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Localization properties of harmonic chains with correlated
mass and spring disorder: Analytical approach
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We study the localization properties of normal modes in harmonic chains with mass and spring weak disorder.
Using a perturbative approach, an expression for the localization length Lloc is obtained, which is valid for
arbitrary correlations of the disorder (mass disorder correlations, spring disorder correlations, and mass-spring
disorder correlations are allowed), and for practically the whole frequency band. In addition, we show how to
generate effective mobility edges by the use of disorder with long range self-correlations and cross-correlations.
The transport of phonons is also analyzed, showing effective transparent windows that can be manipulated
through the disorder correlations even for relative short chain sizes. These results are connected to the problem of
heat conduction in the harmonic chain; indeed, we discuss the size scaling of the thermal conductivity from the
perturbative expression of Lloc. Our results may have applications in modulating thermal transport, particularly
in the design of thermal filters or in manufacturing high-thermal-conductivity materials.
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I. INTRODUCTION

Wave propagation in disordered systems has been exten-
sively studied in recent decades since the discovery of the
phenomenon of Anderson localization which inhibits wave
transport in disordered media. This phenomenon was first
studied in electronic systems [1], but later it was also discov-
ered in other kinds of media [2–4].

In the case of one-dimensional (1D) systems with uncor-
related disorder all the electronic states become exponentially
localized for an infinite system size [5,6]. One way of measur-
ing the spatial extension of these states is through the quantity
known as localization length. Indeed, all eigenstates are also
localized in the finite system of size N if N � Lloc, which is
identified as the localized regime.

For a harmonic chain with no correlations of the mass
(or spring) disorder, all the vibrational modes becomes expo-
nentially localized, with the exception of the zero-frequency
mode, in the thermodynamic limit. This means that, for a finite
system size, there is a finite fraction of vibrational modes near
the zero-frequency mode which are extended regardless on
the system size. This prevents the system from becoming a
thermal insulator, in contrast to what happens for electronic
states.

Breaking Anderson localization is not only important in
fundamental physics, but also for technological applications.
One way of producing such an effect in harmonic chains is
by the introduction of correlated-mass or correlated-spring
disorder: specific short-range correlations of the disorder
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can produce extended vibrational modes for some nonzero
discrete frequencies when dimeric correlations are taken
into account [7,8]. For some disordered models with spe-
cific long-range correlation, numerical analysis or a second
order perturbative approach shows that extended modes
within finite frequency intervals can be produced [9–11]. A
similar conclusion can be obtained for electronic systems
with correlated-diagonal disorder; see Ref. [12], and refer-
ences therein. In addition, effective mobility edges can also
be produced in the Kroning-Penney model with correlated
compositional and structural disorder [13]. Moreover, recently
a one-dimensional tight-binding model with exact mobility
edges was developed [14]. The experimental confirmation
of the existence of effective mobility edges is reported in
Refs. [15,16].

To understand and control the breaking of Anderson lo-
calization in harmonic chains, an analytical formula for the
localization length for the whole frequency band is required.
Nevertheless, most of the expressions for Lloc are only valid
in the low frequency limit. Indeed, there exist asymptotic
expressions for Lloc for the case of purely mass disorder with
no correlations [5] and for any kind of stationary correla-
tions [17,18], for some kinds of purely bond disorder with
no correlations [19,20], and for the case when both mass
disorder and weak bond disorder with no correlations are
present [21]. The only context in which an expression of Lloc

is obtained for practically the whole frequency band corre-
sponds to the case of weak mass disorder with stationary
correlations [10].

Additionally, an expression for Lloc allows one to study
analytically some aspects of the heat conduction through the
disordered harmonic chain when it is embedded between two
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thermal baths. One of the most important quantities is the
thermal conductivity defined in this context as [22]

κ = JN

�T
, (1.1)

with J and �T the stationary heat flux through the har-
monic chain and the temperature difference between the two
reservoirs, respectively. Specifically, expressions for Lloc have
allowed estimating the size scaling of the thermal conductivity
for uncorrelated mass disorder [5,23,24], for mass disorder
with arbitrary correlations [17,25], and for uncorrelated spring
disorder [20,26].

The importance of studying the thermal conductivity relies
on the fact that it appears in the (phenomenological) Fourier’s
law which relates the heat current to the temperature gradient
in materials that are close enough to the global equilibrium.
In Fourier’s law, κ does not depend on the system size and the
temperature profile is linear. Nevertheless, when one tries to
explain Fourier’s law from first principles in low dimensional
systems one finds that, for momentum-conserving 1D sys-
tems, κ depends on the chain size N [27,28]. For example, in
the case of harmonic chains with uncorrelated mass disorder
and free boundary conditions, κ diverges in the thermody-
namic limit [5]. Even though there exist disordered harmonic
chain models where the total momentum is conserved and κ

scales normally [17,26], it has been proved recently that dis-
ordered harmonic chains cannot exhibit a linear temperature
profile, and therefore, even if κ becomes an intensive quantity,
Fourier’s law is not satisfied [29].

Finally, much less attention has been paid to the role that
correlations between mass and spring disorder plays in the
transport of phonons and heat conduction. This role is of
extreme importance since in a real system there is a nat-
ural relation between the force constant and the mass, and
therefore correlations between both random variables cannot
be neglected. Indeed, cooperative effects between both kinds
of randomness induce the appearance of transparent states
in binary alloy models [30] or the localization enhancement
of modes when second-neighbor springs are also taken into
account [31].

In the present study we analyzed the localization and trans-
port properties of a harmonic chain with weak mass and spring
disorder. Self- and cross-correlations among the disordered
variables are allowed and only nearest-neighbor interactions
are taken into account. The paper is organized as follows.
In Sec. II the model under study is defined. In Sec. III the
problem is transformed into a classical two-dimensional map
where a uniform phase distribution arises. In Sec. IV, the
analytical solution for the localization length is obtained with
a perturbative approach. In Sec. V numerical simulations are
performed to test our analytical results and to analyze trans-
port properties of phonons. Here we also show how to create
effective mobility edges. In Sec. VI, we discuss how to obtain
the size scaling dependence of κ from the expression of Lloc,
in this general context of disordered harmonic chains with
correlations, and the role of the effective mobility edges on the
heat conduction is also addressed. The conclusions are drawn
in Sec. VII.

II. THE MODEL

We consider the infinite-size harmonic chain with weak
mass and spring disorder whose dynamical equations are

mn
d2un

dt2
= kn[un − un−1] + kn+1[un+1 − un], (2.1)

where un is the displacement of the nth mass from its equilib-
rium position na, with a the distance between two consecutive
equilibrium positions, and kn the coupling strength between
the masses mn−1 and mn. mn and kn are random variables,
whose firsts moment are denoted by M = 〈mn〉 and K = 〈kn〉,
respectively; 〈·〉 represents disorder average. Their normalized
variances are defined as

σ̃ 2
m ≡

〈
m2

n

〉 − M2

M2
and σ̃ 2

k ≡
〈
k2

n

〉 − K2

K2
(2.2)

with the following characteristics:

4 sin2

(
μa

2

)
σ̃m � 1 and σ̃k � 1. (2.3)

The first expression represents an effective weak disorder con-
dition for the random masses. Notice that, for weak disorder,
the size of the frequency band does not change appreciably as
compared to the nondisorder case; therefore, we can introduce
a parameter μ that is related to the perturbed frequency ω

through

ω2 = 4K

M
sin2

(
μa

2

)
. (2.4)

In the case of no disorder, μ is the wave number of a mode
of the harmonic chain and Eq. (2.4) is the dispersion relation.
The second expression in Eq. (2.3) establishes the condition
of weak disorder for the random spring constants. From now
on, a will be set to 1.

For our analysis, it is convenient to introduce the dimen-
sionless random variables

δ̃mn = mn − M

M
and δ̃kn = kn − K

K
,

which represent the normalized fluctuations of the random
masses (or spring constants) around their mean values. In
addition, if a quantity does not present the accent mark˜, it means that such variable is not normalized; i.e.,
δmn = mn − M.

As we will demonstrate below, our results will depend only
on the following normalized binary correlators

χ1(l ) =〈δmnδmn−l〉
σ 2

m

,

χ2(l ) =〈δknδkn−l〉
σ 2

k

,

χ3(l ) =〈δmnδkn−l〉
〈δknδmn〉 . (2.5)

Here, we assume that disorder is spatially invariant in average;
therefore, the binary correlators (2.5) depend only on the
index difference l . We also assume that χi(l ) (i = 1, 2, 3) is
a decreasing and even function of l .
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III. THE HAMILTONIAN MAP APPROACH

The Hamiltonian map approach is a method that maps the
equations of the eigenstates for some one dimensional models
into the phase space dynamics of a linear oscillator subjected
to linear delta kicks, where only the evolution of the position
xn and its conjugate momentum pn just after (or before) the
nth kick are analyzed. Therefore, this dynamical approach
implies that the eigenstate equations are solved as an initial
value problem.

The Hamiltonian map approach has been widely used
to obtain analytical estimations of Lloc for the one dimen-
sional Anderson model with diagonal disorder [32,33], the
Kroning-Penney model with positional and structural disorder
[13,34], harmonic chains with correlated mass disorder [18],
electronic systems consisting of a set of potential barriers
and/or wells with random heights [35], among many other
one-dimensional systems (see Ref. [12] and the references
therein for details on this subject).

In order to apply a perturbative approach, we take the
Fourier transform of the dynamical equations (2.1) with re-
spect to time, obtaining

mnω
2qn = kn[qn − qn−1] + kn+1[qn − qn+1]. (3.1)

In the case of purely mass disorder, one can use the transfor-
mation

xn = qn, pn = qn cos μ − qn−1

sin μ
, (3.2)

to map the equation of vibrational modes into the
Hamiltonian map of a periodically kicked linear oscillator,
and therefore the Hamiltonian map approach can be applied
for this case. However, when one also considers spring disor-
der, it is no longer possible to establish a connection between
the vibrational modes and the trajectories of the kicked os-
cillator, therefore, the Hamiltonian map approach cannot be
used. Nevertheless, if we still use transformation (3.2) in our
present context, one can still develop a proper perturbation
theory. Indeed, with the use of such transformation, instead of
working directly with Eq. (3.1), the problem is transformed
into a two-dimensional map,

kn

k

(
xn+1

pn+1

)
=

(
a1,1 a1,2

a2,1 a2,2

)(
xn

pn

)
, (3.3)

with

a1,1 = cos μ − 4δ̃mn sin2

(
μ

2

)
+ 2δ̃kn sin2

(
μ

2

)
+ ˜δkn+1,

a1,2 = sin μ + δ̃kn sin μ,

a2,1 = − sin μ + [(δ̃kn − 2δ̃mn) cos μ − ˜δkn+1] tan

(
μ

2

)
,

a2,2 = cos μ + δ̃kn cos μ.

In the case of no disorder, the matrix of the map (3.3) repre-
sents a rotation with the angle μ, and this is the key point in
order to develop a perturbation theory as we will see below.
Note that the condition of weak disorder (2.3) has not been
used yet.

It is convenient to introduce the variables (rn, θn) defined
by the transformation xn = rn sin θn and pn = rn cos θn. In this

way, the map (3.3) takes the form

cos θn+1

Rn
= cos (θ + μ) + Aδ̃mn + Bδ̃kn + C ˜δkn+1,

sin θn+1

Rn
= sin (θ + μ) + Dδ̃mn + E δ̃kn + F ˜δkn+1, (3.4)

where

A = −2 tan
(μ

2

)
cos μ sin θn, Rn = K

kn

rn

rn+1
,

B = cot μ[sin θn − sin(θn − μ)],

C = − tan
(μ

2

)
sin θn, D = −4 sin2

(μ

2

)
sin θn,

E = sin θn − sin(θn − μ), F = sin θn.

Now, making use of the weak-disorder conditions (2.3), the
map given by Eq. (3.4) can be written, up to second order
terms of the disorder, as

θn+1 = θn + μ + 2δ̃mn sin2 θn tan

(
μ

2

)

+
˜δkn+1 cos (θn + μ/2) − δ̃kn cos (θn − μ/2)

cos (μ/2)
sin θn

+ 4(δ̃mn)2 tan2

(
μ

2

)
sin3 θn cos θn

− δ̃kn ˜δkn+1
sin θn cos (θn − μ/2) cos (2θn + μ/2)

cos2 (μ/2)

− 1

2
( ˜δkn+1)2 sin (2θn + μ) sin2 θn

cos2 (μ/2)

+ 2δ̃mn ˜δkn+1
sin2 θn sin (μ/2) cos (2θn + μ/2)

cos2 (μ/2)

− 4δ̃mnδ̃kn
sin2 θn cos θn sin (μ/2) cos(θn − μ/2)

cos2 (μ/2)

+ 1

2
(̃δkn)2 cos2 (θn − μ/2) sin(2θn)

cos2 (μ/2)
[mod 2π ].

(3.5)

If μ is an irrational multiple of π , it sweeps quickly the
whole interval [0, 2π ] and, therefore, a uniform distribution
ρ(θ ) for the angle θ is observed:

ρ(θ ) � 1

2π
. (3.6)

When μ is a rational multiple of π , periodic orbits are formed
in the map (3.5) when no disorder is present. If disorder is
switched on, the leading term of the distribution ρ(θ ) can still
be considered as uniform, but now some small modulations
around 1/2π appear. However, our perturbative analysis fails
in the vicinity of μ = π , as can be seen from the angular map
(3.5).

A clarification needs to be done when μ → 0: If one only
considers mass disorder, then the dominant term of ρ(θ ) is
still given by Eq. (3.6) because μ is still the leading term of
the map (3.5) even for this case. However, if spring disorder is
also considered, we cannot apply the same argument to use
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Eq. (3.6). Nevertheless, numerical simulations for the spe-
cific models analyzed in Sec. V, together with some already
published analytical results discussed in Sec. IV, show that
Eq. (3.6) is still valid at least for some cases in the presence
of spring disorder in the low frequency limit.

There is another reason to believe that Eq. (3.6) is valid
for any case: In Ref. [19], a change of variables is done in
Eq. (3.1) when purely bond disorder is considered. Under
that transformation, the problem is reduced to study only
diagonal disorder. In addition, if weak disorder is considered,
the diagonal disorder corresponds to the springs constants ki

which are gauged by ω2 just as in the case of purely mass
disorder. Thus, if we use the Hamiltonian map approach after
the aforementioned transformation, μ will be the dominant
term, and therefore Eq. (3.6) is valid.

IV. THE LOCALIZATION LENGTH

The inverse localization length (Lyapunov exponent λ) is
defined by the expression

L−1
loc ≡ λ = lim

N→∞
1

N

N∑
n=1

ln

∣∣∣∣ qn

qn−1

∣∣∣∣, (4.1)

where the evolution of qn is defined in Eq. (3.1). In terms of
the variables rn and θn, Eq. (4.1) can be written as

λ = lim
N→∞

1

N

N∑
n=1

ln

(
rn

rn−1

)
+ lim

N→∞
1

N

N∑
n=1

ln

∣∣∣∣ sin θn

sin θn−1

∣∣∣∣.
(4.2)

Nevertheless, for a flat distribution of angles the second term
of the right-hand side (r.h.s.) of the latter equation vanishes,
and therefore

λ = lim
N→∞

1

N

N∑
n=1

ln

(
rn

rn−1

)
=

〈
ln

(
rn

rn−1

)〉
. (4.3)

Now, if one uses the two-dimensional map (3.4), Eq. (4.3) can
be rewritten in terms of the angle variable

λ = −1

2

〈
ln

∣∣∣∣dθn+1

dθn

∣∣∣∣〉. (4.4)

By introducing the angular map (3.5) into the latter expression
and by keeping terms up to second order of the disorder, we
obtain

λ = − tan
(μ

2

)
〈δ̃mn sin(2θn)〉 + 〈δ̃kn cos (2θn − μ/2)〉

2 cos
(

μ

2

)
+ σ̃ 2

m

2
tan2

(μ

2

)
−〈 ˜δkn+1 cos (2θn + μ/2)〉

2 cos
(

μ

2

) + σ̃ 2
k

4 cos2
(

μ

2

)
− tan2

(μ

2

)�̃

2
[1 + χ3(1)] − σ̃ 2

k

χ2(1) cos μ

4 cos2
(

μ

2

) . (4.5)

Here, we used the condition of uniform distribution (3.6) for
the random variable θn, and also we introduced the following
notation:

�̃ = 〈δ̃mnδ̃kn〉. (4.6)

In order to obtain the final expression for the localization
length, we need to compute the binary correlators between

the disorder variables and the trigonometric functions of the
random variable θn that appear in Eq. (4.5). This is done
in the AppendixA. Therefore, our expression for the inverse
localization length reads as

λ = tan2
(

μ

2

)
2

[
σ̃ 2

mW1(μ) + σ̃ 2
k W2(μ) + 2�̃ cos μW3(μ)

]
,

(4.7)
where the functions Wi(μ) are defined through the expressions

W1(μ) = 1 + 2
∞∑

l=1

χ1(l ) cos(2lμ),

W2(μ) = 1 + 2
∞∑

l=1

χ2(l ) cos(2lμ),

W3(μ) = 1 + 2
∞∑

l=1

χ3(l ) cos(2lμ).

These expressions correspond to the Fourier transforms of
the normalized binary correlators χi(l ) defined in Eq. (2.5).
Therefore, formula (4.7) is given by the sum of three terms;
the first two terms describe the effects of purely mass and
spring disorders, respectively, whereas the third one repre-
sents the interplay between the two.

Notice also that the functions Wi are even functions with
period π that satisfy the normalization condition∫ π

2

0
Wi(μ) = π

2
, (4.8)

which follows from the fact that χi(0) = 1. In addition, the
final expression for the inverse localization length (4.7) can
be expressed in terms of ω if one uses relation (2.4).

It is worthwhile to mention that formula (4.7) is a generic
expression since correlations of any kind are allowed for
stationary sequences of random masses and spring constants.
This formula also works for practically the whole frequency
band with the exception of a small neighborhood at the right
band edge (μ � π ). In addition, the low frequency limit of λ

will depend on the particular model of harmonic chains with
correlated disorder through the functions Wi. For example,
in the case of uncorrelated disorder (i.e. W1 = W2 = 1 and
W3 = 0) λ ∼ ω2, or equivalently L−1

loc diverges as ω−2 in the
low frequency limit; a result that is consistent with previous
analytical estimations for harmonic chains with uncorrelated
weak disorder (see Refs. [22,26] and references therein).

In the case of pure mass disorder, Eq. (4.7) reduces to

λ = σ̃ 2
m

2
tan2

(
μ

2

)[
1 + 2

∞∑
l=1

χ1(l ) cos(2lμ)

]
,

which coincides with the expression derived in Ref. [10]
obtained by direct comparison between the harmonic chain
model and the one-dimensional Anderson model. In addition,
in the low frequency limit, the latter expression is equal to the
one obtained by different means in Ref. [18].

By considering only mass and spring disorder with no
correlations, Eq. (4.7) takes the form (in the low frequency
limit) λ � [σ̃ 2

m + σ̃ 2
k ]Mω2/8K , which is equal to the expres-

sion given in Ref. [21] that was obtained by using methods
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for dynamical systems. This supports the idea that the uniform
distribution (3.6) is still valid in the low frequency limit even
if spring disorder is present.

When dimeric correlations are considered in either mass
or spring disorder, the normalized binary correlators take the
form χi(l ) = δl,0 + δ|l|,1/2, i = 1, 2, �̃ = 0, and Eq. (4.7)
reduces to

λ = σ̃ 2 tan2

(
μ

2

)
cos μ with σ̃ = σ̃m, σ̃k .

This means that there is an extended vibrational mode at
μ = π/2 corresponding to the center of the frequency band.
This is in complete agreement with the results presented in
Refs. [7,8].

V. NUMERICAL RESULTS

In order to generate localization-delocalization transitions
of vibrational modes with effective mobility edges μ1 and μ2,
we propose the power spectra

W1 = W2=
⎧⎨⎩

π
2(μ2−μ1 ) if μ ∈ [μ1, μ2] ∪ [π − μ1, π − μ2]

0 otherwise
,

(5.1)
which satisfies the normalization condition (4.8) and
W1,2(−μ + π ) = W1,2(μ) (this is a property that follows from
the fact that W1,2 are even functions with period π ). Therefore,
π − μ1 and π − μ2 are also effective mobility edges. The
power spectra (5.1) correspond to self-long-range correlations
of the form

χ1(l ) = χ2(l ) = 1

2(μ2 − μ1)l
[sin(2μ2l ) − sin(2μ1l )].

Now we define W3(μ) as follows. We use the methods
presented in Ref. [13] to generate two random sequences {mi}
and {ki} that satisfy relation (5.1) and the following expression
for W3(μ):

W3(μ) = σ̃mσ̃k

√
W1(μ)W2(μ) sin(2δ), (5.2)

where the parameter δ lies in the interval [−π/4, π/4]
and controls the degree of correlation between the random
variables mi and ki; for δ = 0 no cross-correlations exist.
Therefore, for this particular construction of the random se-
quences, Eq. (4.7) reads

λ = tan2
(

μ

2

)
2

[σ̃ 2
mW1(μ) + σ̃ 2

k W2(μ)

+ 2σ̃mσ̃k

√
W1(μ)W2(μ) sin(2δ) cos μ]. (5.3)

In our numerical simulations we analyze two cases: Case I
corresponds to μ1 = 0.8 and μ2 = 1.4, whereas in Case II we
have μ1 = 0 and μ2 = 0.8. In both cases σ̃ 2

m = σ̃ 2
k = 0.001

and ωmax = 2
√

K/M is the maximum frequency of the al-
lowed band. In this way, Case I produces two localization
windows and three transparent ones as shown in Fig. 1, where
there is a good correspondence between numerics and the
analytical prediction (5.3). In this figure, it is also compared
the case without cross-correlations (δ = 0) with the two ex-
treme cases of positive (δ = π/4) and negative (δ = −π/4)
cross-correlations: In the first localization window, δ = −π/4

FIG. 1. Inverse localization length as a function of the normal-
ized frequency for Case I. Symbols represent numerical simulations
for a chain of length N = 2 × 106, whereas continuous, dotted, and
dashed black lines correspond to the theoretical result (5.3) for δ =
π/4, δ = 0, and δ = −π/4, respectively. The inset is an enlargement
around the first localization window.

decreases the inverse localization length, whereas, for δ =
π/4, λ is increased. We have the opposite situation in the
second localization window.

On the other hand Case II also produces two localization
windows but only one transparent window as Fig. 2 shows.
We also observe good correspondence between the analytical
prediction (5.3) and numerical simulations. This good corre-
spondence also holds in the low frequency regime as can be
seen from the inset of the figure where λ ∼ ω2 [or Lloc ∼ ω−2;
see Eq. (4.1)] for δ = 0 and δ = π/4, whereas λ ∼ ω4 (Lloc ∼
ω−4) for δ = −π/4. However, values of μ much smaller than
σ̃ 2

k are needed in order to support the assumption that Eq. (3.6)
is valid even in the low frequency regime when bond disorder

FIG. 2. Inverse localization length as a function of the normal-
ized frequency for Case II. Symbols represent numerical simulations
for a chain of length N = 2 × 106, whereas continuous, dotted, and
black lines correspond to the theoretical result (5.3) for δ = π/4,
δ = 0, and δ = −π/4, respectively. The inset shows λ in logarithmic
scale in the low frequency regime for N = 2 × 109.
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FIG. 3. Probability phase distribution functions ρ(θ ) obtained
after 5 × 108 iterations of the map (3.4) with μ = 5 × 10−5. The first
row corresponds to Case I, whereas the second row represents Case
II. The horizontal black lines are the uniform distribution ρ(θ ) =
1/2π .

is present. Since smaller values of μ for the calculation of λ

exceed the practical time of simulation, we decided to include
another figure: In Fig. 3, we plot six different probability
distribution functions ρ(θ ) corresponding to different values
of δ for Cases I and II. As one can clearly see, ρ(θ ) is
practically flat with small modulations around the value 1/2π

and the parameter μ is small as compared with σ̃ 2
k (μ is

20 times smaller than σ̃ 2
k ). This supports the assumption of

the uniform phase distribution (3.6) when spring disorder is
present in the low frequency limit, where the argument of the
rapid dynamics of the angle μ cannot be used.

Now, we study the transport properties of finite disordered
harmonic chains embedded between two reservoirs consisting
of two semi-infinite homogeneous chains of masses M and
spring constants K . The transport properties are determined
by the length of the chain N and the localization length Lloc.
In particular, we are interested in the transmission coeffi-
cient that we compute using the transfer matrix approach (see
the Supplemental Material in Ref. [20]). We clearly see that
the localization windows and transparent windows manifest
themselves on the average transmission coefficient 〈T 〉 as
Fig. 4 and Fig. 5 show for Case I and Case II, respectively.
For the chain length shown in the figures, the localization
windows inhibits the transport of phonons, as expected, and
in the transparent windows 〈T 〉 remains close to 1. The reason
why 〈T 〉 �= 1 in the transparent windows relies on the fact
that λ is zero only within the second order of the perturbative
approach. Therefore, as the system size becomes larger the
transmission coefficient of the modes belonging to the trans-
parent windows will decrease (see the inset of Fig. 5), and
eventually for a sufficiently large chain length these effective
transparent windows will disappear. It is relevant to note that
while the mobility edges are determined exclusively from the
self-correlations, cross-correlations diminish or enhance the
transmission.

VI. THERMAL CONDUCTIVITY

It is important to relate the results of the previous section to
the problem of heat conduction through disordered harmonic

FIG. 4. Transmission coefficient averaged over 1000 chain re-
alizations as a function of the normalized frequency for Case I.
Numerical simulations are done for chains of length N = 1000.

chains. For this purpose, we consider that the system is
embedded between two thermal reservoirs formed by an infi-
nite set of equal masses m and spring constants k, which define
the so-called oscillators baths. In addition, the expression for
the stationary heat flux through the harmonic chain can be
written in the classical limit as [27]

J = kB�T

2π

∫ ∞

0
T (ω)dω. (6.1)

Here, T (ω) is the transmission coefficient discussed in the
previous section, kB is the Boltzmann constant, and �T is the
temperature difference between the heat reservoirs. Therefore,
when there are mobility edges, the contribution to the heat
flux J from modes belonging to localization windows can
be neglected for sufficiently large chain sizes. In this way,
one may construct a thermal filter where the contribution to
heat flux only comes from modes belonging to transparent
windows. In addition, from Eqs. (1.1) and (6.1) we can see

FIG. 5. Transmission coefficient averaged over 1000 chain re-
alizations as a function of the normalized frequency for Case II.
Numerical simulations are done for chains of length N = 1000 (main
panel) and N = 2 × 106 (inset).

034108-6



LOCALIZATION PROPERTIES OF HARMONIC CHAINS … PHYSICAL REVIEW E 107, 034108 (2023)

that the thermal conductivity scales as

κ ∼ N, (6.2)

which is the same scaling behavior observed in homogeneous
chains (no disorder) [36].

In the present context, we have mobility edges within the
second-order approximation; this means that the ballistic be-
havior predicted by equation (6.2) will be valid over a wide
range of chains lengths. Nevertheless, for large enough chains,
the effective transparent windows will be destroyed and the
true asymptotic behavior of κ will depend only on the modes
whose frequencies are close to zero.

If an effective transparent window contains the zero fre-
quency mode (Case I), then the next higher order term of
the inverse localization length is needed to determine the size
scaling of κ . On the other hand, when an effective transparent
window does not contain the zero frequency mode (Case II),
and for large enough chain sizes, the scaling behavior of k is
determined by a finite frequency window of vibrational modes
near the zero frequency mode. In this window modes are
extended and practically equal to those of the homogeneous
chain, therefore, the transmission coefficient must also be
practically equal to the transmission coefficient of the ordered
chain T o; this argument has been used extensively in the
literature, and is also supported by numerical results (see for
example Refs. [25,37,38]). In this way, J can be written as

J ∼
∫ ωc

0
T o(ω)dω, (6.3)

where ωc � 1 is a cut-off frequency that depends on the
localization length and the chain size through the equation

Lloc(ωc) = N. (6.4)

In addition, since there exist analytical expressions for T o

(see Ref. [39]), one can compute the integral (6.3) in the low
frequency limit obtaining (see Eq. (16) of Ref. [25])

J ∼
{
ω3

c (N ) for fixed BC,

ωc(N ) for free BC.
(6.5)

Here BC is an abbreviation for boundary conditions. There-
fore, the low frequency behavior of the inverse localization
length (4.7) together with Eqs. (1.1), (6.4), and (6.5) deter-
mine how the thermal conductivity scales with the system size
as long as all the nonzero frequency modes become localized
in the thermodynamic limit.

From the above discussion we conclude that for Case II
with δ = 0 and δ = π/4, where Lloc ∼ ω−2, ωc ∼ 1/

√
N , and

κ ∼
{

N−1/2 for fixed BC,

N1/2 for free BC;
(6.6)

as it should be since there are other disorder models where
Lloc ∼ ω−2 and Eq. (6.6) is also obtained [6,26].

For Case II with δ = −π/4, where Lloc ∼ ω−4, we can
use similar arguments yielding to the following result for the
thermal conductivity

κ ∼
{

N1/4 for fixed BC,

N3/4 for free BC.
(6.7)

Therefore, for both boundary conditions the thermal conduc-
tivity diverges in this case.

FIG. 6. κ∗ averaged over 10 disorder realizations as a function of
the chain length N for free and fixed boundary conditions (symbols).
Black continuous lines are the best fits of the data with the function
f (N ) = aNb. For free BC we got b = 0.501 ± 0.001 (δ = 0) and
b = 0.502 ± 0.004 (δ = π/4), whereas for fixed BC we obtained
b = −0.48 ± 0.03 (δ = 0) and b = −0.498 ± 0.005 (δ = π/4). For
free BC σ̃ 2

m = σ̃ 2
k = 0.001, while for fixed BC σ̃ 2

m = σ̃ 2
k = 0.003. kB

was set to 1.

It is pertinent to notice from the inset of Fig. 5 that the
transmission coefficient is still not negligible for modes be-
longing to the effective transparent window even for a chain
length of N = 2 × 106. This is a problem when trying to
validate predictions (6.6) and (6.7) with numerical simulations
because these predictions only take into account the contribu-
tion of low frequency modes to heat conduction. Although
the effective transparent windows will disappear for larger
chain lengths, in our numerical simulations we can only reach
values around N = 2 × 106. To overcome this issue, we define
J∗ as the heat flux from all the modes not belonging to the
transparent window; consequently, we define κ∗ as

κ∗ = J∗N

�T
. (6.8)

In this way we should be able to observe the thermal con-
ductivity scaling due to the contribution of the low frequency
modes only. Indeed, in Fig. 6 we observe an excellent agree-
ment between prediction (6.6) and numerical simulations.

Unfortunately, we were not able to validate prediction (6.7)
with numerical simulations due to the fact that the inverse
localization length is too small in the low frequency regime
for Case II with σ̃m = σ̃k and δ = −π/4, and the asymptotic
scaling behavior of κ can only be observed for N � Lloc.
Indeed, as can be seen in the inset of Fig. 2, the low frequency
asymptotic behavior of L−1

loc starts around 6 × 10−7; therefore
we need N � 1.7 × 106, which exceeds our numerical capa-
bilities. We also tried to turn around this issue by incrementing
the disorder intensity, but the second condition of Eq. (2.3)
represents a severe restriction when trying to decrease the lo-
calization length using this approach with σ̃m = σ̃k . In fact we
made simulations of heat conduction with σ̃ 2

m = σ̃ 2
k = 0.004

and the asymptotic behavior (6.7) was still not observed, while
for values beyond 0.004 we observe that our perturbative
approach starts to fail.
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Finally, it is important to stress that the thermal conductiv-
ity cannot be measured directly in real experiments; instead
one measures the thermal conductance G, which is related to
κ through G = κ/N .

VII. CONCLUSION

In the present study, we have analyzed the localization
and transport properties of harmonic chains with weak mass
and spring disorder, where all correlations are allowed: mass
disorder correlations, spring disorder correlations, and mass-
spring disorder correlations. We obtained an expression for
the inverse localization length within the second order of
a perturbative approach [see Eq. (4.7)], which is valid for
practically the whole frequency band, except in a vicinity
of the right band edge. In the low frequency limit, there is
no rigorous proof for Eq. (4.7) if spring disorder is present;
however, numerical simulations and some previous analytical
results show that our expression works reasonably well.

Equation (4.7) allow us to produce and to manipulate
transparent frequency windows which modulate directly the
transport properties of the chain: Effective mobility edges are
created with the self-correlations of the disorder, while cross-
correlations are used to fine tune the transmission coefficient.

Finally, we obtained the size scaling of the thermal con-
ductivity from the expression of the localization length; see
Eqs (6.6) and (6.7). The relevance of the role of the mobility
edges to the heat conduction was also addressed.

We believe that our results and predictions could be ex-
perimentally verified and/or implemented in technological
applications.
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APPENDIX

The binary correlators appearing in Eq. (4.5) can be com-
puted by introducing the following quantities:

Jl =〈
δ̃mne2iθn−l

〉
, Hl = 〈

δ̃kne2iθn−l
〉
, Zl = 〈

δ̃kn+1e2iθn−l
〉
;

here, i is the imaginary unit.
In what follows, we explain in detail how to obtain

〈δ̃mn cos(2θn)〉 and 〈δ̃mn sin(2θn)〉 from Jl . The other binary
correlators can be obtained in a similar manner from Hl and
Zl , therefore only their final expressions will be given.

From the expression for Jl , we write

Jl−1 = 〈
δ̃mne2iθn+1−l

〉
.

If we substitute Eq. (3.5) into the latter expression, expand
in Taylor series the complex exponential function, and keep

terms up to second order of the disorder, we get

e−2iμql−1 = ql + 4i tan
(μ

2

)
σ̃ 2

mχ1(l )〈F (θn−l )〉
− 2i�̃

χ3(l + 1)

sin μ
[〈F (θn−l )〉 − 〈L(θn−l )〉]

+ 2i�̃
χ3(l )

cos
(

μ

2

) 〈G(θn−l )〉,

where

F (θn−l ) = e2iθn−l sin2 θn−l ,

G(θn−l ) = e2iθn−l sin θn−l cos (θn−l + μ/2),

L(θn−l ) = e2iθn−l sin(θn−l − μ) sin θn−l .

The disorder average of the latter functions that involves only
the angle θn−l can be computed using the condition (3.6), then
after some algebra we get

Jl−1e2iμ(l−1) = e2iμl Jl − i tan

(
μ

2

)
e2iμl σ̃mχ1(l )

+ ie2iμl

2 sin μ
�̃χ3(l + 1)[1 − eiμ]

− e2iμl

2 cos

(
μ

2

)�̃χ3(l )e−iμ/2.

If we now take the sum from 0 to ∞ on both sides of the last
equation, after some algebraic manipulations, the following
equation is obtained:

Im(J0) = −
[
�̃

(
χ3(1)

2
+

∞∑
l=1

χ3(l ) cos[μ(2l − 1)]

)

+ σ̃ 2
m

∞∑
l=1

χ1(l ) cos(2μl )

]
tan

(
μ

2

)
. (A1)

With a similar procedure, the following formulas are ob-
tained:

H0 = σ̃ 2
k

[
1

2
− cos μ − i tan

(
μ

2

)( ∞∑
l=1

χ2(l )eiμ(2l+1) + 1

2

+ cos μ

)]
− i�̃ tan

(
μ

2

)
ei2μ

[
1 +

∞∑
l=1

χ3(l )ei2μl

]
(A2)

and

Z0 = σ̃ 2
k

[
i tan

(
μ

2

)( ∞∑
l=1

χ2(l )eiμ(2l−1) + 1

2

)
+ 1

2

]

− i tan

(
μ

2

)
�̃

∞∑
l=0

χ3(l )e2iμl . (A3)

Notice the following identities: Im(J0) = 〈δmn sin 2θn〉,
Re(H0) = 〈δkn cos 2θn〉, Im(H0) = 〈δkn sin 2θn〉, and so on.
Therefore, by replacing Eqs. (A1)–(A3) into Eq. (4.5),
Eq. (4.7) is obtained after some algebra.

034108-8



LOCALIZATION PROPERTIES OF HARMONIC CHAINS … PHYSICAL REVIEW E 107, 034108 (2023)

[1] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[2] I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, Introduction

to the Theory of Disordered Systems (Wiley, New York, 1987).
[3] P. Sheng, Scattering and Localization of Classical Waves in

Random Media (World Scientific, Singapore, 1991).
[4] P. Marcos and C. M. Soukoulis, Wave Propagation from

Electrons to Photonic Crystals and Left-Handed Materials
(Princeton University Press, Princeton, 2008).

[5] H. Matsuda and K. Ishii, Prog. Theor. Phys. Suppl. 45, 56
(1970).

[6] K. Ishii, Prog. Theor. Phys. Suppl. 53, 77 (1973).
[7] P. K. Datta and K. Kundu, J. Phys.: Condens. Matter 6, 4465

(1994).
[8] F. Dominguez-Adame, E. Macià, and A. Sánchez, Phys. Rev. B

48, 6054 (1993).
[9] F. A. B. F. de Moura, M. D. Coutinho-Filho, E. P. Raposo, and

M. L. Lyra, Phys. Rev. B 68, 012202 (2003).
[10] I. F. Herrera-González, F. M. Izrailev, and L. Tessieri,

Europhys. Lett. 90, 14001 (2010).
[11] M. P. S. Júnior, M. L. Lyra, and F. A. B. F. de Moura, Acta Phys.

Pol. B 46, 1247 (2015).
[12] F. M. Izrailev, A. A. Krokhin, and N. M. Makarov, Phys. Rep.

512, 125 (2012).
[13] J. C. Hernandez Herrejón, F. M. Izrailev, and L. Tessieri,

Physica E 42, 2203 (2010).
[14] Y. Wang, X. Xia, L. Zhang, H. Yao, S. Chen, J. You, Q. Zhou,

and X.-J. Liu, Phys. Rev. Lett. 125, 196604 (2020).
[15] U. Kuhl, F. M. Izrailev, A. A. Krokhin, and H.-J. Stöckmann,

Appl. Phys. Lett. 77, 633 (2000).
[16] O. Dietz, U. Kuhl, J. C. Hernández-Herrejón, and L. Tessieri,

New J. Phys. 14, 013048 (2012).
[17] I. F. Herrera-González, F. M. Izrailev, and L. Tessieri,

Europhys. Lett. 110, 64001 (2015).
[18] S. S. Zakeri, S. Lepri, and D. S. Wiersma, Phys. Rev. E 91,

032112 (2015).

[19] M. Ya. Azbel, Phys. Rev. B 28, 4106 (1983).
[20] B. Ash, A. Amir, Y. Bar-Sinai, Y. Oreg, and Y. Imry, Phys. Rev.

B 101, 121403(R) (2020).
[21] C. H. Fogedby, J. Phys. A: Math. Theor. 54, 145001 (2021).
[22] S. Lepri, R. Livi, and A. Politi, Phys. Rep. 377, 1 (2003).
[23] A. Casher and J. L. Lebowitz, J. Math. Phys. (NY) 12, 1701

(1971).
[24] T. Verheggen, Commun. Math. Phys. 68, 69 (1979).
[25] I. F. Herrera-González and J. A. Méndez-Bermúmdez, Phys.

Lett. A 384, 126380 (2020).
[26] A. Amir, Y. Oreg, and Y. Imry, Europhys. Lett. 124, 16001

(2018).
[27] A. Dhar, Adv. Phys. 57, 457 (2008).
[28] Thermal Transport in Low Dimensions, edited by S. Lepri

(Springer, Heidelberg, 2016).
[29] K. Hattori and S. Kumatoriya, J. Phys. Soc. Jpn. 90, 114009

(2021).
[30] J. Zhai, Q. Zhang, Z. Cheng, J. Ren, Y. Ke, and B. Li, Phys.

Rev. B 99, 195429 (2019).
[31] S. S. de Albuquerque, J. L. L. dos Santos, F. A. B. F. de

Moura, and M. L. Lyra, J. Phys.: Condens. Matter 27, 175401
(2015).

[32] F. M. Izrailev, T. Kottos, and G. P. Tsironis, Phys. Rev. B 52,
3274 (1995).

[33] F. M. Izrailev, S. Ruffo, and L. Tessieri, J. Phys. A: Math. Gen.
31, 5263 (1998).

[34] F. M. Izrailev, A. A. Krokhin, and S. E. Ulloa, Phys. Rev. B 63,
041102(R) (2001).

[35] I. F. Herrera-González, F. M. Izrailev, and N. M. Makarov,
Phys. Rev. E 88, 052108 (2013).

[36] Z. Rieder, J. L. Lebowitz, and E. Lieb, J. Math. Phys. 8, 1073
(1967).

[37] A. Dhar, Phys. Rev. Lett. 86, 5882 (2001).
[38] D. Roy and A. Dhar, Phys. Rev. E 78, 051112 (2008).
[39] D. Roy and A. Dhar, J. Stat. Phys. 131, 535 (2008).

034108-9

https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1143/PTPS.45.56
https://doi.org/10.1143/PTPS.53.77
https://doi.org/10.1088/0953-8984/6/24/009
https://doi.org/10.1103/PhysRevB.48.6054
https://doi.org/10.1103/PhysRevB.68.012202
https://doi.org/10.1209/0295-5075/90/14001
https://doi.org/10.5506/APhysPolB.46.1247
https://doi.org/10.1016/j.physrep.2011.11.002
https://doi.org/10.1016/j.physe.2010.04.020
https://doi.org/10.1103/PhysRevLett.125.196604
https://doi.org/10.1063/1.127068
https://doi.org/10.1088/1367-2630/14/1/013048
https://doi.org/10.1209/0295-5075/110/64001
https://doi.org/10.1103/PhysRevE.91.032112
https://doi.org/10.1103/PhysRevB.28.4106
https://doi.org/10.1103/PhysRevB.101.121403
https://doi.org/10.1088/1751-8121/abe5cd
https://doi.org/10.1016/S0370-1573(02)00558-6
https://doi.org/10.1063/1.1665794
https://doi.org/10.1007/BF01562542
https://doi.org/10.1016/j.physleta.2020.126380
https://doi.org/10.1209/0295-5075/124/16001
https://doi.org/10.1080/00018730802538522
https://doi.org/10.7566/JPSJ.90.114009
https://doi.org/10.1103/PhysRevB.99.195429
https://doi.org/10.1088/0953-8984/27/17/175401
https://doi.org/10.1103/PhysRevB.52.3274
https://doi.org/10.1088/0305-4470/31/23/008
https://doi.org/10.1103/PhysRevB.63.041102
https://doi.org/10.1103/PhysRevE.88.052108
https://doi.org/10.1063/1.1705319
https://doi.org/10.1103/PhysRevLett.86.5882
https://doi.org/10.1103/PhysRevE.78.051112
https://doi.org/10.1007/s10955-008-9487-1

