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Self-organized criticality of magnetic avalanches in disordered ferrimagnetic material
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We observe multiple steplike jumps in a Dy-Fe-Ga-based ferrimagnetic alloy in its magnetic hysteresis curve
at 2 K. The observed jumps are found to have a stochastic character with respect to their magnitude and the
field position, and the jumps do not correlate with the duration of the field. The distribution of jump size
follows a power law variation indicating the scale invariance nature of the jumps. We have invoked a simple
two-dimensional random bond Ising-type spin system to model the dynamics. Our computational model can
qualitatively reproduce the jumps and their scale-invariant character. It also elucidates that the flipping of
antiferromagnetically coupled Dy and Fe clusters is responsible for the observed jumps in the hysteresis loop.
These features are described in terms of the self-organized criticality.
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I. INTRODUCTION

In physics and materials science, many systems, when
driven by a slowly varying external parameter, can show
avalanches in their physical properties. They include flux pen-
etration in type II superconductors [1], Barkhausen noise due
to the domain distribution in ferromagnets [2], earthquakes
[3], sand piles [4], forest fires [5], and others. One of the
important characteristics of these systems is the scale invari-
ance of the avalanche size [6]. The distribution of the jumps
shows a power law behavior, D(s) ∼ s−α , where D(s) is the
probability of an avalanche of size s, and α is an exponent
mostly lying between 1 and 2.

The scale-invariant avalanche dynamics of such systems
are often described by the phenomenon of self-organized
criticality (SOC) [7–10]. The physical systems showing SOC
are generally dissipative and locally interacting. The system
organizes itself into self-organized metastable states, which
transform from one to another via avalanches. Despite its
complexity, the SOC has basic statistical features that are
described by power laws [10]. In the case of ferromagnetic
systems, the magnetization shows a series of small jumps
when slowly driven by a magnetic f,ield and it is interpreted
on the basis of SOC. This is called the Barkhausen effect,
and it is related to the sudden reversal of the ferromagnetic
domains [11].

Recently, a few magnetically phase-separated materials
have been reported to show multiple metamagnetic jumps un-
der a varying magnetic field. The systems showing such jumps
include various Mn-site doped manganites [12–18], Fe-site
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doped CeFe2 [19,20], TbFeAl [21], and Gd5Ge4 [22,23] and
its alloys. These jumps are characteristically different from
the Barkhausen noise with a relatively larger variation of M.
It is generally believed that these metamagnetic jumps occur
due to the field-induced transition of an antiferromagnetic
(AFM) cluster to a ferromagnetic (FM) one in those AFM-
FM phase-separated systems. The jumps are often found to
vary systematically with a sweep rate of H [24,25]. With an
increasing sweep rate, the jump shifts to lower fields. This
indicates nonstationary nature of the jumps. Even jumps are
found to occur spontaneously, if one waits at a fixed tempera-
ture and magnetic field for a sufficient amount of time [26,27].

The classical theory of SOC manifests that a slowly driven
system should have a stationary critical state devoid of any
external fine tuning [11]. Therefore, traditionally the meta-
magnetic jumps in the phase-separated system have not been
linked to a classical SOC phenomenon. All the above systems
are characterized by strong magneto-elastic coupling, and the
jumps are associated with the structural transition. Therefore,
the internal strain at the interface of clusters plays an impor-
tant role in the observed jumps.

The question remains, can there be a system showing
large metamagnetic jumps obeying the SOC scenario? In the
present work, we chose a relatively simpler system DyFe3,
which does not show any structural instability down to 4 K
[28]. Here Dy and Fe sublattices are aligned antiparallel
giving rise to a ferrimagnetic state. The Zeeman energy is
supposed to be high due to the large moments at the Dy
and Fe sites, which can facilitate spin flip under an applied
magnetic field. We doped nonmagnetic Ga at the Fe site to
introduce disorder in it. The magnetization curve of DyFe3 is
event-less showing small coercivity and saturation of moment
above 15 kOe. On the other hand, the Ga-doped samples show
clear ultrasharp metamagnetic jumps. This provides with us an
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FIG. 1. Field-cooled (FC) and zero-field-cooled (ZFC) magneti-
zation (M) data as a function of temperature (T ) measured under 100
Oe of magnetic field for DyFe2.5Ga0.5.

opportunity to study avalanches, where structural instability is
unlikely to play a major role.

In the present work, we have mostly focused on the
sample where 1/6 Fe is replaced by Ga (nominal composi-
tion DyFe2.5Ga0.5). The experimental data are supported by
our classical Monte Carlo-based simulation of the magnetic
hysteresis loop.

II. EXPERIMENTAL DETAILS

Polycrystalline samples of DyFe3 and DyFe2.5Ga0.5 were
prepared by a standard argon arc melting technique and sub-
sequent annealing. Structural characterization of the samples
was performed by a room temperature powder x-ray diffrac-
tion experiment using Cu-Kα radiation. We found that the
parent DyFe3 compound crystallizes in a rhombohedral struc-
ture, while Ga-doped DyFe2.5Ga0.5 has a hexagonal structure
(see Fig. 10 in Appendix A). The dc magnetization (M) of
the samples was measured using a Quantum Design SQUID
magnetometer (MPMS3) as well as using the vibrating sample
magnetometer of the Quantum Design Physical Properties
Measurement System (PPMS). The resistivity (ρ) and the
magnetoresistance were measured by a four-point technique
using the same PPMS.

III. EXPERIMENTAL RESULTS

A. Magnetization

Figure 1 depicts the temperature (T ) variation of M of
DyFe2.5Ga0.5 recorded in zero-field-cooled (ZFC) and field-
cooled (FC) protocols under 100 Oe of the magnetic field.
The ferrimagnetic nature of the undoped DyFe3 is reported
previously by Plusa et al. with ordering temperature and
compensation point of 615 K and 525 K, respectively [29].
Ga doping in the Fe site is expected to reduce the mag-
netic ordering temperature. For DyFe2.5Ga0.5, we see large
irreversibility between FC and ZFC curves, which extends up

FIG. 2. (a)–(d) Full magnetization loop recorded at different
temperatures for DyFe2.5Ga0.5. The inset depicts the temperature
variation of the coercive field.

to the maximum temperature of measurement (370 K) (i.e.,
the curves bifurcate from each other from the maximum tem-
perature that we could reach.) This signifies that the magnetic
ordering temperature is at least above 370 K. The FC-ZFC
irreversibility indicates the presence of disorder in the system.
In presence of quenched disorder, pinning of the magnetic
clusters or domains is responsible for the bifurcation of the
FC-ZFC data [30].

Figures 2(a) and 2(b) show the isothermal variation of
M with the magnetic field (H) of DyFe3 and DyFe2.5Ga0.5

samples at 2 K, respectively. The M vs H curve for the un-
doped DyFe3 at 2 K rises sharply at low fields and saturates
beyond 10 kOe with a coercive field of 920 Oe. The saturation
moment is found to be 4.3 μB. This moment arises from the
antiparallel arrangements of Dy and Fe spins [28,31].

The most striking observation of the present work is found
in the 2 K isotherm of DyFe2.5Ga0.5 [Fig. 2(b)]. We find
successive jumps in M as the field is swept between ± 70
kOe. The jumps are sharp, and they are present in all five
legs (see Appendix B). M eventually saturates above 60 kOe
of the field with saturation moment msat = 5.3μB. Here msat

is higher than the undoped sample because a part of Fe is
replaced by nonmagnetic Ga. Since the total moment is msat =
mDy − mFe (the Fe sublattice is antiparallel to Dy in the ferri-
magnetic state), the reduction in Fe content will enhance msat.
The coercive field of the Ga-doped sample is much higher
(∼7.5 kOe) than the parent one. Notably, the occurrence of
multiple jumps vanishes as the temperature is slightly in-
creased. The isotherm at 5 K [Fig. 2(c)] shows a smooth
variation of M with H . A similar smooth isotherm is also ob-
served at 75 K [Fig. 2(d)], albeit with the much lower value of
the coercive field. The inset of Fig. 2(d) shows the temperature
variation of the coercive field (Hcoer) recorded between 2 and
75 K. Hcoer shows a nonmonotonous variation with T with a
peak around 7 K. In disordered granular systems, such a kind
of variation of Hcoer is common [32].
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FIG. 3. (a) The fifth leg (0 to 70 kOe in the first quadrant, after
returning from −70 kOe) of the magnetization loop recorded at 2 K
for different sweep rates of the magnetic field (H ). (b) The full loop
at 2 K after the sample’s being cooled in different magnetic fields.
Inset of (b) depicts the fifth leg of the hysteresis loop recorded at 2 K
for different cycles.

We also recorded M-H curves for DyFe2.5Ga0.5 at different
sweep rates (Ḣ = 100, 70, 60, 48, and 45 Oe s−1) in the first
quadrant, after the sample being returned from −70 kOe of
the field [Fig. 3(a)]. It is interesting to note that the position
of the jumps does not vary systematically with the sweep rate.
Even for several consecutive runs at Ḣ = 60 Oe s−1, the jump
fields are markedly different [see the inset of Fig. 3(b)]. Nev-
ertheless, the observed jumps follow a certain pattern for all
values of Ḣ , and this is illustrated by the run at Ḣ = 70 Oe s−1

[see the inset of Fig. 3(a)]. There is a common pattern in the
jumps denoted by AA′, BB′, CC′, DD′,..., with AA′ < BB′,
BB′ > CC′, CC′ ∼ DD′. Although the positions, A, B, C, D,
...are random on the H axis, they occur in the same order and
arrangement. Unlike previously reported multiple metamag-
netic jumps [24–27], DyFe2.5Ga0.5 does not show a systematic
sweep rate dependence.

We also studied the effect of the cooling field (Hcool) on
the hysteresis loop. For that purpose, the M-H isotherm is
recorded at 2 K, after the sample being cooled from 300 K

FIG. 4. Magnetization as a function of time for different proto-
cols measured at 2 K after the application of a magnetic field of (a)
12 kOe and (b) 13 kOe. Before the measurement, the sample was first
cooled to 2 K, and it was kept at this temperature for the rest of the
measurements.

under a certain Hcool. The shift in the hysteresis loop on field
cooling is called the exchange bias effect, and it is expressed
in terms of Heb = (H+ + H−)/2 where H+ and H− stand for
the positive and negative intercepts of the magnetization curve
with the field axis, respectively. For DyFe2.5Ga0.5, we see an
increase of the magnitude of H−, keeping H+ (loop spreads
in the negative side of H asymmetrically). It is difficult to say
whether such a shift arises from exchange bias or the shift of
a jump. The jumps maintain the same pattern, but their height
and magnitude vary randomly with Hcool.

Temporal effects are often associated with magnetization
jumps. It is found that the jump can spontaneously occur if one
waits for sufficient time at a point on the M-H loop at a field
slightly lower than the avalanche field for a particular jump
[26,27]. We studied this phenomenon by noting the variation
of M with time (t) in DyFe2.5Ga0.5. In Fig. 4(a) we have shown
the relaxation (M vs t data) after applying Hs = 12 kOe of
field (Hs slightly lower than the field required for BB′ jump).
However, no spontaneous jump is seen even after waiting for
180 minutes, though M changes by 8% in 40 minutes. In
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FIG. 5. Panels (a) and (b), respectively, show the variation of
electrical resistivity (ρ) as a function of the field at 2 and 7 K.
The inset of (a) represents the variation of electrical resistivity as
a function of temperature. The inset of (b) shows the variation of ρ

as a function of H at 125 K.

Fig. 4(b) measurement was performed at Hs = 13 kOe, where
the BB′ jump already took place. Interestingly, M drops with
t , and a 5% relaxation is seen.

Multiple metamagnetic jumps are common among glassy
magnetic systems [25,33,34]. To confirm the glassy nature in
DyFe2.5Ga0.5, we measured the filled-cooled-field-stop mem-
ory effect (not shown here). The sample was cooled from
300 K under H = 100 Oe with intermediate zero-field stops
at Ti (= 200, 150, 100, and 50 K) for 60 minutes. On reaching
2 K, the sample was heated back to 300 K in the presence of
H = 100 Oe. However, no feature is observed at the stopping
temperatures Ti during heating. This rules out the possibility
of a glassy magnetic state in the system [35,36].

B. Resistivity

DyFe2.5Ga0.5 shows metallic behavior in the T -dependent
plot of resistivity (ρ) [see inset of Fig. 5(a)]. In Figs. 5(a)
and 5(b) we have plotted the H variation of ρ measured at
2 and 7 K, respectively. In ρ(H ) data at 2 K, the ultrasharp
jumps are also present, and they approximately correspond

to the similar avalanche fields for the jump as observed in
the magnetization data. Similar to the M(H ) data, the jumps
are absent at a higher temperature of 7 K. In both 2 and 7 K
data, the full five quadrants ρ(H ) curves (between ± 50 kOe)
form a hysteresis loop. Such observation indicates that the
electronic property of DyFe2.5Ga0.5 is intimately correlated
with the magnetic state of the system. At 125 K [inset of
Fig. 5(b)], there is no loop, and ρ(H ) saturates above 10 kOe
showing small magnetoresistance.

C. Distribution of the jumps observed in experiment

In Fig. 6(a) we have plotted the histogram of the jumps
using our magnetization data depicted in Fig. 3(a). We have
considered 560 jumps from 34 M-H loops. Since we do not
find any correlation between the sweep rate and the jump size,
we used data from all sweep rates to construct the histogram.
We have used Sturge’s rule (κ = 1 + 3.22 log ν, where ν is
the total number of data points) to calculate the number of
bins, κ [37]. Clearly the smaller jumps (�M is low) are
larger in number. In Fig. 6(b) we have plotted the number of
occurrences N (�M ) as a function of jump size. This provided
a power law distribution, N ∼ �M−α , with α = 1 ± 0.1.

In Fig. 6(c) we have studied the variation of jump size
with the H . It is seen that the bigger jumps are found around
10 kOe, and the jump size is smaller at higher fields
[Fig. 6(c)]. This is understandable from the isotherms
recorded at 2 K. In Fig. 6(d) we have plotted the jump number
as a function of jump size. We took 12 five-leg M-H loops
measured at 2 K and serially counted the jumps for all the
loops. A jump number is assigned to each jump. We find that
the jump size span across multiple ranges, e.g., big jumps
(4–5 μB/f.u.), medium jumps (1–2 μB/f.u.), and small jumps
(below 0.25 μB/f.u.), and the data correlate with the charac-
teristics of Fig. 6(b). Here f.u. stands for formula unit.

IV. THEORETICAL MODEL

A vast majority of real-world materials contain impurities
that introduce disorder in the system [38,39]. For such sys-
tems, the central challenge is to predict large-scale behavior
from local dynamics. Developing a corresponding model of
interacting spins originates from the inspection of the experi-
mental data. The experimental observations of magnetization
jumps in the Dy-Fe-Ga alloys are found to be scale invari-
ant and stationary [11,40,41]. This prompted us to model
the system for quantitative analysis of the hysteresis loops.
We simulated the jumps with changing magnetic fields and
quantify their distribution.

We choose the generalized random-bond Ising model. The
Hamiltonian is defined as

H(h) = −
∑

i, j

Ji jσiσ j − h
∑

i

σi − h
∑

i∈Dy

LDy
i , (1)

where σi = ± 1 are the local spin moment, Ji j are the nearest-
neighbor interactions, and h is the external field. Two different
types of spins corresponding to Fe and Dy are assumed on
a square lattice in 3:1 ratio, respectively. The spin value σi
is taken as unity for both Dy and Fe because their spin
moments are almost equal [42]. The direction of the exter-
nal magnetic field is fixed along one of the spin variables
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FIG. 6. (a) Histogram of the observed jumps in the experimental magnetization vs field data. (b) Number of occurrences as a function
of jump size in log - log scale. (c) Jump size as a function of the applied field. (d) Individual jumps are plotted as a function of the jump
number.

(e.g., negative (−ve) or positive (+ve)). LDy
i = 1 (see Ap-

pendix C) is the orbital moment for Dy alone, directed along
the Dy spin moment, and contributes to the Hamiltonian
at specific lattice sites occupied by Dy atoms. The nearest-
neighbor interactions in the first term of Eq. (1) can be
negative or positive (i.e., AFM or FM, respectively) depending
upon the type of interacting particles. Ferromagnetic inter-
action between two Fe is given by FM coupling Ji j = 1,
while between two Dy it is Ji j = 0.05 (see Fig. 7). Interaction
between Fe and Dy is AFM and coupling constant Ji j = −2.
The Ji j values are obtained from the relative strength of the
magnetic interaction available in the literature [43,44]. fGa
defines the fraction of the site disorder due to the doping of
nonmagnetic Ga at the expense of Fe. For the experimentally
studied samples DyFe3 and DyFe2.5Ga0.5, fGa is 0 and 0.2,
respectively.

V. SIMULATION DETAILS

An ensemble of Ising spins is considered on a two-
dimensional (2D) square lattice. Considering a layered
structure of the real system (see Appendix A), a 2D model-
based calculation is a reasonable approximation [45,46].
Initially, the system is prepared with Fe and Dy randomly
distributed at a 3:1 ratio on a square lattice of linear size

FIG. 7. Model schematic shows a lattice structure in two di-
mensions with Fe and Dy randomly distributed in a 3:1 ratio.
Identical and nonidentical atoms are linked via ferromagnetic and
antiferromagnetic interactions, respectively. Disorder is introduced
by nonmagnetic Ga replacing Fe according to fraction fGa.
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L represented by the model described in Fig. 7. The disor-
der is introduced by replacing randomly chosen Fe sites by
Ga with fraction fGa. The system is then equilibrated using
Glauber dynamics, which is a computer simulation of the
Ising model (a magnetism model). Using Monte Carlo sim-
ulation without the external field, at T = 0, only the sign of
the energy differences is required for the Glauber dynamics.
We have simulated this system with the periodic boundary
condition. The initial configuration is random, and single spin
flip Glauber dynamics has been used for subsequent updating,
i.e., a spin is picked up at random and flipped if the resulting
configuration has lower energy, never flipped if the energy is
raised, and flipped with probability 1/2 if there is no change
in energy on flipping. Next, a small external magnetic field (h)
is applied and the system is reequilibrated. The external field
is raised slowly and the system is equilibrated for every value
of h. Magnetization (m) is computed as a function of h by
summing over the spins. The external field is increased until
a saturation in the magnetization is observed. The process is
repeated by decreasing h. The simulation yields a single hys-
teresis loop as a function of model parameters, ( fGa, h,Ji j ).
Note that the notations, values representing the external mag-
netic field and magnetization in the simulation, are to mark
a quantitative difference with the experiment. We emphasize
in our experimental observation that the pure sample without
any random substitution by Ga atoms does not show any
jumps in the magnetization data that may correspond to the
self-organized criticality. The disorder is expected to play a
crucial role in the observed magnetization jumps, as the jumps
are present only when disordered is introduced in the stoichio-
metric DyFe3 sample. Such multiple jumps are attributed to
disorder in some other systems in the literature [19,26]. In the
present calculation, the disorder is introduced by allowing the
atoms to occupy the lattice sites randomly.

VI. NUMERICAL RESULTS

The initial system is prepared with zero external magnetic
field, and then it is subjected to gradually increasing field h in
step of 0.02. For each field value, the system is equilibrated up
to 2 × 105 Monte Carlo steps. Figure 8(a) shows the simulated
hysteresis loop for fGa = 0.2, which clearly demonstrates
multiple steps in magnetization. The data show intermittent
jumps (�m > 0) and stationary phases (�m = 0) while the
external field is increased. A similar characteristic is observed
when the external magnetic field is decreased. Figure 8(b)
compares the magnetization profile for three different disorder
fractions fGa = 0, fGa = 0.1, fGa = 0.2, and fGa = 0.3. Jumps
observed in the magnetization are a signature of frustration in
spin-spin interaction, usually characteristics of a glassy mag-
netic system [47–49]. It is to be noted that jumps are present
even for fGa = 0, where there is no doping at the Fe sites. This
is because the present model is inherently disordered due to
the random occupancy of Fe and Ga in a 3:1 ratio. The nature
of the jumps remains nearly unchanged with fGa.

Snapshots at different field strengths are shown in
Figs. 8(c)–8(e) and Figs. 12(a)–12(d) in Appendix D for the
fGa = 0.2 lattice. At h = 0, we find the finite clusters of Dy
and Fe with up (+) and down(−) spin configurations. With
increasing h (i.e., in the + direction), the clusters flip in the

TABLE I. List of exponents for various avalanche models.

Avalanche models Exponent α Reference

DyFe2.5Ga0.5 1.1 (experiment) This study
1.0 (simulation)

BTW sand pile 1.0 (2D) [8]
Superconducting vortex avalanches 1.4–2 [1]
Barkhausen noise spectra 2 [51]
Forest fire model 2 [5]
Avalanches in lung inflation 1.8 [52]
Microfracturing process 1.3 [53]

direction of the applied field, which produces jumps in the
hysteresis curve.

A statistical analysis of the jump size �m estimated from
Fig. 8(a) projects the occurrence histogram of the avalanche
sizes for fGa = 0.2 in Fig. 9(a). The data points represent an
average of more than 200 samples. A comparison of this dis-
tribution with respect to the zero disorder scenario ( fGa = 0)
shows that for both cases the probability distribution of �m
for very small �m appears to be significantly higher than large
�m [see Figs. 13(a) and 13(b) in Appendix D]. Moreover, the
histogram stretches to larger �m for the zero disorder.

The log-log plot of the distribution of magnetization
N (�m) for disorder fraction fGa = 0.2 [as in Fig. 9(a)]
is shown in Fig. 9(b) for four different system sizes L =
16, 32, 64, and 128. The graph indicates a power law distri-
bution of N ∼ �m−α . Fitting the data points with the given
expression yields the exponent α = 1 ± 0.05 (see Table I).
This value of α is found to be close to the experiment [see
Fig. 6(b)]. The avalanche sizes (�m) of a single hysteresis
loop are depicted in Fig. 9(c). The jump sizes obtained from
the hysteresis loop are plotted sequentially showing multiple
regimes corresponding to small, intermediate, and large jumps
of magnetization. The data signify that the size of domain
flips (avalanche) due to a marginal and systematic change in
the external magnetic field is likely uncorrelated as is obvious
from the power law distribution in Fig. 6(b). We have further
shown �m as a function of h. It is clear that for low fields, the
magnetization jump is substantial. Due to the AFM interaction
between Fe and Dy, two adjacent domains remain frustrated
and merge to form a larger domain, lowering the net surface
energy as the external field is increased. In contrast, jumps are
small in a large field. Because the majority of the adjacent
domains have already flipped along the field direction, so,
with a large field, only a few small clusters or individual
spins remain to flip along the field direction until saturation
magnetization is reached.

VII. DISCUSSION

Our combined experimental and theoretical simulation re-
veal that the magnetic avalanches found in the Dy-Fe-Ga
alloy are a manifestation of self-organized criticality. Exper-
imentally, the magnetization jumps in the studied alloy are
stochastic, do not show any systematic change with the change
in the rate of the external driving parameter (here magnetic
field), and most importantly, are scale-invariant following a
power law distribution. The Monte Carlo simulation of a

034106-6



SELF-ORGANIZED CRITICALITY OF MAGNETIC … PHYSICAL REVIEW E 107, 034106 (2023)

FIG. 8. (a) Hysteresis loop of random-bond Ising model for disorder fraction fGa = 0.2 at L = 64. Inset: Many small jumps occur at a
large field in the hysteresis loops. (b) Magnetization profiles for four distinct disorder fractions fGa = 0, 0.1, 0.2, and 0.3 are illustrated when
the external field (h) is reduced. (c)–(e) Snapshots of spin configurations before and after large jumps in the magnetization at field strengths of
h = 1.5, 2.5, and h = 5 (as in a), respectively. Red, brown, green, yellow, and blue represent Fe(+), Fe(−), Dy(+), Dy(−), and nonmagnetic
Ga, respectively. The magnetic field (h) is applied in the +ve direction. The snapshots are magnified in the middle to provide a detailed insight
into cluster flipping.

model 2D analog of the real material also supports our experi-
mental data, where the change in the magnetization appears to
be discontinuous as a function of the external field and obeys
a power law distribution.

Numerous pieces of evidence suggest the existence of
power law distribution for natural events. The power law
exponents of some avalanche models are shown in Table I.
Remarkably, in some cases, the exponents of the distribution
are the same for systems with very different elemental inter-
actions [50]. SOC is attributed to the evolution of a complex
system towards criticality in the presence of local interaction.
For the Dy-Fe-Ga alloy, the local interaction is the magnetic
correlations between Dy and Fe atoms. The exponent obtained
from our analysis closely compares with the BTW sandpile
model.

In DyFe3, Dy and Fe spins show AFM correlation, and
they are aligned antiparallel resulting in ferrimagnetism. Dop-
ing by some amount of nonmagnetic element Ga in Fe site

introduces disorder in the Fe sublattice. The finite jumps in the
magnetization data indicate the flipping of magnetic clusters
than the individual spins. Because of the disorder, the system
is characterized by the coexistence of spontaneously ordered
but oppositely oriented neighboring magnetic domains of Dy
and Fe, respectively. Because of the AFM interaction between
Fe and Dy, two such adjacent domains remain frustrated and
cannot merge to become a larger domain lowering the net
surface energy. To grow a larger domain, one of the oppo-
sitely oriented domains must be flipped entirely, which can
be achieved by the external magnetic field. However, due to
frustration in the local interaction, a sufficiently strong exter-
nal magnetic field equivalent to the surface area of the domain
must be provided. Therefore, a slight change in the external
magnetic field often does not alter the overall magnetization
of the system. As a result, we observe a staircase-like feature
in the magnetization isotherms both in the experiment (Fig. 3)
and in simulation (Fig. 8).
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FIG. 9. (a) Distribution of magnetization jumps showing occur-
rence (N) as a function of �m for disorder fraction fGa = 0.2 at
system size L = 32. The data points correspond to an average of
over 200 samples. (b) The power law distribution of N (�m) vs �m
decays with exponent α = 1 ± 0.05. (c) Magnetization jump sizes
(�m) of a single hysteresis loop demonstrate jump sizes ranging
from small to large. (d) Jump size is plotted as a function of the
external field h.

In Figs. 8(c) and 8(d) snapshots of the spin clusters are
shown before and after the jumps respectively. At vanishing
external fields, Dy and Fe clusters assume both +ve and −ve
orientations and remain frustrated due to antiferromagnetic
interaction [see Fig. 12(a) of Appendix A]. In this scenario,
one recognizes that Dy(+) spins are surrounded by Fe(−)
and vice versa. At the other extreme, when the external field
is increased substantially in the + direction, several Fe(−)
clusters flip toward the direction of the applied field [Fe(−)
→ Fe(+)] producing a large jump in the magnetization.
This is evident from the increase of red domains of Fe(+)
spins at h = 5. In this case, the Zeeman energy overcomes
the frustration due to the AFM coupling present between Dy
and Fe clusters. Interestingly, a contrasting spin arrangement
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FIG. 10. Panels (a) and (b) show powder x-ray diffraction
(PXRD) patterns of DyFe3 and DyFe2.5Ga0.5 samples, respectively.
The insets show the perspective view of the crystal structures.

FIG. 11. Isothermal field variation of magnetization at 5 K for
the compound DyFe2.5Ga0.5. All five legs are highlighted.

occurs at an intermediate field. The enlarged section of the
snapshots in Figs. 8(c) and 8(d) indicates some Dy(−) clusters
flip to Dy(+) as the h is increased from 1.5 to 2.5. This is
accompanied by the flipping of Fe(+) to Fe(−) adjacent to
the Dy. Such an arrangement is energetically favorable due
to the large moment of Dy compared to Fe. The outcome is
manifested by smaller jumps in the magnetization. The flip-
ping events connect nearby domains of like spins. A cascade
of spin-flip and domain rearrangement leads to the formation
of bigger clusters when the Zeeman energy overcomes the
interfacial AFM interaction between Fe and Dy clusters. Flip-
ping of larger domains then gives rise to larger jumps in the
magnetization for a small increase in the external magnetic
field. At a very large external field, the flipping events are
dominated by the external field, and the Fe(−) spins flip back
to Fe(+) [enlarged part of Fig. 8(e)] leading to the saturation
of magnetization. Note that, considering a purely antiparallel
arrangement of Dy and Fe moments, the expected moment
should be 4.30 μB/f.u. in DyFe2.5Ga0.5. However, our exper-
imental value of the saturation moment is 5.25 μB/f.u. Such
discrepancy is likely due to the parallel arrangement of some
Dy and Fe clusters, which takes place through jumps.

In conclusion, the magnetization jumps in the Dy-Fe-Ga
compound are found to be a spectacular manifestation of
self-organized criticality. Our work indicates the flipping of
the finite domains of Fe and Dy sublattices in the otherwise
antiferromagnetically coupled spin system. The theoretical
analysis can broadly reproduce the experimental results. It
should be kept in mind that the present computational anal-
ysis is a simplified approach, and predictions are qualitative.
We considered a 2D system and random distribution of the
spins. The experiment, however, is carried out on a 3D design.
Moreover, the arrangement of the atoms is not random in the
actual system. Therefore, the computational model devoid of
the crystal structure of DyFe3 contains an intrinsic disorder,
unlike the real systems. A computational model on a larger
system with a 3D crystal lattice can help us better understand
the phenomenon.
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FIG. 12. Snapshots of the spin configurations Fe(+), Fe(−), Dy(+), Dy(−), and nonmagnetic Ga is shown with increasing external field
h for disorder fraction fGa = 0.2 at L = 64.
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APPENDIX A: CRYSTAL STRUCTURE

The x-ray diffraction patterns of the two samples are
shown in Fig. 10. The undoped sample DyFe3 crystallizes
in a PuNi3-type rhombohedral structure [inset of Fig. 10(a)]
with space group R3̄m. In the literature, such structures are
often represented as a hexagonal equivalent, i.e., a = b �= c,
α = β = 90◦, γ = 120◦ [54–56]. From our refinements, we
get a = 5.125 Å and c = 24.575 Å. On the other hand, the Ga-
doped sample DyFe2.5Ga0.5 assumes a CeNi3-type hexagonal
structure with space group P63/mmc, where the refined lattice
parameters are found to be a = 5.165 Å and c = 16.560 Å
[57]. The structure consists of hexagonal layers in the a-b
plane of the crystal as shown in the inset of Fig. 10(b).

APPENDIX B: M-H FIVE-LEG MEASUREMENT

We have shown the significance of five legs in the M-H
curve in Fig. 11. Here five legs in the M-H curve, respectively,
signify the following protocol of field ramping: (1) 0 → Hmax

(virgin line), (2) Hmax → 0, (3) 0 → −Hmax, (4) −Hmax →
0, and (5) → Hmax, where Hmax is the maximum value of the
field in the loop.

APPENDIX C: MAGNETIC MODELING

In the case of Fe, there are six electrons in the 3d orbital,
so the total spin is SFe = 2, while Dy has a total spin of

SDy = 5/2. Since the values are close, we considered the
Fe and Dy spins are equal and assigned the reduced spin
value σi = ± 1 for both elements. The Zeeman energy in the
magnetic field h for Dy is given by HZ = −(L + g0S) [42].
Here L = Dy orbital moment, S = Dy spin moment, and g0 =
2 is the Landé-g factor for spin. We know for Dy, L = 5 and
S = 5/2, and due to g0, their contribution are the same in
the Zeeman term. Therefore, in the Hamiltonian, we can take
the reduced value of effective orbital contribution to be unity
(LDy

i = 1).

APPENDIX D: SIMULATION SNAPS AND PROBABILITY
DISTRIBUTION OF JUMP SIZES

We show steady-state snapshots at different field strengths
for the fGa = 0.2 in Figs. 12(a)–12(d). Figures 13(a) and 13(b)
show the probability distribution of jump sizes (normalized
occurrence of the jump size as shown in Fig. 9) with respect
to the zero disorder scenario ( fGa = 0) and the finite disorder
scenario ( fGa = 0.2).
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FIG. 13. Probability distributions of magnetization jump size
derived from the hysteresis loop at system size L = 64 with dis-
order fraction (a) fGa = 0, and (b) 0.2, respectively. The intermittent
bumps in the histogram plot are due to the lack of enough sample
averages. In Fig. 9 we have calculated the standard deviation which
shows a larger errorbar for intermittent bump.
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