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Sample-path large deviations for stochastic evolutions driven by the square of a Gaussian process

Freddy Bouchet*

Laboratoire de Physique ENS de Lyon and CNRS, 46 Alley d’Italie, F-69364 Lyon Cedex 07, France

Roger Tribe† and Oleg Zaboronski ‡

Department of Mathematics, University of Warwick, Coventry CV4 7AL, United Kingdom

(Received 5 November 2021; revised 8 June 2022; accepted 30 January 2023; published 7 March 2023)

Recently, a number of physical models have emerged described by a random process with increments given
by a quadratic form of a fast Gaussian process. We find that the rate function which describes sample-path large
deviations for such a process can be computed from the large domain size asymptotic of a certain Fredholm
determinant. The latter can be evaluated analytically using a theorem of Widom which generalizes the celebrated
Szegő-Kac formula to the multidimensional case. This provides a large class of random dynamical systems
with timescale separation for which an explicit sample-path large-deviation functional can be found. Inspired
by problems in hydrodynamics and atmosphere dynamics, we construct a simple example with a single slow
degree of freedom driven by the square of a fast multivariate Gaussian process and analyze its large-deviation
functional using our general results. Even though the noiseless limit of this example has a single fixed point,
the corresponding large-deviation effective potential has multiple fixed points. In other words, it is the addition
of noise that leads to metastability. We use the explicit answers for the rate function to construct instanton
trajectories connecting the metastable states.
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I. INTRODUCTION

Large-deviation theory recently became a key theoretical
tool for the statistical mechanics of nonequilibrium systems.
Describing sample-path large deviations for the dynamics of
effective degrees of freedom leads to a precise understand-
ing of typical and rare trajectories of physical, biological, or
economic processes. A paradigm example for the effective
descriptions of complex systems using large-deviation theory
is the macroscopic fluctuation theory of systems of interacting
particles [1]. However, for genuine nonequilibrium processes,
without local detailed balance, the class of systems for which
the rate function can be found explicitly is extremely limited.

In this paper, we consider a class of systems for which
the effective dynamics has increments which are given by
a quadratic form of a fast Gaussian process. This type of
stochastic driving is relevant for many applications. Quadratic
interactions are common in many physical examples, such
as hydrodynamics, plasmas described by the Vlasov equa-
tion, magnetohydrodynamics, self-gravitating systems, the
Kardar-Parisi-Zhang equation, and quadratic networks (for
instance, heat transfer across quadratic networks [2]), to cite
just a few. For all these systems with quadratic nonlinear-
ities, in some regime a separation of timescales exists and
the effective degrees of freedom are coupled to fast-evolving
Gaussian processes. This is the case, for example, for the
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kinetic theories of plasma [3,4], self-gravitating systems [5],
geostrophic turbulence [6], and wave turbulence [7] for some
specific dispersion relations, among many other examples.
From a theoretical and mathematical perspective, modeling
the driver of the effective degrees of freedom by a quadratic
form of a fast Gaussian process proves to be a decisive simpli-
fication. With this assumption, we will be able to write explicit
formulas for the sample-path large-deviation rate function and
proceed to its analysis in many interesting examples.

The study of a slow process coupled to a fast one is a
classical paradigm of physics and mathematics, the celebrated
Kapitza pendulum [8] being a canonical example. For such
fast and slow dynamics, one can study the averaging of the ef-
fect of the fast variable on the slow one (law of large numbers),
or the typical fluctuations (stochastic averaging [9]), or the
rare fluctuations described by the large-deviation theory [10].
The latter is a natural tool for describing the evolution of
metastable systems consisting of long periods spent near an
equilibrium point interspersed by rare transitions to a dis-
tinct equilibrium along an almost deterministic “instanton”
trajectory. A number of systems with timescale separation and
drift quadratic in fast variables exhibit metastability (see, e.g.,
Refs. [11,12] and references therein).

The large-deviation theory has been developed for slow
and fast Markov processes [13,14] or deterministic sys-
tems [15,16]. Unfortunately, there are not many examples
of fast and slow systems for which the large-deviation
rate function is known explicitly, which would enable the
study of detailed properties of the systems such as the
equilibrium points and the transition trajectories connecting
them.
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A pedagogical review of the large-deviation theory for
systems of stochastic differential equations (SDEs) with two
well-separated timescales can be found in Ref. [17]. The the-
ory is illustrated by a class of examples such that the drift
for the slow process is given by a second degree polynomial
of the fast process. The corresponding large-deviation princi-
ple is expressed in terms of the solution of a matrix Ricatti
equation. Unfortunately, the resulting expression is not ex-
plicit enough to study the practically important phenomenon
of stochastically generated metastability: all metastable mod-
els considered in Ref. [17] already possess multiple fixed
points in the noiseless limit. The turbulent models discussed
in Ref. [18] suffer from the same flaw: metastability appears
to be due to a careful choice of the potential rather than being
generated dynamically.

The main contribution of the current work is twofold. First,
we apply the asymptotic theory of Fredholm determinants to
the calculation of the large deviation rate function; this results
is an explicit formula for the rate function which characterizes
sample-path large deviations for the slow process in terms
of a finite-dimensional determinant of a matrix of the size
equal to the number of fast degrees of freedom. Essentially,
Szegő’s theory of Fredholm determinants is used to build an
asymptotic solution to the matrix Ricatti equation of Ref. [17].

Second, we introduce a concrete illustrative example with
stochastically generated metastability. This is a system of
stochastic differential equations with a single slow variable
and a multidimensional fast variable for which all the drifts are
quadratic such that in the noiseless limit there is a unique fixed
point. However, the addition of noise leads to the appearance
of multiple fixed points for the effective Hamiltonian dy-
namics describing the sample-path deviations. In other words
the noisy system exhibits metastability. We use our explicit
knowledge of the rate function to construct transition paths
(instanton trajectories) between the fixed points.

A third result of our paper is of a more technical nature: as
it turns out, it is enough to characterize the fast variables as
a Gaussian process with the autocorrelation function which
decays sufficiently fast, for example, exponentially. In par-
ticular, it is not necessary to require that the fast process be
Markovian. Relaxing this assumption opens up a possibility
of using our results in turbulence modeling in the following
way: the autocorrelation functions of the small-scale turbu-
lence are measured experimentally and used to model the
small-scale fluctuations as a fast Gaussian process. Then the
large-deviation properties of the large-scale turbulence can
be studied theoretically using the theory described below. A
rigorous validation of the large-deviation principle without
assuming Markovianity is also a very natural question for the
probability theory.

It is worth stressing that the current paper does not deal
with applications of the developed theory to specific physical
systems. However, it has already been proven useful for the
study of large deviations in a mean field model of plasma
kinetics (see the Ref. [19] for details). We also hope that we
can apply the explicit formulas found here to understand the
hydrodynamic bistability discussed in Refs. [11,12].

The rest of the paper is organized as follows. We start with
the definition of the model in Sec. II and give a heuristic
derivation of the corresponding large-deviation principle in

Sec. III. The highlight of this section is the application of
Widom’s theorem for the asymptotics of Fredholm determi-
nants to the calculation of the rate function. In Sec. IV we
show the emergence of metastability for a particular repre-
sentative of our class of models and study the corresponding
“instanton” trajectories. Brief conclusions are presented in
Sec. V. Appendices A, B, and C contain some technical
derivations for Sec. III. Appendix D contains a review of
Widom’s theorem.

II. SLOW DYNAMICS QUADRATICALLY DRIVEN BY A
FAST GAUSSIAN PROCESS

Consider the following stochastic model:

Ẋ (t ) = Y T

[
t

ε
, X (t )

]
MY

[
t

ε
, X (t )

]
− νX (t ),

X (0) = x0, (1)

where {X (t )}t�0 is an Rn-valued random process; ε is a pa-
rameter which determines the timescale separation between
the processes X and Y , 0 < ε << 1; and for a fixed x ∈
Rn, [Y (t, x), t, x ∈ R] is an N-dimensional time-stationary
centered Gaussian process with the autocorrelation function
(covariance matrix)

Ci j (τ, x, y) = E[Yi(t, x)Yj (t + τ, y)],

where τ � 0, 1 � i, j � N, (2)

which is assumed to be continuous in all the arguments τ ,
x, and y. As we will see, only C(τ, x, x) enters the final ex-
pression for the large-deviation rate function, which justifies
our shorthand notation C(τ, x) := C(τ, x, x). Finally, M is an
n × N × N matrix, symmetric with respect to the permutation
of the last two indices, and ν > 0 is a parameter. Notice that
the (X,Y ) process need not be Markovian.

We assume that C(τ, x) decays at least exponentially with
τ , perhaps uniformly with respect to x. Then, in the limit of
ε → 0, the slow random process X stays near the solution to
the deterministic equation:

ẋ(t ) = tr{MC[0, x(t )]} − νx(t ),

x(0) = x0, (3)

where tr is the trace over N “fast” indices. Equation (3) is
a consequence of the ergodic average applied to the integral
form of Eq. (1). The typical fluctuations of X (t ) around x(t )
are Gaussian, with covariance of order ε (more precisely, the
distribution of limε→0

X (t )−x(t )√
ε

is centered Gaussian). Here we
are interested in the statistics of large deviations of X (t ) when
X (t ) − x(t ) = O(1), which are no longer Gaussian in general.

III. LARGE-DEVIATION PRINCIPLE FOR PATHS
OF THE SLOW PROCESS

If the fast process were Markov, the starting point for our
analysis would be the known large-deviation principle for fast
and slow Markov systems expressed in terms of the Legendre
transform of the cumulant generating functional:

ZT [x, λ] = logEY exp

{∫ T

0
dtλ(t ) f {x(t ),Y [t, x(t )]}

}
, (4)
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where f is the right-hand side of Eq. (1) for the slow degrees
of freedom (see Ref. [17] for a review).

However, it turns out that assuming the Gaussianity of Y
and the exponential decay of the corresponding autocorrela-
tion function it is possible to arrive at a counterpart of Eq. (4)
without assuming Markovianity [see Eq. (5) below]. As we
already explained in the Introduction, by extending the range
of possible drivers we open up a possibility of applying our
results to turbulent modeling.

The following is essentially a computation of the functional
integral measure for the slow variable X , which we have to
use instead of the Martin-Siggia-Rose method [20], which
is only applicable to the Markov case. It is not a proof, but
rather a heuristic argument devised to give an intuitive feel for
the conjectured form of the large-deviation principle. Let us
fix the final time t > 0, choose a large integer P ∈ N and a
positive number η, and define

�t = t

P
, bη(x) =

n∏
α=1

[xα − η, xα + η],

where x is a point in Rn and
∏

stands for the direct product of
intervals. Geometrically, bη(x) is a hypercube in Rn centered
on x with side 2η. Let (λ1, λ2, . . . , λP ) and (x1, x2, . . . , xP )
be two sequences of n-dimensional vectors. Let P be the
probability distribution for the process (X,Y ). Let E be the
corresponding expectation. We are interested in the proba-
bility that at the times k�t the corresponding values of the
slow process X (k�t ) are near the points xk , 1 � k � P. A
computation exploiting Chebyshev’s inequality shows that for
any sequence of λ’s

ε logP [X (k�t ) ∈ bη(xk ),

k = 1, . . . , P] �
P∑

k=1

(
λT

k (xk−1 − xk )

+ ε logE[eλT
k F (Y,xk−1 )]

)+ R(ε,�t, η), (5)

where

F (Y, x) =
∫ �t/ε

0
dτY T (τ, x)MY (τ, x) − νx�t/ε, (6)

and R is an error term depending on ε, η, and �t such that for
η = µ�t

lim
μ→0

lim
�t→0

lim
ε→0

R(ε,�t, μ�t ) = 0. (7)

The derivation of Eq. (5) is based on the approximation of
Y by a bounded process with a finite dependency range. It is
carried out in Appendix A. Here we would only like to point
out that the dependence on λ in the right-hand side of Eq. (5)
appears to be due to the repeated use of Chebyshev’s inequal-
ity. Intuitively, the sequence (λk ) is the discretized counterpart
of the response field appearing in the Martin-Siggia-Rose
computation.

The next aim is to compute the expectation

E[eλT F (Y,x)] = e− �t
ε

νλT xE[eλT [
∫ �t/ε

0 dτY T (τ,x)MY (τ,x)]],

which can be done using the fact that for a fixed x ∈ Rn

the process Y (·, x) is stationary and Gaussian. What follows

is the key computation of the paper, linking averaging over
fast Gaussian fields with the asymptotic of certain Fredholm
determinants. Let us define m := λT M, an N × N symmetric
matrix. It can be decomposed as m = ST S, where S is a
possibly complex Cholesky factor of m. Rewrite

exp

[
λT

(∫ �t/ε

0
dτY T (τ, x)MY (τ, x)

)]

=
∫ ∏

τ

Dq(τ )e− 1
4

∫ T
0 dτqT (τ )q(τ )+∫ �t/ε

0 dτqT (τ )SY (τ,x)

(the Hubbard-Stratonovich transformation). Then, for suffi-
ciently small components of λ,

E exp

[
λT

(∫ �t/ε

0
dτY T (τ, x)MY (τ, x)

)]

=
∫ ∏

τ

Dq(τ )e− 1
4

∫ �t
ε

0 dτqT (τ )q(τ )E(e
∫ �t

ε
0 dτqT (τ )SY (τ,x) )

=
∫ ∏

τ

Dq(τ ) exp

[
−1

4

∫ �t/ε

0
dτqT (τ )q(τ )

+ 1

2

∫ �t/ε

0
dτ1

∫ �t/ε

0
dτ2qT (τ1)SC(τ1 − τ2, x)ST q(τ2)

]

= Det−
1
2 (I − 2SĈ�t/ε (x)ST ) = Det−

1
2 (I − 2mĈ�t/ε (x)).

(8)

Here mĈ�t/ε (x) is an integral operator acting on (square inte-
grable) RN -valued functions on [0,�/ε] as follows:

fα (t ) �→ mĈ�t/ε (x)( f )α (t ) =
N∑

β,δ=1

∫ �t/ε

0
dτmαβ

× Cβ,δ (t − τ, x) fδ (τ ), (9)

for all α = 1, . . . , N ; t ∈ [0,�t/ε].
In what follows we will use capital Det and Tr to denote

operator determinant and trace, and reserve the lowercase det
and tr for the determinant and the trace of finite-dimensional
matrices.

The calculation of Eq. (8) in the limit ε → 0 requires
the asymptotic analysis of the Fredholm determinant of an
integral operator acting on functions defined on a large inter-
val. Fortunately, such an asymptotic can be computed using
Widom’s theorem, which generalizes the celebrated Szegő-
Kac formula for Fredholm determinants (see Ref. [21]): for
a sufficiently small m (e.g., with respect to a matrix norm),

log Det(I − 2mĈ�t/ε (x)) = �t

ε

∫
R

dk

2π
log det

× (I − 2mC̃(k, x)) + O(1),

(10)

where C̃(k, x) = ∫
R dτeikτC(τ, x) is the Fourier transform of

the autocorrelation function C(τ, x). This remarkable state-
ment is reviewed in Appendix D. Substituting Eqs. (8)
and (10) into Eq. (5), we find
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ε logP [X (p�t ) ∈ bη(xp), p = 1, . . . , P]
(5)
�

P∑
p=1

�tλT
p

(
xp−1 − xp

�t
− νxp−1

)

+
P∑

p=1

ε logE exp

[∫ �t/ε

0
dτY T (τ, xp−1)mY (τ, xp−1)

]
+ R

(8)=
P∑

p=1

�tλT
p

(
xp−1 − xp

�t
− νxp−1

)
− 1

2

P∑
p=1

ε log Det(I − 2mĈ�t
ε

(xp−1)) + R

(10)=
P∑

p=1

�tλT
p

(
xp−1 − xp

�t
− νxp−1

)
− 1

2

P∑
p=1

ε

[
�t

ε

∫
R

dk

2π
log det(I − 2mC̃(k, xp−1))

]
+ R + O(εP)

=
P∑

p=1

�tλT
p

(
xp−1 − xp

�t
− νxp−1

)
− 1

2

P∑
p=1

�t
∫
R

dk

2π
log det

(
I − 2λT

p MC̃(k, xp−1)
)+ R + O(εP), (11)

where the O(εP) addition to the error term comes from the
O(1) term in Eq. (10). The expression (11) is an upper bound
on the (discretization of) the functional integral measure for
the process X .

The next step is akin to the calculation of a path integral
for ε → 0 using the Laplace method. The question we ask is:
what is the probability P [X ∈ D], where D is a “nice” subset
of the space C([0, t],Rn) of Rn-valued functions on [0, t]?

By analogy with the finite-dimensional Laplace method,
one needs to minimize the functional integral measure (11)
over D. The details of this computation can be found in
Appendix B. Here we just state the answer after taking the
continuous limit �t → 0:

lim sup
ε→0

εP [X ∈ D] � − inf
x∈D

[∫ t

0
dτλT

p (τ )[ẋ(τ ) + νx(τ )]

+1

2

∫
R

dk

2π
log det(I − 2λT (τ )MC̃[k, x(τ )])

]
. (12)

The derived bound is valid for an arbitrary function λ. Tak-
ing the infimum of the right-hand side of Eq. (12) over this
function, one gets the optimal upper bound on P [X ∈ D]:

lim sup
ε→0

εP [X ∈ D] � − sup
λ

inf
x∈D

[∫ t

0
dτλT

p (τ )[ẋ(τ ) + νx(τ )]

+1

2

∫
R

dk

2π
log det(I − 2λT (τ )MC̃[k, x(τ )])

]
. (13)

Staying at the similar level of rigor and using the same set of
assumptions about the fast process as above, one can show
that the right-hand side of Eq. (13) is also a lower bound
on lim infε→0 εP [X ∈ D]. The corresponding calculation is
based on a standard trick of deforming the probability distri-
bution in such a way that the low-probability event at hand
becomes almost inevitable (see, e.g., Ref. [22] for a short
introduction). The details are given in Appendix C.

Therefore, it is natural to conjecture that the slow process
X satisfies the large-deviation principle with the rate ε and the

explicit rate function given by

Seff [λ, x] =
∫ t

0
dτλT (τ )[ẋ(τ ) + νx(τ )] + 1

2

∫ t

0
dτ

×
∫
R

dk

2π
log det(I − 2λT (τ )MC̃[k, x(τ )]),

(14)

provided that t is not too large. Less formally one can write

P [X ∈ D] ∼ e− 1
ε

supλ infx∈D Seff [λ,x]. (15)

A typical application of the rate functional guessed above is
the estimation of the probability of transitioning between fixed
points of the typical evolution (3). If x0 and x1 are two such
points, then

P [X (t ) ∈ dx1 | X (0) = x0] ∼ e− 1
ε

supλ infx Seff [λ,x], (16)

where the “inf” and the “sup” are taken over the functions x
and λ on [0, t] such that x(0) = x0 and x(t ) = x1.

When analyzing specific examples, it is often convenient to
think of Eq. (14) as the action functional for a mechanical sys-
tem with generalized coordinates x and generalized momenta
λ = δSeff

δẋ . This system is Hamilton’s with the Hamiltonian

Heff (λ, x) = −νλT x −
∫
R

dk

4π
log det(I − 2λT MC̃(k, x))

(17)

(see Ref. [8] for details of the map between the Lagrangian
and the Hamiltonian formalisms). As a self-consistency
check, let us verify that the average evolution equation (3)
appears as an equation for a typical trajectory for the
large-deviation principles (16) and (14). A typical trajectory
(λc, xc)0�τ�t is a solution to Euler-Lagrange equations asso-
ciated with Seff such that

Seff [λc, xc] = 0.

Examining the derivation of the large-deviation principle, it is
reasonable to expect that λc = 0. Expanding Eq. (14) around

034111-4



SAMPLE-PATH LARGE DEVIATIONS FOR STOCHASTIC … PHYSICAL REVIEW E 107, 034111 (2023)

λ = 0, we find

Seff =
∫ t

0
dτλT (τ )(ẋ(τ ) + νx(τ ) − Tr{MC[0, x(t )]})

+ O(λ2),

where we used that
∫
R

dk
2π

C̃(k, x) = C(0, x). Therefore, λ = 0
solves the Euler-Lagrange equations if

ẋ(τ ) + νx(τ ) − Tr{MC[0, x(t )]} = 0, x(0) = x0,

which coincides with Eq. (3). In particular, the fixed points of
the slow dynamics are solutions to

νx = Tr[MC(0, x)]. (18)

Remarks

(i) If N = 1, and Y solves an Ornstein-Uhlenbeck SDE
with an X -dependent drift, the corresponding large-
deviation principle is as derived in Ref. [11] and
is consistent with conjecture (13) for all values of
λ. However, in general, one has to check that the
optimal λ belongs to the domain of applicability of
Widom’s theorem, which is one of the challenges for
the rigorous justification of the conjecture. A natural
guess is that the minimizer must be small enough to
ensure positive definiteness of the quadratic form in
the functional integral (8).

(ii) If Y appears as a solution to an Ornstein-Uhlenbeck
system of stochastic differential equations, then
Eq. (13) can be viewed as a solution to the matrix
Riccatti problem for the rate function derived in
Ref. [17].

(iii) In the context of modeling of two-dimensional tur-
bulent flows, Eq. (1) can be interpreted as follows:
Y is a Gaussian model of fast small-scale velocity
field whose evolution depends on the static back-
ground created by X ; X is a large-scale velocity
field slowly evolving under the influence of Y .
Thus, the model can be thought of as a nonlin-
ear generalization of the passive vector advection
model. The shape of C reflects the nature of the
small-scale turbulent flow (compressibility, isotropy,
etc.).

IV. AN EXAMPLE INSPIRED BY MULTISTABILITY IN
HYDRODYNAMIC AND GEOSTROPHIC TURBULENCE

The aim of this section is to present an example of the
use of the large-deviation principle (14). We are specif-
ically interested in metastability phenomena observed in
two-dimensional [11] and geostrophic [12] turbulent flows. In
previous works, we have studied metastability for geostrophic
dynamics [18], in cases when the turbulent flows are forced
by white noises and the stochastic process is an equilibrium
one with detailed balance or generalized detailed balance.
The large-deviation principle (14) opens the possibility for
studying metastability for turbulent flows modeled as a
nonequilibrium process. As a first step, we now demonstrate
the stochastic generation of metastability for systems with
timescale separation using the simplest example of the system

of stochastic differential equations with the quadratic drift for
the slow variable.

To formulate the example, it is easier to use complex nota-
tions. The fast variable Y (·, x) ∈ CN is an analog of the set of
Fourier components that describe the turbulent fluctuations. Y
is the stationary solution of the complex Ornstein-Uhlenbeck
process. The SDEs for the full fast and slow system are as
follows:

dY (t, x) = −�(x)Y (t, x)dt + σdW (t ),

dX (t ) = Y [t/ε, X (t )] ∗ MY [t/ε, X (t )]dt − νX (t )dt,

(19)

where M is an n × N × N matrix self-adjoint with respect to
the last two indices; dW is the CN -valued Brownian motion,
with the nontrivial covariance

dW idWj = δi jdt ; (20)

and �(x) is a complex matrix, whose eigenvalues have posi-
tive real parts,

�(x) = �(0) + ixT �(1), (21)

where �(0) is a real positive definite N × N matrix and �(1)

is a real n × N × N matrix. The former describes dissipation,
whereas the latter corresponds to the “rotational” advection of
Y by the slow field X . All the coefficients are polynomials of
degree at most one in x.

The model (19) is a representative of the class of mod-
els (1) and (2) treated in this paper: the slow field X is
driven by a quadratic form of Y (·, x) which, as follows from
the first of the SDEs (19), is Gaussian with the exponen-
tially decaying autocorrelation function. In particular, the
large-deviation rate function can be derived from Eq. (14) of
the previous section. Finally, notice that the process (X,Y )
defined by Eq. (19) is Markovian. As pointed out at the
end of Sec. III, the task of justifying the large-deviation
principle (14) reduces in this case just to the check of
the applicability of Widom’s theorem, whereas the impor-
tant intermediate result (5) can be established rigorously
(see Ref. [14]).

The structure of the system of SDEs (19) resembles that
of the quasilinear approximation to the Navier-Stokes equa-
tion or quasigeostrophic equations (see Ref. [6] for details):
the nonlinearity in the right-hand side is quadratic, the evo-
lution of the slow variable is driven by the term quadratic in
the fast variable, and the drift of the fast variable resembles
advection by the slow field X . Let us stress that the model
does not have any artificial “built-in” nonlinearity: the noise-
less limit of Eq. (19) has a unique critical point X = Y =
0. The metastability described below is a purely stochastic
effect.

Some standard computations lead to formulas for the corre-
lation and autocorrelation functions, C(0, x) := E[Y (0, x) ⊗
Y ∗(0, x)] and C(τ, x) := E[Y (τ, x) ⊗ Y ∗(0, x)]. Here ⊗ de-
notes the tensor product: for vectors a, b ∈ Cn, a ⊗ b is an
n × n matrix such that (a ⊗ b)i j = aib j . C(0, x) solves the
Lyapunov equation

�(x)C(0, x) + C(0, x)�∗(x) = σσ ∗, (22)
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FIG. 1. The effective force Feff (x) := ∂Heff
∂λ

(0, x) for the
model (27). Notice a pair of stable fixed points of the averaged
dynamics separated by an unstable fixed point.

whereas

C(τ, x) = e−�(x)τC(0, x), τ � 0. (23)

If τ < 0, then C(τ, x) = C(0, x)e�∗(x)τ . The effective
Hamiltonian (17) rewritten in complex terms is

Heff (λ, x) = −λT νx −
∫
R

dk

4π
log det(I − 2λT MC̃(k, x)),

(24)

where

C̃(k, x) :=
∫
R

dτeikτC(τ )

= [�(x) − ik]−1C(0, x) + C(0, x)[�∗(x) + ik]−1,

(25)

is the Fourier transform of the autocorrelation function.
Keeping matters as simple as possible, let us choose

�(0) and �(1) to be the diagonal matrices with real entries
{γ (0)

p , γ (1)
p }1�p�N , where γ (0)’s are all positive. The fixed-

point equation (18) takes the form

N∑
j,k=1

(σσ ∗) jk (Mα )k j{
γ

(0)
j + γ

(0)
k + i

∑n
β=1

[(
γ

(1)
β

)
j − (

γ
(1)
β

)
k

]
xβ

}
= νxα, 1 � α � n. (26)

Notice that if either the noise covariance matrix σσ ∗ or the in-
teraction matrix Mα is diagonal, there is a unique solution for
the αth component of the fixed point. Indeed, if (Mα )k j = 0
for all k 	= j, then the left-hand side of Eq. (26) becomes x
independent and the equation becomes linear with respect to
xα . The same remark applies if σσ ∗ is diagonal. Similarly,
the fixed point is unique if (γ (1)

β ) j − (γ (1)
β )k = 0 for all j,

k, and β. However, for general correlated noise, interaction,
and an inhomogeneous rotation matrix γ (1), there are typically
multiple solutions to Eq. (26).

We therefore conclude with the simplest nontrivial exam-
ple such that Eq. (26) has multiple real solutions (see Fig. 1).
For this example, n = 1, N = 3, ν = I3, and it has two stable
and one unstable fixed points. The appearance of powers
of 2 and π in the following parametrization has no special

FIG. 2. Contour lines of Heff for the model (27). The contour
lines in the upper half plane serve as optimal trajectories for transi-
tions between the stable fixed points in a finite time. The wide curve
is the infinite-time optimal transition curve. The dashed segment
marks the typical trajectory connecting the unstable and stable fixed
points.

meaning:

σ = 1

21/4

⎛
⎝−1 − i 0 0

1 − i −1 − i 0
−1 − i 1 − i −1 − i

⎞
⎠,

M =
⎛
⎝0 1 1

1 0 1
1 1 0

⎞
⎠, γ (0) =

⎛
⎝1

1
1

⎞
⎠, γ (1) = π2

⎛
⎝1

2
3

⎞
⎠. (27)

The choice Mii = 0 and Mi j = const for i 	= j reflects some
properties of the interaction matrix for the two-dimensional
Navier-Stokes equation, but it is also not essential for the
appearance of multiple equilibria.

The fact that multiple equilibria appear naturally in the
model (19) together with its link to quasilinear hydrodynam-
ics explained above makes us hope that the large-deviation
principle (14) might prove useful in studying realistic hydro-
dynamic phenomena of metastability, such as the zonal-dipole
transition discovered in Ref. [11]. Euler-Lagrange equa-
tions associated with the effective action functional (14) are
Hamilton’s with the Hamiltonian (24). Therefore, each solu-
tion lies on a constant energy surface Heff (λ, x) = E . If there
is a single slow variable, the trajectories coincide with con-
stant energy surfaces. This allows one to determine a family
of the most likely transition paths between the fixed points
(the instanton trajectories) by building the contour plot of Heff

numerically (see Fig. 2).

V. CONCLUSIONS AND OUTLOOK

Motivated by hydrodynamic applications, we have consid-
ered a model with two timescales, where the slow variable
is driven by a quadratic function of a fast Gaussian process
with rapidly decaying autocorrelations. A natural question
of computing the probabilities of rare events in this model
reduces to the computation of large-interval asymptotics
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for a certain Fredholm determinant. To the leading or-
der, such a computation can be easily carried out using
Widom’s theorem. To apply the resulting large-deviation prin-
ciple, we considered a special case of the fast field being
a complex Ornstein-Ohlenbeck process with the rotational
component of the drift given by a linear function of the
slow process. As it turns out, the average slow dynamics
for such a model exhibits multiple equilibria, the transi-
tions between which can be studied using large-deviation
theory.

There are many natural further questions to ask. First,
it should be a straightforward task to furnish a rigorous
proof or provide a counterexample to the statement of the
conjecture (14). Second, for the cases, when the fast pro-
cess conditional on the value of the slow process is an
Ornstein-Uhlenbeck process, it might be interesting to con-
sider finite-ε corrections to the leading-order answer. Albeit
known, the subleading terms in the Widom asymptotic are
only characterized as solutions to a certain matrix Wiener-
Hopf integral equation. There is, however, a chance of
finding these corrections rather more explicitly as solu-
tions to the time-dependent Riccatti equations derived in
Ref. [17].

Finally, the model considered has the general struc-
ture of many equations of hydrodynamics, plasma dy-
namics, self-gravitating systems, wave turbulence, or other
physical systems with quadratic couplings or interactions.
It would, therefore, be extremely interesting to analyze
metastability for such physical systems, in the presence
of timescale separation, using the findings of the present
paper.

APPENDIX A: THE DERIVATION OF EQ. (5)

In the calculation below we rely on the observation
that the Gaussian process Y (·, x) with exponentially decay-
ing autocorrelation function should be well approximated
by a bounded process with a finite dependency range.
In other words, we assume that there are constants C
and δ: Y T (t, x)Y (t, x) � C for all (t, x), and the processes
[Y (t, x)]t<T and [Y (t, x)]t>T +δ are independent for any
T ∈ R [23].

To estimate a probability in terms of exponential moments,
we follow the logic of the Chernoff bound (the exponential
version of Chebyshev’s inequality) and notice the following
elementary inequality: for any λ ∈ R,

1[x ∈ (y − η, y + η)] � eλ(x−y)+η|λ|1[x ∈ (y − η, y + η)].

The corresponding n-dimensional generalization is

1[x ∈ bη(y)] � eλT (x−y)+ηn||λ||∞1[x ∈ bη(y)], (A1)

where λ, x, y ∈ Rn and ||λ||∞ = max1�α�n |λα|. Using
Eq. (A1),

P [X (k�t ) ∈ bη(xk ), 1 � k � P]

= E

[
P∏

k=1

1[X (k�t ) ∈ bη(xk )]

]

� E

[
e
∑P

l=1[
λT

l
ε

[X (l�t )−xl ]+ηn||λl ||∞]

×
P∏

k=1

1[X (k�t ) ∈ bη(xk )]

]
. (A2)

Next we need to calculate X (k�t ) − xk for each k by solving
Eq. (1) over the time interval [(k − 1)�t, k�t]: Denote the
right-hand side of the equation for Ẋ (τ ) by f [τ/ε, X (τ )].
Our assumptions imply that both || f ||∞ and ||∇2 f ||∞ are
bounded by some constants, which will be denoted by M0 and
M1, correspondingly. Expanding f in the Taylor series in the
second argument, one finds

λT Ẋ (τ ) = λT f (τ/ε, xk−1) + ρk, τ ∈ [(k − 1)�t, k�t],

(A3)

where ρk = λT ∇2 f [τ/ε, (1 − c)xk−1 + cX (τ )][X (τ ) −
xk−1], for some c ∈ (0, 1). Here we used the mean value
form of the remainder for the Taylor series. Using the bound
||∇2 f ||∞ � M1 and noticing that ∇2 f is an n × n matrix,

|ρk| � n2||λ||∞M1||X (τ ) − xk−1||∞. (A4)

The estimate of the size of X (τ ) − xk−1 uses the equation for
X once more:

||X (τ ) − xk−1||∞ � ||X (τ ) − X [�t (k − 1)]||∞
+ ||X [�t (k − 1)] − xk−1||∞ � η + ||

×
∫ τ

(k−1)�t
dτ ′ f [τ ′/ε, X (τ ′)]||∞ � η + �tM0.

The penultimate step uses the fact that the indicators under
the sign of the expectation in Eq. (A2) enforce the constraint
||X [(k − 1)�t] − xk−1||∞ < η; the last step uses the bound
|| f ||∞ < M0. Putting it all together we find that

|ρk| � n2||λ||∞(η + �tM0)M1. (A5)

Integrating Eq. (A3) over the interval [(k − 1)�t, k�t], we
conclude that

λT
k [X (k�t ) − xk] = λT

k (xk−1 − xk )

+ λT
k

∫ k�t

(k−1)�t
dτ f (τ/ε, xk−1) + ρ̃k,

(A6)

where ||ρ̃k||∞ � ||λk||∞[nη + n2(η + �tM0)M1�t]. Notice
the extra contribution to the error term coming from one
more application of the bound ||X [(k − 1)�t] − xk−1||∞ � η.
Substituting Eq. (A6) into Eq. (A2) and upper-bounding the
product of the indicators by 1, one arrives at the following
intermediate result:

P [X (k�t ) ∈ bη(xk ), k = 1, . . . , P]

� e
∑P

k=1
λT

k
ε

(xk−1−xk )E

[
P∏

k=1

e
λT

k
ε

[∫ k�t
(k−1)�t dτ f (τ/ε,xk−1 )+Rk

]]
,

(A7)

where Rk = ||λk||∞[2nη + n2(η + �tM0)M1�t]. It remains
to approximate the expectation in Eq. (A7) by the product of
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expectations. To this end we write

λT
k

∫ k�t

(k−1)�t
dτ f (τ/ε, xk−1)

= ελT
k

∫ k�t/ε

(k−1)�t/ε
dτ f (τ, xk−1)

= ελT
k

∫ k�t/ε−δ

(k−1)�t/ε+δ

dτ f (τ, xk−1) + Ek, (A8)

where the bound || f ||∞ � M0 implies that |Ek| �
2εn||λk||∞M0δ. Crucially, notice that f (τ/ε, x) depends
on Y (τ/ε, x) only. Therefore, the random variables
ελT

k

∫ k�t/ε+δ

(k−1)�t/ε−δ
dτ f (τ, xk−1) and 1 � k � P are mutually

independent due to the finite dependency range δ of the
process Y . Substituting Eq. (A8) into Eq. (A7) and exploiting
the independence, one finds

P [X (k�t ) ∈ bη(xk ), k = 1, . . . , P] � e
∑P

k=1
λT

k
ε

(xk−1−xk+R̃k )

×
P∏

k=1

E[eλT
k

∫ k�t/ε
(k−1)�t/ε dτ f (τ,xk−1 )],

where R̃k = ||λk||∞[4εnM0δ + 2nη + n2(η + �tM0)M1�t].
In the last expression we extended the integration interval
back to [(k − 1)�t, k�t]/ε, which explains the doubling of

the δ-dependent contribution to the error term. Finally, let us
notice that the total error term R(ε,�t, η) := ∑P

k=1 R̃k has the
following property:

lim
μ→0

lim
�t→0

lim
ε→0

R(ε,�t, μ�t ) = 0. (A9)

The derivation of Eq. (5) is complete.

APPENDIX B: THE DERIVATION OF EQ. (12)

First of all, let us explain what we mean by a “nice” set
of functions D. To this end, we need to introduce one more
notation. For f ∈ C([0, T ],Rn), let

Bη( f ) = {g ∈ C([0, t],Rn) :

× sup
τ∈[0,t],1�α�n

| fα (τ ) − gα (τ )| < η}. (B1)

This is an infinite-dimensional generalization of the hyper-
cube bη introduced above. We say that set D is nice if
for any η > 0 we can find finitely many smooth functions
x(1), x(2), . . . , x(M ) ∈ C([0, T ],Rn):

D ⊂
M⋃

j=1

Bη(x( j) ). (B2)

In other words D can be covered by finitely many hypercubes
of any positive “linear size” [24]. Let x( j)

k = x( j)(k�t ) and 1 �
k � P. Then

P [X ∈ D]
(B2)
� P

⎡
⎣X ∈

M⋃
j=1

Bη(x( j) )

⎤
⎦ =P [∃ j � M : X ∈ Bη(x( j) )] = P [∃ j � M : X (τ ) ∈ bη(x( j)(τ )), τ ∈ [0, t]]

� P
[∃ j � M : X (k�t ) ∈ bη

(
x( j)

k

)
, 1 � k � P

]
(∗)
�

M∑
k=1

P
[
X (k�t ) ∈ bη

(
x( j)

k

)
, 1 � k � P

]

� M max
1� j�M

P

[
P⋂

k=1

{
X (k�t ) ∈ bη

(
x( j)

k

)}]
.

All of the above steps should be self-explanatory, let us just notice that the inequality (∗) is the union bound. Taking the logarithm
of both sides of the derived inequality and using the bound (11), one finds

εP [X ∈ D] � ε log M + ε max
1� j�M

logP

[
P⋂

k=1

{
X (k�t ) ∈ bη

(
x( j)

k

)}]
� ε log M + ε sup

x∈D
logP

[
P⋂

k=1

{X (k�t ) ∈ bη(xk )}
]

(11)
� ε log M + R + O(εP) + sup

x∈D

⎡
⎣ P∑

p=1

�tλT
p

(
xp−1 − xp

�t
− νxp−1

)
− 1

2

P∑
p=1

�t
∫
R

dk

2π
log det

(
I − 2λT

p MC̃(k, xp−1)
)⎤⎦.

As a result,

lim sup
ε→0

εP [X ∈ D] � lim
ε→0

R + sup
x∈D

P∑
p=1

�t

[
λT

p

(
xp−1 − xp

�t
− νxp−1

)
− 1

2

∫
R

dk

2π
log det

(
I − 2λT

p MC̃(k, xp−1)
)]

. (B3)

Finally, notice that the left-hand-side of Eq. (B3) does not
depend on �t and η. Let λ and x be a pair of Rn-valued

functions on [0, t] such that

λ(k�t ) = λk, x(k�t ) = xk, 1 � k � P.
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Setting η = µ�t , applying limµ→0 lim�t→0 to both sides of
Eq. (B3), and using the property (7) of the error term, one
arrives at Eq. (12).

APPENDIX C: LOWER BOUND ON logP [X ∈ D]

For the lower bound, let us take the pair x, λ ∈
C([0, t],Rn) to be the solution to the Euler-Lagrange equa-
tions describing the critical points of Eq. (14) and assume
that the solution is unique and smooth. The bounded-
ness of the right-hand side of the equation for ẋ means
that there is M2 > 0 such that ||ẋ(t )||∞ < M2 for all
t ∈ [0, t].

Let us fix �t > 0. Using the above bound on ẋ and the
bound || f ||∞ < M0 discussed in the text above Eq. (A3), it
is easy to establish the following: if X (t ) ∈ bη(x(t )) at some
time t , then for all τ ∈ [t, t + �t],

||X (τ ) − x(τ )||∞ � η + (M0 + M2)�t . (C1)

Let xk = x(k�t ), λk = λ(k�t ), and 1 � k � P, where P =
� t

�t �. Choose ρ > 0: Bρ (x) ⊂ D. Then

P [X ∈ D] � P [X ∈ Bρ (x)] � P [X (k�t ) ∈ bη(xk ),

1 � k � P], (C2)

provided η > 0 and �t > 0 are such that η + (M0 +
M2)�t < ρ: given such a choice, the estimate (C1) im-
plies the inclusion of events ∩P

k=1{X (k�t ) ∈ bη(xk )} ⊂
{X ∈ Bρ (x)}, which leads to the claimed inequality in
Eq. (C2).

Following the steps which led to Eq. (A6), one finds

Xk − Xk−1 =
∫ k�t

(k−1)�t
f (τ/ε, xk−1)dτ + Vk, (C3)

where Xk := X (k�t ) and ||Vk||∞ � nM1(η + �tM0)�t . Let

F (ε)
k =

∫ k�t

(k−1)�t+εδ

f (τ/ε, xk−1)dτ.

By the finite dependency assumption the random variables
(F (ε)

k )k�1 are independent. Define Fk−1 := F (0)
k−1. Then the

right-hand side of Eq. (C3) is equal to Fk−1 + Vk . Notice the
following elementary inequality:

1[X + v ∈ bη(x)] � 1[X ∈ bη−||v||∞ (x)]. (C4)

The right-hand side is nonzero provided ||v||∞ < η. The fol-
lowing estimate is based on Eq. (C2), the independence of
(F (ε)

k )k�1, the inequality (C4), and the tower property of con-
ditional probabilities:

P [X ∈ D] � P [X ∈ Bρ (x)] � E

[
P∏

k=1

1[Xk ∈ bη(xk )]

]

= E

{
E

[
P∏

k=1

1[Xk ∈ bη(xk )]
∣∣(Yτ )0�τ�(P−1)�t/ε

]}

= E

{
P−1∏
k=1

1[Xk ∈ bη(xk )]E
[
1[XP ∈ bη(xP )]

∣∣(Yτ )0�τ�(P−1)�t/ε
]}

= E

(
P−1∏
k=1

1[Xk ∈ bη(xk )]E
{
1
[
XP−1 + F (ε)

P + v ∈ bη(xP )
]∣∣(Yτ )0�τ�(P−1)�t/ε

})

� min
yP−1∈bη (xP−1 )

E

(
P−1∏
k=1

1[Xk ∈ bη(xk )]E
{
1
[
yP−1 + F (ε)

P + v ∈ bη(xP )
]∣∣(Yτ )0�τ�(P−1)�t/ε

})

= min
yP−1∈bη (xP−1 )

E

[
P−1∏
k=1

1[Xk ∈ bη(xk )]

]
E
{
1
[
yP−1 + F (ε)

P + v ∈ bη(xP )
]}

�
P∏

k=1

min
yk−1∈bη (xk−1 )

E
{
1
[
yk−1 + F (ε)

k + v ∈ bη(xk )
]}

=
P∏

k=1

min
yk−1∈bη (xk−1 )

E{1[yk−1 + Fk + w ∈ bη(xk )]} �
P∏

k=1

min
yk−1∈bη (xk−1 )

E{1[yk−1 + Fk ∈ bη−r (xk )]}. (C5)

Here v and w are a shorthand notation for random errors satisfying deterministic bounds on their norms, ||v||∞ � nM1(η +
�tM0)�t + εM0δ, ||w||∞ � nM1(η + �tM0)�t + 2εM0δ, and r = nM1(η + �tM0)�t + 2εM0δ.

The following steps are standard in the context of the theory of large deviations: let η′ = η − r. Then notice that

E{1[Fk ∈ bη(xk − yk−1)]} = E
{
e− 1

ε
λT

k Fk e
1
ε
λT

k Fk1[Fk ∈ bη′ (xk − yk−1)]
}

� e− λk (xk −yk−1 )+n||λk ||∞η′
ε ,

Ee
1
ε
λT

k Fk1[Fk ∈ bη′ (xk − yk−1)]} = e− λk (xk −yk−1 )+n||λk ||∞
ε E

[
e

1
ε
λT

k Fk
]
E(λk ){1[Fk ∈ bη′ (xk − yk−1)]}, (C6)
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where

E(λk )[•] := E[e
1
ε
λT

k Fk •]

E[e
1
ε
λT

k Fk ]

is the expectation with respect to the probability measure tilted
by the exponential factor e

1
ε
λT

k Fk . The derivation of Eqs. (C5)
and (C6) did not use any assumptions about the sequence
(λ1, . . . , λP ). Now let us choose the sequence in such a
way that

lim
ε→0

E(λk )[Fk] = xk − yk−1, 1 � k � P, (C7)

which coincides with the discretized version of the
Euler-Lagrange equations δSeff/δλ(τ ) = 0, 0 < τ < t , if
yk = xk for all k’s. Equivalently,

∂

∂λk
lim
ε→0

ε logE[e
1
ε
λT

k Fk ] = xk − yk−1, 1 � k � P. (C8)

Recall that an explicit formula derived with the help of
Widom’s theorem shows that limε→0 ε logE[e

1
ε
λT

k Fk ] is finite
[see Eqs. (8) and (10)]. Calculating the second λ-derivative of
logE[e

1
ε
λT Fk ], one finds that

lim
ε→0

Cov(λk )[Fk] = lim
ε→0

ε2∂λ ⊗ ∂λ logE
[
e

1
ε
λT Fk

] = 0. (C9)

Expressions (C7) and (C9) and Chebyshev’s inequality imply
that

lim
ε→0

E(λk ){1[Fk ∈ bη′ (xk − yk−1)]} = 1.

Using this observation in Eqs. (C5) and (C6), one finds that

lim inf
ε→0

ε logP [X ∈ D]

�
P∑

k=1

min
yk−1∈bη (xk−1 )

{[
λT

k (yk−1 − xk ) − n||λk||∞η′′]
+ lim

ε→0
ε logE[e

1
ε
λT

k Fk ]
}
, (C10)

provided the sequence (λk ) solves Eq. (C7). Here

η′′ = η′ |ε=0= η − r |ε=0= η − nM1(η + �tM0)�t .

As the right-hand side of Eq. (C10) does not depend on η

and �t , one can set η = a(�t )μ, where a > 0 and µ > 1, and
take the limit �t → 0. In the limit, using that yk ∈ bη(xk ), one
finds that the system of equations (C8) becomes

∂

∂λ(τ )
lim

�t,ε→0

ε

�t
logE

[
e

1
ε
λT

k Fk
] |k= τ

�t
= ẋ(τ ), τ ∈ [0, t].

Due to Eqs. (8) and (10), the above equation coincides with
the Euler-Lagrange equation δSeff

δλ(τ ) = 0, where Seff is given by
Eq. (14). The bound (C10) becomes

lim inf
ε→0

ε logP [X ∈ D]

�
∫ t

0
dτ

(
− λT (τ )x(τ ) + lim

�t→0
lim
ε→0

ε

�t

× logE[e
1
ε
λT

k Fk ]
∣∣
k�t=τ

)
, (C11)

where the functions λ and x solve the Euler-Lagrange equa-
tions associated with the effective action functional Seff .

Furthermore, the right-hand side of Eq. (C11) coincides with
the effective action functional (14). Therefore, by the assumed
uniqueness of the solution to the Euler Lagrange equations,
the right-hand side of Eq. (C11) must coincide with Eq. (13).
The lower bound is derived.

APPENDIX D: WIDOM’S THEOREM

In Ref. [21], Widom simply formulates the theorem, states
that it can be easily verified by taking the continuous limit of
the corresponding statement for large Toeplitz matrices, and
then moves on to the main topic of the paper: the asymptotic
of Fredholm determinants for operators acting on spaces of
functions of several variables. Thus, there is a gap in the story,
which we partially fill in the present Appendix by deriving
Eq. (10). In our proof we use the probabilistic method devel-
oped in the original paper by Kac et al. [25].

Theorem. Let K : R → RN×N be an N × N-matrix-valued
function of one variable. Assume that K is even [K (t ) =
K (−t ), for any t ∈ R] and non-negative [Ki j (t ) � 0 for any
t ∈ R and 1 � i, j � N]. Assume in addition that∫

R
|t |K (t )dt < ∞, (D1)

∫
R

N∑
k=1

Kki � 1, 1 � i � N. (D2)

The function K can be regarded as a kernel of an inte-
gral operator K̂ acting on square-integrable functions from
R to RN ,

f �→ K̂ f (t ) =
∫
R

dτK (t − τ ) f (τ ), t ∈ R. (D3)

Then there is λmax > 0 such that for any λ : |λ| < λmax the
Fredholm determinant Det(I − λK̂T ) exists and

log Det(I − λK̂T ) = T
∫
R

dk

2π
log det[1 − λK̃ (k)] + O(T 0),

(D4)

where K̂T is the restriction of K̂ to functions on [0, T ] and

K̃ (k) =
∫
R

dxe−ikxK (x), k ∈ R. (D5)

Let us sketch the proof of the theorem using, as we already
mentioned, the probabilistic method used in Ref. [25] to prove
a continuous version of Szegö’s formula for the asymptotics of
Toeplitz determinants. For a sufficiently small |λ|, we can cal-
culate the Fredholm determinant using the trace-log formula,

log Det(I − λK̂T ) = −
∞∑

n=1

1

n
λnTrK̂n

T , (D6)

where

TrK̂n
T =

∫
[0,T ]n

dx1dx2 . . . dxn,

trK (x1 − x2)K (x2 − x3) . . . K (xn − x1).
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Using the cyclic property of trace and the fact that the function
K is even, we find

d

dT
TrK̂n

T = n
∫

[0,T ]n

dx2dx3 . . . dxn,

trK (−x2)K (x2 − x3) . . . K (xn−1 − xn)K (xn). (D7)

Consider the following discrete-time Markov chain
{Xn, Sn}n�0 on the state space R × {1, 2, . . . , N}:

(i) (X0, S0) ∼ (δ0,UN ), where UN is the uniform distribu-
tion on {1, 2, . . . , N};

(ii) at each time step, the transition (x, i) → (y, k) happens
with probability Kki(y − x)dy.

Notice that this is a Markov chain with killing, the
survival probability when transitioning from state (x, i)
is gi(x) := ∑N

k=1

∫
R Kki(y − x)dy � 1. Examining the ex-

pression (D7) for the derivative of the trace of the nth
power of K̂ , we see that it can be interpreted as the fol-
lowing expectation with respect to the law of the chain
{Xn, Sn}n�0:

d

dT
TrK̂n

T = NnE[1(Xn ∈ d0)1(Sn = S0)1(τ = n)], (D8)

where τ is the first exit time of the chain from the interval
(0, T ) × {1, 2, . . . , N}. To derive the above expression we ex-
ploited the identity 1(Xn ∈ d0)1(τ � n) = 1(Xn ∈ d0)1(τ =
n). Substituting Eq. (D8) into Eq. (D7) and then into Eq. (D6),
we find that

d

dT
log Det(I − λK̂T ) = −NE[λτ1(Xτ ∈ d0)1(Sτ = S0)]

= −NE[λτ01(Xτ0 ∈ d0)

× 1(Mτ0 < T )1(Sτ0 = S0)],

where τ0 is the first exit time from (0,∞) × {1, 2, . . . , N},
Mτ0 = max1�n<τ0 (Xn). As log det(I − λK̂0) = 0, we can inte-
grate the last expression to find

log Det(I − λK̂T ) = − NE[λτ01(Xτ0 ∈ d0)(T − Mτ0 )+
× 1(Sτ0 = S0)],

where (x)+ := max(x, 0). Noticing that T − (T − M )+ =
min(T, M ), we can rearrange the above expression as follows:

log Det(I − K̂T ) = − NTE[λτ01(Xτ0 ∈ d0)1(Sτ0 = S0)]

+ NE[λτ01(Xτ0 ∈ d0) min(T, Mτ0 )

× 1(Sτ0 = S0)].

This is an exact expression for the Fredholm determinant
as an expectation with respect to the law of the Markov
chain we defined. In many cases it allows for an efficient
computation of the large-T expansion of the Fredholm de-
terminant using purely probabilistic methods. For us it is
sufficient to check that limT →∞ min(T, Mτ0 ) = Mτ0 , which
implies that

log Det(I − λK̂T ) = − NTE[λτ01(Xτ0 ∈ d0)1(Sτ0 = S0)]

+ O(T 0). (D9)

To calculate the expectation entering the leading term we
use the following combinatorial lemma (see, e.g., Ref. [26]):
Let (0, R1, R1 + R2, . . . , R1 + R2 + · · · + Rn−1, 0) be the first
n R-projections of the states of the chain with τ0 = n. Then

n−1∑
p=0

n−1∏
k=1

1(R1+p + R2+p + · · · + Rk+p > 0)

= 1 a.s., 0 � p � n − 1. (D10)

The addition of subscripts in the above formula should be
understood modulo n. The above statement is very general
and relies only on the absence of atoms in the transition
probabilities K (y − x)dy.

In this case, for any sequence (0, R1, R1 + R2, . . . , R1 +
R2 + · · · + Rn−1, 0), its graph will almost surely have a unique
global minimum, so there will be a unique cyclic permutation
(0, R1+p, R1+p + R2+p, . . . , R1+p + R2+p + · · · + Rn−1+p, 0),
whose graph will stay positive between times 1 and
n − 1. Then

NE[λτ01(Xτ0 ∈ d0)1(Sτ0 = S0)] = N
∞∑

n=1

λnE[1(Xτ0 ∈ d0)1(Sτ0 = S0)1(τ0 = n)]

=
∞∑

n=1

λn
∫
Rn

dr1 . . . drntr[K (r1) . . . K (rn)]δ(r1 + . . . + rn)
n−1∏
k=1

1(r1 + . . . + rk > 0)

=
∞∑

n=1

λn

n

∫
Rn

dr1 . . . drntr[K (r1) . . . K (rn)]δ(r1 + . . . + rn)
n−1∑
p=0

n−1∏
k=1

1(r1+p + · · · + rk+p > 0)

=
∞∑

n=1

λn

n

∫
Rn

dr1 . . . drntr[K (r1) . . . K (rn)]δ(r1 + . . . + rn)

=
∞∑

n=1

λn

n

∫
R

dk

2π

∫
Rn

dr1 . . . drne−ik(r1+...+rn )tr[K (r1) . . . K (rn)]

=
∞∑

n=1

λn

n

∫
R

dk

2π
tr[K̃ (k1) . . . K̃ (kn)] = −

∫
R

dk

2π
log det[I − λK̃ (k)]. (D11)
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The third inequality is the symmetrization of the integrand
with respect to all cycling permutations, and the fourth
inequality is due to the combinatorial lemma (D10). Substitut-
ing Eq. (D11) into Eq. (D9), we arrive at the statement (D4)
of Widom’s theorem.

Remarks

(i) In Ref. [21], Widom presents a stronger version of the
above statement which characterizes the O(T 0) term
fully. For the current paper we only need the leading
term.

(ii) The actual statement of Widom’s theorem does not
require the positivity of the kernel. In fact, all steps
of the proof presented below go through for signed
kernels as well, but the probabilistic intuition guiding
these steps is lost. See also Ref. [25] for similar re-
marks about the original proof of Szegő’s theorem by
M. Kac et al.

(iii) It is possible to give an alternative derivation of
Eq. (10) based on the resummation of the cumulant
expansion for the expectation of a quadratic function
of a Gaussian process. The downside of such a deriva-
tion is difficulty in controlling the subleading terms.
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