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Electrical conductance of two-dimensional random percolating networks based on mixtures
of nanowires and nanorings: A mean-field approach along with computer simulation
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We have studied the electrical conductance of two-dimensional (2D) random percolating networks of zero-
width metallic nanowires (a mixture of rings and sticks). We took into account the nanowire resistance per
unit length and the junction (nanowire-nanowire contact) resistance. Using a mean-field approximation (MFA)
approach, we derived the total electrical conductance of these nanowire-based networks as a function of their
geometrical and physical parameters. The MFA predictions have been confirmed by our Monte Carlo (MC)
numerical simulations. The MC simulations were focused on the case when the circumferences of the rings and
the lengths of the wires were equal. In this case, the electrical conductance of the network was found to be almost
insensitive to the relative proportions of the rings and sticks, provided that the wire resistance and the junction
resistance were equal. When the junction resistance dominated over the wire resistance, a linear dependency of
the electrical conductance of the network on the proportions of the rings and sticks was observed.
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I. INTRODUCTION

Transparent conductive electrodes are an essential compo-
nent of smart electronics and optoelectronics, such as smart
windows, touch panels, and solar cells. Metal nanowire-based
transparent conductive electrodes (TCEs), such as Cu, Ag, and
Au nanowire electrodes, are considered to be a new generation
of TCEs that are capable of replacing indium tin oxide-based
electrodes [1].

Nanoring-based TCEs are a promising kind of TCE. Dif-
ferent methods exist for synthesizing metallic nanoring-based
TCEs. However, in all cases, any TCE includes both nanorings
(NRs) and nanowires (NWs). The latter may be bent or wavy.
The fraction of NWs and NRs may vary. Table I presents some
published data on synthesized metallic nanorings.

Notice that for cylindrical wires of an isotropic metal, the
electrical resistivity depends on the wire diameter, tending to
the value of the bulk resistivity as the wire diameter increases
[10]. Some experimental data are collected in Table II. For
comparison, the electrical resistivity of bulk silver is 15.9
n� m [11]. The temperature dependence of the resistivity
should also be borne in mind [10,12].

Selzer et al. [17] reported that a value of the resistance of
a single Ag nanowire (mean diameter of 90 nm) is 4.96 ±
0.18 �/μm (the values in the corresponding row in Table I
were calculated using these data), while the junction resis-
tance is 25.2 ± 1.9 � (annealed junctions) and 529 ± 239 �

(nonannealed ones). For AgNWs (average diameter of 70 ±
10 nm and average length of 8 ± 3 μm), Charvin et al. [19],
knowing the experimental sample sheet resistance and expect-
ing the simulated one to be the same, estimated the junction
resistance as 14 ± 2 �. Gomes da Rocha et al. [16], compar-
ing simulations with experimental data, reported estimates of
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the junction resistance from 2.28 � to 152 � (45 ± 31 �) (see
the Supplemental files in Ref. [16]).

Monte Carlo (MC) simulations of the electrical conduc-
tance have been performed for random two-dimensional (2D)
systems of conductive sticks [20–25] and rings [6,26,27]. The
electrical properties of such systems have been considered
theoretically using a percolation theory [28], a mean-field
approximation (MFA) approach [6,21,24–27,29], network
analysis [30,31], and an effective medium theory (EMT) ap-
proach [32].

MC simulations of electrical percolation in thin films with
conductive disks and sticks have been performed [33]. The
effective conductance of nanocomposites as a function of their
relative concentrations has also been investigated. A synergis-
tic effect has been reported when the disks and sticks combine
properly. The widely used junction resistance dominant as-
sumption (JDA) (see, e.g., Refs. [22,23,34,35]) has been used,
i.e., both disks and sticks were assumed to have no electrical
resistance, while a junction between any two conductive fillers
was assumed to be a resistor. The resistance of a stick-stick
junction was assumed to be five times larger than that of a
disk-disk one since a contact between any two disks is an area,
while a contact between any two sticks is a point contact. The
dependencies of the electrical conductance with respect to the
mass ratio of the disk to stick and to stick length have been
plotted.

Recently, the MFA has been successfully applied to pure
nanoring-based and to pure nanostick-based random, dense
2D systems [24–27]. However, here the MFA was applied to
a mixture of conductive fillers having different shapes. The
goal of the present study was the application of the MFA to
2D systems consisting of randomly deposited conductive NRs
and nanosticks.

The rest of the paper is constructed as follows. Sec-
tion II presents our computational and analytical methods,
viz., Sec. II A describes some technical details of our
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TABLE I. Published data on metallic nanorings.

Reference Material Ring diameter, μm Wire diameter, nm

Zhou et al. [2] Ag 4.8–20 ≈165
Zhan et al. [3] Cu 23 ≈200
Yin et al. [4] Cu 8–20 50
Azani and Hassanpour [5], Azani et al. [6] Ag 15 ± 5 120 ± 20
Li et al. [7] Ag 7.17–42.94 76
Feng et al. [8] Ag 10 20–40
Ning et al. [9] Ag 6.54–30.67 66.7–115.5

simulation and Sec. II B is devoted to an analytical consid-
eration using a MFA. In Sec. III, we present our main results
and compare the MFA predictions with computer simulations.
Section IV summarizes the main results and suggests possible
directions for further study.

II. METHODS

A. Simulation

Two kinds of conductive fillers were used in our simu-
lation, viz., rings with a given radius r and equiprobably
orientated zero-width sticks with a given length l . The elec-
trical resistance per unit length of each filler was ρw.

The fillers of both kinds were randomly placed on an
insulating substrate. Their centers were independently and
identically distributed within a square domain of size L × L.
To reduce the finite-size effect, periodic boundary conditions
(PBCs) were applied along both mutually perpendicular di-
rections (Fig. 1). Let the number density of the sticks be

ns = Ns

L2
, (1)

while the number density of the rings is

nr = Nr

L2
. (2)

Since the electrical conductance is our primary interest, the
total number density of fillers,

n = nr + ns, (3)

was above the percolation threshold, n � nc, in any case. For
each value of the number density, simulations were performed
for different proportions of rings and sticks. When the desired
number density of the fillers was reached, the PBCs were
removed, allowing us to consider the model as an insulating
film of size L × L covered by conductive fillers. Then, super-
conductive busbars were attached to the opposite borders of
the domain. A potential difference V0 was applied to these
busbars. The electrical resistance of each contact (junction)
between any two fillers was Rj. The electrical resistance of
each contact (junction) between a filler and a busbar was Rb.
Both kinds of junctions were assumed to be ohmic. Consider
a segment of the conductive filler (either a stick or a ring)
between the two nearest junctions belonging to it. If a length
of this segment is a, then its resistance is Rs = ρwa. Thus, a
random resistor network (RRN) exists. This RRN is irregular
with different branch resistances. Applying Ohm’s law to each
branch and Kirchhoff’s point rule to each junction, a system
of linear equations (SLEs) can be obtained. Although this SLE
is huge, its matrix is sparse; therefore, numerical solution of

TABLE II. Published data on electrical resistivity of Ag nanowires, ordered in ascending order of nanowire diameter. We used original
data on the electrical conductivity [13,14] to calculate the electrical resistivity. 2-P and 4-P are related to the two-point probes method and
four-point probes method, respectively.

Reference Method T (K) Length (μm) Diameter d (nm) ρ∗
w (n� m)

Bid et al. [10] 2-P 295 6 15 41.1
Bid et al. [10] 2-P 295 6 30 34.9
Bellew et al. [15] 4-P room temp. 7 ± 2 42 ± 12 20.3 ± 0.5
Bid et al. [10] 2-P 295 6 50 29.2
Gomes da Rocha et al. [16] 4-P room temp. 6.7 50 ± 13 22.6 ± 2.3
Zhao et al. [12] 2-P room temp. 44 84 21.3
Selzer et al. [17] 4-P room temp. 25 90 31.6 ± 1.2
Wang et al. [14] 4-P room temp. 4.88 93.2 28.5
Wang et al. [14] 4-P room temp. 14.67 97.0 32.9
Bid et al. [10] 2-P 295 6 100 27.8
Kojda et al. [13] 4-P 293 15 ± 1 120 ± 20 37 ± 13
Kojda et al. [13] 4-P 293 11 ± 1 107 ± 5 29 ± 5
Kojda et al. [13] 4-P 293 13 ± 1 140 ± 10 27 ± 6
Kojda et al. [13] 4-P 293 14 ± 1 150 ± 3 25.1 ± 1.3
Bid et al. [10] 2-P 295 6 200 23.3
Cheng et al. [18] 2-P 290 27.23 227 79.1
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FIG. 1. Sample of randomly placed rings and sticks within a
domain L × L with PBCs. All orientations of sticks are equiprobable.
The domain size is L = 32. The ring radius is r = 1. The stick length
is l = 2πr. The number of rings is Nr = 200. The number of sticks
is Ns = 200. Busbars are shown as the thick lines at top and bottom
of the system. The effect of the PBCs is demonstrated using black
color.

this SLE does not present significant difficulties. We used the
EIGEN library [36] to solve it.

We used domains of a fixed size L = 32, while the char-
acteristic sizes of the fillers were r = 1 and l = 2πr. To
efficiently determine the percolation threshold (occurrence of
a percolation cluster that spans the system in a given di-
rection), the union-find algorithm [37,38] was used. In our
simulations, for the two limiting cases, when only one kind
of filler is presented, nc = 0.373 ± 0.004 for rings, while
nc = 5.641 ± 0.025 for sticks.

In our study, we concentrated on the experimental data
published in Refs. [5,6]. Tables I and II suggest that in this
case, the wire resistance Rw ≈ 125 �, i.e., of the same order
of magnitude or less than the junction resistance Rj. Therefore,
we focused our study on only two cases, viz., JDA and when
the resistances of the wires and junctions are equal. Another
limiting case when the wire resistance dominates over the
junction resistance, considered, e.g., in Refs. [25,34], is hardly
relevant for our system under consideration. In all our compu-
tations, we set Rb = 0.

The results of the computations presented in Sec. III were
averaged over 10 independent runs. The error bars in the fig-
ures correspond to the standard deviation of the mean. When
not shown explicitly, they are of the order of the marker size.

B. Analytical consideration

The probability of the intersection of any two rings is

Pr = 4π

(
r

L

)2

(4)

(see, e.g., Refs. [26,39]). The probability that a given ring
intersects exactly N other rings is described by the binomial
distribution

Pr(k = N ) =
(

Nr

N

)
PN

r (1 − Pr )
Nr−1−N . (5)

The expected number of intersections is

〈Nrr〉 = Pr(Nr − 1) ≈ 4πr2nr, (6)

since Nr � 1.
The probability of the intersection of any two sticks is

Ps = 2

π

(
l

L

)2

(7)

(see, e.g., Refs. [20,32,39]). The probability that a given stick
intersects exactly N other sticks is described by the binomial
distribution

Pr(k = N ) =
(

Ns

N

)
PN

s (1 − Ps)Ns−1−N . (8)

The expected number of intersections is

〈Nss〉 = Ps(Ns − 1) ≈ 2

π
l2ns, (9)

since Ns � 1.
The probability that a stick and a ring have one point of

intersection is

P1 = r2

L2

{
4(arcsin z + z

√
1 − z2) if z � 1

2π if z > 1,
(10)

while the probability that a stick and a ring have two points of
intersection is

P2 =
r2

L2

[
4z −

{
2(arcsin z + z

√
1 − z2) if z � 1

π if z > 1

]
,

(11)

where

z = l

2r
(12)

(see Supplemental Material [40]). The probability of the inter-
section of a stick and a ring is

Prs = P1 + P2 =
r2

L2

[
4z +

{
2(arcsin z + z

√
1 − z2) if z � 1

π if z > 1

]
.

(13)

Thus, the expected number of intersections of a stick with a
ring is

〈k〉 = P1 + 2P2

Prs
= 8z

4z + ψ
, where

ψ =
{

2(arcsin z + z
√

1 − z2) if 0 < z � 1
π if z > 1.

(14)

This quantity varies from 〈k〉 = 1 when z = 0, through 1.6
when z = π (i.e., l = 2πr), to 2 when z � 1 (Fig. 2).

The probability that a given ring intersects exactly N sticks
is described by the binomial distribution

Pr(k = N ) =
(

Ns

N

)
PN

rs (1 − Prs )Ns−1−N . (15)
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FIG. 2. Dependency of the average number of contacts between
a stick and a ring, 〈k〉, on the relative length of the stick z [Eq. (14)].

The expected number of intersections is

〈Nrs〉 = Prs(Ns − 1) ≈ PrsNs, (16)

since Ns � 1.
The probability that a given stick intersects exactly N rings

is described by the binomial distribution

Pr(k = N ) =
(

Nr

N

)
PN

rs (1 − Prs )Nr−1−N . (17)

The expected number of intersections is

〈Nsr〉 = Prs(Nr − 1) ≈ PrsNr, (18)

since Nr � 1.
Thus, the expected number of contacts per ring is

〈kr〉 = 2〈Nrr〉 + 〈k〉〈Nrs〉, (19)

while the expected number of contacts per stick is

〈ks〉 = 〈Nss〉 + 〈k〉〈Nsr〉. (20)

For any allowed value of z,

〈kr〉 = 8πr2nr + 4lrns, (21)

〈ks〉 = 2l2

π
ns + 4lrnr. (22)

When the number density of the conductive fillers is large
enough, the variation of the electrical potential along the film
is close to linear [24–27]. Only one conductive filler in the
mean field produced by all the other fillers may be considered,
rather than using a consideration of the whole system of fillers.
This idea may be easily transferred to the case when the fillers
of two different shapes are presented.

Consider a linear conductive wire (stick) in an external
electric field. This stick is characterized by a resistance per
unit length, ρw. Its lateral surface is supposed to be insulating,
characterized by a leakage conductance per unit length,

Gs = Rj〈ks〉
l

. (23)

According to Ref. [24], the fraction of the electrical conduc-
tance, which is due to all sticks, is equal to

σs = nsl

2ρw

⎡
⎣1 −

√
4

〈ks〉� tanh

(√
〈ks〉�

4

)⎤
⎦, (24)

where

� = ρwl

Rj
. (25)

Likewise, consider a circular conductive wire (ring) in an
external electric field. This ring is characterized by a resis-
tance per unit length, ρw. Its lateral surface is supposed to be
insulating, characterized by a leakage conductance per unit
length,

Gr = Rj〈kr〉
2πr

. (26)

According to Ref. [26], the fraction of the electrical conduc-
tance, which is due to all rings, is equal to

σr = πλ2r3nr

ρw(1 + λ2r2)
, (27)

where, in our case,

λ2 = ρw

Rj

[
4rnr + 2l

π
ns

]
. (28)

The electrical conductance of the system of conductive rings
and sticks is

σ = σr + σs. (29)

When Rw � Rj (JDA),

σs ≈ nsl2〈ks〉
24Rj

. (30)

For not very large values of the number density, when λ2 � 1,

σr ≈ πr3nr

Rj

[
4rnr + 2l

π
ns

]
. (31)

Thus,

σ ≈ 1

Rj

[
4πr4n2

r + 2lr3nrns + n2
s l4

12π
+ nrnsl3r

6

]
. (32)

Let ns = xn, nr = (1 − x)n; then,

σ ≈ n2r4

Rj

×
[

4π (1 − x)2 + x(1 − x)

(
2l

r
+ l3

6r3

)
+ x2 l4

12πr4

]
.

(33)

In the particular case, when l = 2πr,

σ ≈ σ0

(
1 − x + x

π2

3

)
, σ0 = 4πn2r4

Rj
. (34)

Here, σ0 corresponds to the electrical conductance of a pure
ring system in the case of a JDA (31).
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FIG. 3. Dependencies of the electrical conductance on the num-
ber density of fillers, n = ns + nr, when nr = 0, ns = nr, and ns = 0.
The MFA predictions are shown as curves, while markers correspond
to the simulations. Here, l = 2πr, r = 1, Rj = 1, and ρw = (2πr)−1.

III. RESULTS

Figure 3 demonstrates the dependencies of the electrical
conductance on the number density of the fillers for the three
different proportions of rings and sticks (only rings, only
sticks, and an equal parts mixture of rings and sticks). The
wire resistance and the junction resistance are of the same
order. For all used values of the number density, the MFA pre-
diction slightly exceeds the simulated values of the electrical
conductance.

Figure 4 presents the dependencies of the electrical con-
ductance on the proportions of rings and sticks, x [nr = xn and
ns = (1 − x)n], for the three different values of the number

FIG. 4. Dependencies of the electrical conductance on the pro-
portions of rings and sticks, x, for the three different values of the
number density of fillers, ns = xn and nr = (1 − x)n, when n = 2,
n = 5, and n = 10. MFA predictions and the least-squares fitting are
shown as lines, while markers correspond to the simulations. Here,
l = 2πr, r = 1, Rj = 1, and ρw = (2πr)−1.

FIG. 5. Dependencies of the electrical conductance on the num-
ber density of fillers, n = ns + nr, when nr = 0, ns = nr, ns = 3nr,
nr = 3ns, and ns = 0. MFA predictions are shown as curves, while
markers correspond to the simulations. Here, l = 2πr, r = 1, Rj = 1,
and ρw = (2πr)−110−6.

density of fillers, when n = 2, n = 5, and n = 10. The MFA
slightly overestimates the electrical conductance, as with the
pure stick and pure ring systems [24–27]. When wire resis-
tance and the junction resistance are of the same order, while
l = 2πr, the electrical conductance is almost insensitive to the
specific proportions of rings and sticks.

Figure 5 demonstrates the dependencies of the electrical
conductance on the number density of fillers for the five dif-
ferent proportions of rings and sticks. The junction resistance

FIG. 6. Dependencies of the electrical conductance on the pro-
portions of rings and sticks, x, for the three different values of the
number density of fillers, ns = xn and nr = (1 − x)n, when n = 2,
n = 5, and n = 10. MFA predictions and the least-squares fitting are
shown as lines, while markers correspond to the simulations. For the
two larger values of n, the difference between the MFA and LSF
lines are not visually distinguishable. Here, l = 2πr, r = 1, Rj = 1,
and ρw = (2πr)−110−6.
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TABLE III. Least-squares fitting of the dependencies of the elec-
trical conductance on the proportions of rings and sticks, σ = ax +
b. l = 2πr, r = 1, Rj = 1.

n Slope (a) Intercept (b) Adj. R2

ρw = (2πr)−1

2 6.79 ± 0.09 18.81 ± 0.05 0.99847
5 6.94 ± 0.15 70.47 ± 0.06 0.99542
10 2.76 ± 0.32 165.3 ± 0.1 0.88319

ρw = (2πr)−110−6

2 115 50 1
5 750 ± 3 302.9 ± 0.9 0.99981
10 3049 ± 10 1253.6 ± 2.5 0.99989

dominates over the wire resistance. MFA predictions and sim-
ulations are in good agreement.

Figure 6 presents the dependencies of the electrical con-
ductance on the proportions of rings and sticks, x [nr = xn and
ns = (1 − x)n], for the three different values of the number
density of fillers, viz., n = 2, n = 5, and n = 10, when the
junction resistance dominates over the wire resistance. The
dependencies are close to linear.

The coefficients of the least-squares fitting (LSF) of the
dependencies of the electrical conductance on the proportions
of rings and sticks are collected in Table III.

Figure 7 exhibits the dependencies of the normalized elec-
trical conductance σ/σ0 on the proportions of rings and sticks,
x, for the three different values of the number density of fillers
in the limiting case of JDA. The linear dependency predicted
by an MFA (34) is consistent with the simulations.

Figure 8 demonstrates the dependencies of the electrical
conductance on the proportions of rings and sticks, x, for

FIG. 7. Dependencies of the normalized electrical conductance
on the proportions of rings and sticks, x, for the three different values
of the number density of fillers, ns = xn and nr = (1 − x)n, when
n = 2, n = 5, and n = 10. The MFA predictions (34) are shown as
a line, while markers correspond to the simulations. Here, l = 2πr,
r = 1, Rj = 1, and ρw = (2πr)−110−6.

FIG. 8. Dependencies of the electrical conductance on the pro-
portions of rings and sticks, x, for the fixed values of the number
density of fillers and different values of l . MFA predictions are shown
as curves, while markers correspond to the simulations. Here, r = 1,
Rj = 1, and ρw = (2πr)−110−6, n = 6.

the fixed values of the number density of fillers and different
values of l , when the junction resistance dominates over the
wire resistance (JDA). The MFA predictions (33) are shown
as curves, while the markers correspond to the simulations.

Figure 9 demonstrates the dependencies of the electrical
conductance on the relative stick length, z, for the fixed values
of the number density of fillers and different values of x, when
the junction resistance dominates over the wire resistance
(JDA). The MFA predictions (33) are shown as curves, while
the markers correspond to the simulations.

FIG. 9. Dependencies of the electrical conductance on the rel-
ative stick length, z, for the fixed values of the number density of
fillers and different values of x. The MFA predictions are shown as
curves, while the markers correspond to the simulations. Here, r = 1,
Rj = 1, and ρw = (2πr)−110−6, n = 6.
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IV. CONCLUSION

The electrical conductance of 2D random percolating net-
works of zero-width metallic nanowires (a mixture of rings
and sticks) has been studied using both a mean-field approx-
imation and a computer simulation. We took into account
the nanowire resistance per unit length and the junction
(nanowire-nanowire contact) resistance (the so-called multin-
odal representation, MNR [16,22]). We derived the total
electrical conductance of the nanowire-based networks as a
function of their geometrical and physical parameters. Our
MC simulations were focused on the case when the circumfer-
ences of the rings and the lengths of the wires were equal. Our
MC simulations confirmed the MFA predictions. The electri-
cal conductance of the network is almost insensitive to the
proportions of rings and sticks when the wire resistance and
the junction resistance are equal. When the junction resistance
dominates over the wire resistance, a linear dependency of the
electrical conductance of the network on the proportions of
rings and sticks was observed. The dispersity of the physical
parameters and sizes inevitably presented in any real-world
system can hardly affect the main results of the MFA since
only the mean values of all the quantities are important within
the MFA. The effect of the dispersity on the results of the

simulation is expected to be only an increase in the standard
deviation.

There are, at least, two obvious directions of further study.
First, since real-world NWs are often bent, more realistic
shapes of NWs should be considered instead of sticks. Al-
though the percolative and electrical properties of bent and
waved NWs have been studied [35,39,41–43], there are a
number of open questions to be solved. In particular, a mixture
of arcs of different curvature up to closed-up arcs (rings) has,
to the best of our knowledge, not yet been studied. Second,
direct comparison with experimental data is necessary. Such
a comparison requires, simultaneously, data on the wire resis-
tance, the junction resistance, the transparency, the sheet resis-
tance, the geometrical parameters of both NWs and NRs, and
the composition (NR to NW ratios) of the samples. However,
direct measurements of the junction resistance are currently
limited owing to the small number of teams working on these.
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