities for the different
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FIG. 5. Stochastic learning dynamics in the K-armed bandit
model with K = 50. (a) Mean policy parameters E [qi] as a function
of the learning iteration. (b) Dynamics of the variance terms Vii

(orange) and covariance terms Vi j (pink). Dashed lines are obtained
from our iterative analytical approach, while the solid lines are gener-
ated from numerical simulations. Due to the large number of different
summary statistics, only a subset of the terms are shown. Parameters
used in the study: ri = 1 − 2(i − 1)/(K − 1), si = 0.1, α = 0.01.

derivatives of action probabilities:

x′
i,i = xi(1 − xi ), x′

i; j = −xix j,

(
1

xi

)′′

ii

= 1 − xi

xi
,

(
1

xi

)′′

jk

= 0,

(
1

xi

)′′

i j

= −x j

xi
,

(
1

xi

)′′

j j

= x j

xi
. (28)

The indices i, j, and k in the above identities are all different
from each other.

The update rule for the mean Q values is simply

E [Qi] = E [qi] + αri. (29)

The diagonal and nondiagonal entries of the covariance ma-
trix have distinct update rules. The exact expression for the
diagonal terms is

Vii = vii + α2

(
λ2

i

∫
dq

1

xi(q)
Pt (q) − r2

i

)
. (30)

Using the identities in Eq. (28), we apply the moment closure
technique to find an approximate iterative equation, namely,

Vii = vii + α2

(
λ2

i

xi
− r2

i

)

+ α2λ2
i

2xi

(
vii +

∑
m

xmvmm − 2
∑

m

xmvim

)
. (31)

Here, λ2
i = r2

i + s2
i as before, and xi are the action probabil-

ities evaluated at q = E [q]. Last, we find a succinct update
rule for the nondiagonal entries:

Vi j = vi j − α2rir j . (32)

The accuracy of our iterative analytical method is illustrated
in Fig. 5 for a K-armed bandit problem with a large number
of actions (K = 50). We note that the accuracy starts to drop
when the variance becomes so high that Vii � E [Qi]2 for
some i.

IV. DISCUSSION

In this paper, we studied the stochastic dynamics of rein-
forcement learning processes using a master equation for the
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probability distribution of value functions. The formulation of
the master equation as a first step in the investigation of the
stochastic process is nontrivial, as the probability distribution
may depend on both discrete (state index) and continuous (Q
values) variables. To solve the master equation approximately,
we used a method previously elaborated for the solution of
the finite population problem in evolutionary games [15], but
modified it for our more involved case.

We derived bulk equations for the dynamics of the average
Q values (known before), as well us an iterative equa-
tion scheme for estimating the variance of the distribution
(derived for the first time). The variance is a key statistical
characteristic of the model. Having it, one can estimate the
reliability of the algorithm, i.e., find the probability of match-
ing the optimal solution with some accuracy in a given period
of time. For the Boltzmann Q-learning problem with two
agents, we derived a system of equation for the steady-state
values of covariance terms, offering a quick way of assess-
ing fluctuations in the stationary policy. We also applied our
method for estimating the fluctuations in the K-armed bandit
problem [10,13] where diffusion models have been applied till
now, despite them being not the most accurate models [19].
We assume that solving iterative algebraic equations is much
easier than solving a system of partial differential equations.

An interesting extension to the K-armed bandit problem
studied in our work would be to consider it in an envi-
ronment that changes its state randomly. Here the problem
is very closely related to the subject of correlated random
matrix products [20] (the random matrix is mapped to the
state dynamics of the environment), where a transition has
been found between localized and delocalized phases. For
the proper working of the algorithm, the iteration dynamics
should follow the localized phase. Rigorous mathematical
considerations reveal that there are infinite singularities in
such problems [21].

For a fruitful application of statistical physics to reinforce-
ment learning, the phase structure should also be investigated.
It can be rather rich due to the analogy to spin-glasses pro-
posed in Ref. [10] for the case where the agent performs
multiple actions simultaneously. The point is that now there
are several phases in the model: the paramagnetic and spin
glass phase [22], as well as the ferromagnetic one [23,24].
For the algorithm to work efficiently, it should operate in
the ferromagnetic phase and maximally avoid the spin-glass
phase with slow and chaotic dynamics.

The moment closure approximation, for the first time
suggested in the current article, could also be applied to
reinforcement learning problems with different schemes of
discount [14] and iterated games in the general case. As
the method has worked successfully for both Q-learning and
policy gradient algorithms, we hope to combine it with the
approach proposed in Ref. [25] and apply to the deep deter-
ministic policy gradient (DDPG) algorithm as well in future
work.

Besides reinforcement learning, our method can be applied
to problems of evolution theory with stochastic transitions
in the environment [26–30]. Evolution problems on dynamic
environments are one of the most actively investigated topics
in modern evolution theory. One application, for example,
is to the dynamics of the Wright-Fisher model in the case

of stochastically changing fitness landscape with a goal of
avoiding the fixation of the allele. Such a task is interesting
for finding optimal cancer therapies.
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APPENDIX A: STANDARD REWARD CASE
FOR THE TWO-AGENT GAME

When the player rewards depend only on the actions taken
in the current time step (action l for player “a” and action n
for player “b”), the update equations for the Q values are

Qa
l (t + α) = Qa

l (t ) + α
[
Aln − Qa

l (t )
]
, (A1a)

Qb
n(t + α) = Qb

n(t ) + α
[
Bnl − Qb

n(t )
]
. (A1b)

This is in contrast to Eq. (2) where the actions in the previous
time step entered the reward expressions. In this section, we
derive the iterative update equations for the first and second
moments of Q values which evolve according to Eq. (A1b).

In this setting, the master equation simplifies into

Pt+1(Q) =
∫

dq
∑

s

Xs(q) δ(−Q + q + αds)Pt (q), (A2)

where now it is written for the distribution of Q values. Here,
ds is a four-component vector for given s, with two of its
entries given by the differences between the rewards and the q
values corresponding to the joint action s, while the other two
are zero. Components of ds for all choices of s are

(a:1, b:1) d1 = {A11 − q1 0 B11 − q3 0 },
(a:1, b:2) d2 = {A12 − q1 0 0 B21 − q4},
(a:2, b:1) d3 = { 0 A21 − q2 B12 − q3 0 },
(a:2, b:2) d4 = { 0 A22 − q2 0 B22 − q4}.

(A3)

We also introduce the matrix Isk that indicates the nonzero
elements of the vector ds, i.e., Isk = 1 if dsk �= 0 and is zero
otherwise.

By definition, the moments of Q values are given by

E [Qk] =
∫

dQ QkPt+1(Q)

=
∫

dq
∑

s

Xs(q)
(
qk + αd (k)

s

)
Pt (q), (A4)

E [QkQl ] =
∫

dQ QkQlPt+1(Q)

=
∫

dq
∑

s

Xs(q)
(
qk + αd (k)

s

)(
ql + αd (l )

s

)
Pt (q).

(A5)

We introduce the variance vkl as

vkl = E [qkql ] − E [ql ]E [ql ]. (A6)
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The updated variance Vkl is similarly defined as

Vkl = E [QkQl ] − E [Ql ]E [Ql ]. (A7)

Using our approximation method [Eq. (9)], we write the up-
date equation for the means as

E [Qk] = E [qk] + α
∑

s

Xsd
(k)
s

− α

2

(∑
s

∑
mn

X ′′
s;mnd (k)

s vmn −
∑

s

∑
m

X ′
s;mIskvmk

)
.

(A8)

Applying the same method on E [QkQl ] and substituting the
resulting expression together with the above result for E [Qk]
into Eq. (A7), we obtain the update equation for the variance,
namely,

Vkl = vkl − α(xl + xk )vkl + α
∑

s

∑
m

X ′
s;m

(
d (k)

s vml + d (l )
s vmk

)

+ α2

(∑
s

Xsd
(k)
s d (l )

s −
∑

s

Xsd
(k)
s

∑
s

Xsd
(l )
s

)
, (A9)

where x(q), X (q), and d(q) are all evaluated at q = E [q].

APPENDIX B: TWO-AGENT GAME
WITH STATE-DEPENDENT Q VALUES

Here we consider a generalization of the Q-learning prob-
lem framed in Sec. II where now the Q values of one player
depend also on the previous action taken by the other player
(the state variable). If l̂ and n̂ are the actions taken by players
“a” and “b,” respectively, in the previous time step, and l and n
are their current actions, then the update rules for the Q values
are

Qa
l,n̂(t + α) = Qa

l,n̂(t ) + α
[
Aln̂ − Qa

l,n̂(t )
]
,

Qb
n,l̂

(t + α) = Qb
n,l̂

(t ) + α
[
Bnl̂ − Qb

n,l̂
(t )

]
. (B1)

Due to the added dimension, Q is now an 8-component vector
(2 players × 2 actions × 2 states):

Q = (
Qa

1,1, Qa
2,1, Qa

1,2, Qa
2,2, Qb

1,1, Qb
2,1, Qb

1,2, Qb
2,2

)
. (B2)

(a) (b)
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FIG. 6. Comparison of summary statistics obtained from sim-
ulation vs analytics in the state-dependent two-agent game. (a)
Dynamics of Q values. (b) Dynamics of covariance element (a subset
is shown for clarity). Same parameters as those in Fig. 1(b) were
used.

The master equation for the joint distribution of Q values
(Q) and joint actions (s) has a form very similar to Eq. (5),
namely,

Pt+1(Q, s) =
∫

dq
4∑

ŝ=1

Xsŝ(q) δ(−Q + q + αdsŝ)Pt (q, ŝ).

(B3)

The main difference is that now the probability Xsŝ of taking
the joint action s depends on the joint action in the previous
step (ŝ). For example, the probability that players “a” and
“b” perform actions 2 and 1 (s = 3), respectively, when their
earlier actions were 1 and 1 (ŝ = 1), is given by

X31 = xa
2,1xb

1,1, (B4)

where

xa
2,1 = exp

(
Qa

2,1/T
)

∑
l exp

(
Qa

l,1/T
) , xb

1,1 = exp
(
Qb

1,1/T
)

∑
n exp

(
Qb

n,1/T
) . (B5)

The update equations for the first and second moments
of Q values are identical in form to the ones in the main
text [Eqs. (10) and (11)]. The only difference is in the ŝ
dependence of joint action probabilities Xsŝ as well as of the
indicator function Isŝk , which takes the value 1 if the current
joint action s and the previous joint action ŝ lead to a change
in the kth Q-vector element. The set of iterative update equa-
tions gives the dynamics of 8 Q values and 256 covariance
terms (Qk and V (s)

kl , with k, l ∈ {1, 2, ..., 8}, s ∈ {1, 2, 3, 4}),
respectively). The agreement of this iterative analytical ap-
proach with the results of extensive simulations of the learning
process is demonstrated in Fig. 6.
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