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Schloegl’s second model (also known as the quadratic contact process) on a square lattice involves spon-
taneous annihilation of particles at lattice sites at rate p, and their autocatalytic creation at unoccupied sites
with n � 2 occupied neighbors at rate kn. Kinetic Monte Carlo (KMC) simulation reveals that these models
exhibit a nonequilibrium discontinuous phase transition with generic two-phase coexistence: the p value for
equistability of coexisting populated and vacuum states, peq(S), depends on the orientation or slope, S, of a planar
interface separating those phases. The vacuum state displaces the populated state for p > peq(S), and the opposite
applies for p < peq(S) for 0 < S < ∞. The special “combinatorial” rate choice kn = n(n−1)/12 facilitates
an appealing simplification of the exact master equations for the evolution of spatially heterogeneous states
in the model, which aids analytic investigation of these equations via hierarchical truncation approximations.
Truncation produces coupled sets of lattice differential equations which can describe orientation-dependent
interface propagation and equistability. The pair approximation predicts that peq(max) = peq(S = 1) = 0.096 45
and peq(min) = peq(S → ∞) = 0.088 27, values deviating less than 15% from KMC predictions. In the pair
approximation, a perfect vertical interface is stationary for all p < peq(S = ∞) = 0.089 07, a value exceeding
peq(S → ∞). One can regard an interface for large S → ∞ as a vertical interface decorated with isolated kinks.
For p < peq(S = ∞), the kink can move in either direction along this otherwise stationary interface depending
upon p, but for p = peq(min) the kink is also stationary.
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I. INTRODUCTION

A comprehensive understanding of nonequilibrium dis-
continuous phase transitions in lattice models for stochastic
interacting particle systems is still lacking [1–3]. Certain real-
izations of Schloegl’s second model [4] on an infinite square
lattice provide an excellent venue for fundamental analysis
of such transitions [5–10]. In a general version of this model
[10], one specifies a neighborhood, N , for sites on the lattice
consisting of N nearby sites. Then, particles residing at the
sites of the lattice spontaneously annihilate at rate p, and
particles are autocatalytically created at rate kn at unoccupied
sites only if those sites have n � 2 occupied sites or parti-
cles within their neighborhood N [10]. Schloegl’s original
development of the models [4] was motivated by autocatalytic
chemical reactions, wherein species are created and destroyed.
The model also is equivalent to the quadratic contact process
for spatial epidemics on a square grid of households [5]. In
this model, households spontaneously recover from a disease
at rate p, but can be infected by two or more sick neighbors.
One common “threshold” rate choice sets k0 = k1 = 0, and
kn = 1 for all n � 2 [7–9]. Another combinatorial choice sets
kn = ( n

2 )

( N
2 )

= n(n−1)
N (N−1) , normalized so that the maximum rate is

unity [10]. This combinatorial choice leads to an appealing
exact reduction of the master equations, as discussed below,
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and in this respect might be regarded as the most natural
choice. This choice has also been described as the most natu-
ral generalization of the classic linear contact process [11].
Kinetic Monte Carlo (KMC) simulation of model behavior
indicates that for either choice (and for some other choices),
the model on an infinite lattice exhibits a discontinuous phase
transition from a populated steady state to a vacuum absorbing
state upon increasing p.

In addition, these and related models exhibit generic two-
phase coexistence, i.e., there is not a unique value of p =
peq where the populated steady state and vacuum state are
equistable and coexist [6,9,10]. This is in contrast to con-
ventional equilibrium thermodynamic systems governed by
Gibb’s phase rule. Rather, peq, which corresponds to the p
value where a planar interface separating coexisting populated
and vacuum states is stationary, depends on the orientation or
slope, S, of the interface. For planar interface orientations with
0 < S < ∞, the interface begins to propagate when p deviates
from peq, with the vacuum state displacing the populated state
when p > peq, and the populated state displacing the vacuum
state when p < peq.

Most studies of versions of Schloegl’s second model on
a square lattice have restricted attention to the case where
N just consists of the four nearest-neighbor sites, so that
N = 4 [5–9]. It should be noted that any such model for
N = 4 incorporates a “quirk” in that the populated steady
state cannot displace the vacuum state separated from it by a
planar vertical or horizontal interface (aligned with a principal

2470-0045/2023/107(3)/034104(8) 034104-1 ©2023 American Physical Society

https://orcid.org/0000-0002-5367-3546
https://orcid.org/0000-0002-3019-9247
https://orcid.org/0000-0002-5806-3720
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.107.034104&domain=pdf&date_stamp=2023-03-03
https://doi.org/10.1103/PhysRevE.107.034104


ZHEREN SHEN, DA-JIANG LIU, AND JAMES W. EVANS PHYSICAL REVIEW E 107, 034104 (2023)

lattice direction) no matter how small p [5,6,9,10]. Why? For
square lattice sites labeled by (i, j), suppose that sites with
i � 0 correspond to the vacuum region separated by a vertical
interface with slope S = ∞ from populated sites for i < 0.
Sites with i � 0 can never become populated as they never
have more than one populated neighbor. As a consequence,
one finds that the vertical interface is stationary for all p <

peq(S = ∞), and the vacuum state displaces the populated
state for p > peq(S = ∞). For all other interface orientations
defined by slope S, propagation in both directions can occur
as p deviates from peq(S).

Given the robustness of vacuum state against displacement
by the populated state for vertical interfaces, one might
anticipate that peq(S = ∞) corresponds to the minimum
peq(min) = minS peq(S), i.e., the vacuum state can survive
for relatively low p. KMC studies show that this is the case
for the stochastic model [6,9,10]. On the other hand, for
diagonal interfaces with slope S = 1, one might anticipate
that the vacuum state is most vulnerable to displacement by
the populated state. For a perfect diagonal interface separating
vacuum and fully populated state, each boundary site in the
vacuum state has two potentially populated neighbors and
thus is most susceptible to particle creation. As a result, one
might expect that peq(S = 1) corresponds to the maximum
peq(max) = maxS peq(S). KMC studies also show that this is
the case [6,9,10].

In this paper, we restrict our attention to the combina-
torial rate choice for particle creation on a square lattice
where N just consists of the four nearest-neighbor sites and
kn = n(n−1)/12. Thus, the nonzero particle creation rates are
k2 = 1/6, k3 = 1/2, and k4 = 1. Model behavior has been
characterized previously by KMC simulation [10]. In partic-
ular, the KMC study demonstrated unambiguously that this
particular stochastic model exhibits a discontinuous transi-
tion together with generic two-phase coexistence. Our goal
here is to assess if an approximate analytic treatment is
capable of capturing key features of the subtle model be-
havior, thereby providing deeper insight. Specifically, our
analysis is based upon the hierarchical form of the exact
master equations for the model. Given the need to assess
the propagation of interfaces between populated steady state
and the vacuum, these equations are unconventionally for-
mulated to describe general spatially heterogeneous states.
For spatially homogeneous states, hierarchical truncation
using mean-field site approximation or the Kirkwood-type
[12] pair approximation produces a closed set of rate equa-
tions describing kinetics. For spatially heterogeneous states,
truncation produces a set of coupled lattice differential
equations (LDEs) [13–16], although with unconventional spa-
tial coupling [17–19], where these can describe interface
propagation.

While LDEs have been used extensively to study inter-
face propagation in spatially discrete models with nonlinear
bistable kinetics, these invariably incorporate simple discrete
Laplacian spatial coupling, and are based on simple mean-
field models. In contrast, our generation of LDEs from trunca-
tion of exact master equations invariably produces more com-
plex spatial coupling, even in the simplest mean-field approx-
imation ignoring spatial correlations. Our higher-level treat-
ment incorporating correlations using Kirkwood-type approx-
imations produces coupled sets of LDEs which describe the
evolution and variation across the interface of correlations as
well as concentration. Determination of the regime of generic
two-phase coexistence, peq(min) < p < peq(max) from these
LDEs is naturally of particular significance. One finds
that peq(max) = peq(S = 1), which is determined straightfor-
wardly from analysis of diagonal interfaces with S = 1. One
the other hand, one finds that peq(min) = peq(S → ∞) �=
peq(S = ∞), so determination of peq(min) requires a more
delicate analysis of near-vertical interfaces as S → ∞.

The exact master equations and the corresponding LDEs
are presented in Sec. II as well as the site- and pair approxima-
tions. The site approximation captures qualitatively the basic
features of the model, and the pair approximation captures
these features semiquantitatively by accounting for spatial
correlations. Our results from numerical integration analysis
of the appropriate LDEs are presented in Sec. III. These
in particular show that peq(min) < peq(S = ∞) < peq(max).
In Sec. IV, we provide additional insight into the model
dynamics controlling peq(min) = peq(S → ∞). An interface
for large S → ∞ can be regarded as a perfect vertical in-
terface except for being decorated with isolated kinks. For
p < peq(S = ∞), the perfect vertical part of the interface is
stationary, but the kink can move in either direction along
this otherwise stationary interface depending upon p. How-
ever, the kink is shown to be stationary at a unique value of
p = peq(min), as demonstrated by an LDE analysis of kink
dynamics. Such an LDE-based kink-dynamics analysis is par-
ticularly instructive for elucidating subtle details of interface
propagation in our model. Conclusions are provided in Sec. V.

II. HIERACHICAL MASTER EQUATIONS
AND THEIR TRUNCATION

A. General equations for spatially heterogeneous systems

Let o [x] denote an unoccupied [occupied] site on the lat-
tice, and P(oi,j ) [P(xi,j )] denote the probability that site (i, j)
is unoccupied [occupied], P(oi, jo) denote the probability of
a nearest-neighbor empty pair (i, j), and (i + 1, j), etc. Con-
servation of probability imposes relation including P(oi, j ) +
P(xi, j ) = 1, P(oi, jo) + P(oi, jx) = P(oi, j ), etc. The “lowest-
order” members of the exact hierarchical master equations
have the form

d/dt P(oi, j ) = + pP(xi, j ) − k2

⎡
⎣P

⎛
⎝x

x
oi, j o
o

⎞
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= + pP(xi, j ) − k2

[
P

( · x
x oi, j

)
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(1)

d/dtP(oi, jo) = + p[P(xi, jo) + P(oi, jx)] − k2
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d/dt P
(oi, j

o

)
= +p

[
P
(xi, j

o

)
+ P

(oi, j

x

)]
− . . . . (3)

All these equations for the probabilities of unoccupied configurations include gain (loss) terms from particle annihilation
(autocatalytic creation). The simplified expressions for loss terms after the second equalities in (1) and (2) follow from exact
reduction using conservation of probability. For example, in the simplified version of (1), the term

P

( · x
x oi, j

)
= P

⎛
⎝ x

x oi, j o
o

⎞
⎠ + P

⎛
⎝ x

x oi, j x
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⎛
⎝ x

x oi, j o
x

⎞
⎠ + P

⎛
⎝ x

x oi, j x
x

⎞
⎠ (4)

is obtained by combining terms in the initial “primitive” ex-
pression, recalling that k2 = 1/6, k3 = 1/2, and k4 = 1.

In the above hierarchy, the equation for the probability of
a configuration of unoccupied sites couples to probabilities
for configurations with a larger number of sites. To obtain
equations involving a finite set of configuration sizes, trun-
cation approximations can be implemented which account
for possible spatial heterogeneity. In the simplest mean-field
site approximation, the state of different sites is regarded as
independent (i.e., all spatial correlations are ignored). Thus,
one has that, e.g.,

P

( · x
x oi, j

)
≈ P(xi−1, j ) P(oi, j ) P(xi, j+1) · (site). (5)

In the pair approximation, one accounts for nearest-
neighbor site correlations, so that configuration probabilities
are factorized as a product of the constituent pair probabilities
compensating for double counting of shared sites between
pairs. Thus, one has that, e.g.,

P

( · x
x oi, j

)
≈ P(x oi, j ) P

(
x

oi, j

)/
P(oi, j ) · (pair). (6)

B. Truncation approximations for spatially
homogeneous systems

For spatially homogeneous systems, further reduction of
master equations is possible exploiting translational and ro-
tational symmetry. For example, in (1), all four loss terms
with bent trio configurations are equivalent, and the two loss

terms with linear trio configurations are equivalent. Applying
the site approximation to (1) yields a closed equation for
P(oi, j ) = P(o) or equivalently for P(xi,j ) = P(x) = C, of the
form dC/dt = R(C) = −pC + (1−C)C2, where C denotes
particle concentration. Steady-state analysis yields [10]

C±(p) = 1/2 ± 1/2(1 − 4p)1/2 for

p � ps(site) = 1/4, or C(p) = 0 (site). (7)

C+ is a stable populated state which coexists with a stable
vacuum state, C = 0, for p � ps(site) = 1/4 (the spinodal
point, a saddle-node bifurcation). C− is an unstable popu-
lated state. In the pair approximation, a natural variable is
the conditional concentration, K = P(x|o) = P(xo)/P(o), of
an occupied site given an adjacent unoccupied site. Then,
steady-state analysis yields

K±(p) = 1/2 ± 1/2(1 − 8p)1/2 for

p � ps(pair) = 1/8, or K (p) = 0 (pair). (8)

One can obtain the corresponding C(p) from the pair-
approximation relation C = 2K/(1 + K ). Now, the stable
populated state, K+, coexists with the stable vacuum state,
K = 0, only up to the lower spinodal, ps(pair) = 1/8. Note
that these pair- (and site-) approximation results match those
for the model on a Bethe lattice with coordination 4 [20].

KMC simulation of this stochastic Schloegl model on
a square lattice reveals that peq varies from peq(min) ≈
0.077 to peq(max) ≈ 0.085. The (strictly ill-defined) spin-
odal, ps, should only be slightly above peq(max). This “weak
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FIG. 1. Schematic: vertical interface (left) and an interface with
slope–S (right).

metastability,” associated with strong spatial correlations and
fluctuations in the model, is in part due to the lack of dif-
fusive mobility of particles [21]. The introduction of particle
diffusion into the model would shift behavior towards mean-
field behavior (7). New KMC studies indicate that ps ≈ 0.096
from an analysis of the kinetics of evolution to the vacuum
state for p = 0.098–0.120, noting that the rate of “poisoning”
is roughly proportional to �p = p − ps. See the Supple-
mental Material (SM) [22], Sec. SM1. Thus, ps(pair) =
0.125 is much closer to the precise value ps ≈ 0.096 than
ps(site) = 0.25.

C. Truncation approximations for planar
interfaces between steady states

For spatially heterogeneous systems, one must start with
the general form of the hierarchical master equations. How-
ever, we will primarily consider the case of planar interfaces
where there is some additional simplification. For example,
for vertical interfaces one has that P(xi,j ) = Ci depends only
on i (and is independent of j), and below we replace i by k for
uniformity. For an interface of slope −S with S = 1, 2, . . .,
one has that P(xi, j ) = Ck depends only on k = Si + j. See
Fig. 1. In the mean-field site approximation, where d/dt C =
R(C) = −pC + (1−C)C2 for homogeneous system, one has
for vertical interfaces that

d/dt Ck = −pCk + 1/6(1 − Ck )
[
2Ck (Ck+1 + Ck−1)

+ Ck−1 Ck+1 + C2
k

]
= R(Ck ) + �∞ Ck (9)

For an interface of slope −S, one has that

d/dt Ck = −pCk + 1/6(1 − Ck )[(Ck+1+Ck1)(Ck+S + Ck−S )

+ Ck−1Ck+1 + Ck−SCk+S]

= R(Ck ) + �sCk (10)

Here, the spatial coupling term in (9) is �∞
Ck = 1

3 (1 − Ck )Ck �Ck + 1
6 (1 − Ck )(Ck−1Ck+1 − C2

k ), where
�Ck = Ck+1 − 2Ck + Ck−1 is the second-order difference.

The coupling term �S Ck in (10) is also readily determined.
Both �∞ Ck and �S Ck vanish for spatially homogeneous
systems. Equations (9) and (10) have the form of lattice
differential equations (LDEs), for which there is a vast
literature analysis of associated interface propagation,
although such studies almost exclusively choose spatial
coupling terms of the simple form �Ck = D�Ck [13–16].

In the pair approximation, one obtains from (1–3) coupled
set of three lattice differential equations for Ci, P(oio), and
P(oi

o ) for vertical interfaces [or Ck , P(oko), and P(ok

o ) for slope–
S]. See Sec. SM2 [22] for details. These lattice differential
equations will be applied to analysis of interface propagation
when p < ps in the site- and pair approximations, as dis-
cussed in Sec. III.

III. LDE ANALYSIS FOR PLANAR
INTERFACE PROPAGATION

For analysis of planar interface propagation when p < ps

based on the LDEs, one can choose initial conditions with
the homogeneous populated steady state on the “left” (for
k < 0, say), and the vacuum state on the “right.” Note that
as P(oo) + P(xo) = P(o) and P(xo) = K P(o), one can use
P(oo) = (1−K )(1−C) to generate the initial steady-state val-
ues of P(oo) for the pair-approximation analysis. Then, from
numerical integration of the LDE for −L < k < +L, with
large L and suitable boundary conditions (e.g., fixing the
variable at appropriate steady-state values), one can monitor
interface propagation (for a range of times when the interface
remains far from the boundaries k = ±L). A convenient way
to assess the propagation velocity normal to the interface, VM ,
in such numerical analysis is to identify VM = δdM/dt , where
M = ∑

kCk/[C+(p)] reflects the total amount of populated
sites. Here, δ is the distance the interface travels (in the di-
rection orthogonal to the interface) corresponding to the {Ck}
being replaced by {Ck+1} or {Ck−1}. Thus, one has δ = 1 for
vertical interfaces, and δ = S/(1 + S2)1/2 for interface slope
S. See Fig. 1. We define the velocity to be positive when the
populated state displaces the vacuum state, and negative when
the opposite applies.

Using the case of a vertical interface for illustration, when
p < ps is sufficiently high that the vacuum state displaces the
populated state, one finds that after a transient period (re-
flecting the “sharp” interface initial conditions), VM oscillates
periodically in time. See Fig. 2 for pair-approximation results,
and Sec. SM3 [22] for the corresponding site-approximation
results. We extract a mean velocity, V, by averaging VM over a
period, τ , of oscillation. Equivalently, one can simply obtain
V from the relation V = 1/τ . See Sec. SM4 [22]. As noted
above, the populated state cannot displace the vacuum state
for vertical interfaces, so that V � 0 for all p. One finds that
the interface is stationary for p � peq(S = ∞) = 0.184 69
(site) or 0.089 07 (pair), but the vacuum state displaces the
populated state with V < 0 for p > peq(S = ∞). Figure 2(c)
shows pair-approximation predictions for this behavior of V
versus p for a vertical interface.

It is appropriate to note that the oscillations in the inter-
face velocity as determined by VM could in some sense be
regarded as an artifact of using changes in M to determine this
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FIG. 2. Pair-approximation analysis of the propagation of a vertical interface (S = ∞). Periodic variation of VM with t for: (a) p = 0.0900;
(b) p = 0.0892 [which exceed peq(S = ∞) = 0.089 07 so that the vacuum state displaces the populated state]. (c) Mean velocity, V, vs p.

velocity. The expectation for LDE, at least with the simple
traditional choice of spatial coupling, is that propagating inter-
face solutions have the form Ck = F (δk−V t ). This has been
demonstrated rigorously for spatial coupling � Ck = D�Ck

[23,24]. To assess whether this relation applies for our sys-
tem, and if so to determine the form of F, we simply plot
Ck (t ), Ck+1(t ), Ck+2(t ), . . . versus t for several adjacent sites.
If the above relation applies, then these traces should have
the same shape and just be shifted by an amount �t = δ/V
as k increases by 1. Figure 3 shows that this is the case in
the pair approximation, and corresponding results for the site
approximation are reported in Sec. SM3 [22]. Interestingly, as
p approaches the point of propagation failure, peq(S = ∞), F
undergoes a transition from a smooth tanh-type form to a more
complex structure. The latter is consistent with the feature that
a “movie” of the propagating front just above p = peq(S =
∞) suggests a stick-and-slip or stop-and-go type behavior.
As an aside, we note that it is straightforward to show that
any Ck with the general form Ck = F (δk−V t ) produces an
oscillating VM (where V is the average VM). See Sec. SM5 [22],
illustrating this feature for a tanh form for F.

In Fig. 4, we provide comprehensive results for the varia-
tion of V with p for a range of different interface slopes 1 � S
��. Note that for S increasing above S = 1, peq(S) decreases
monotonically from a maximum of peq(S = 1) = 0.187 82

(0.096 45) in the site (pair) approximation. The peq(S) con-
verge to a nonzero value, peq(S → ∞), which is strictly less
than peq(S = ∞). One has that peq(S → ∞) = 0.180 77 ver-
sus peq(S = ∞) = 0.184 69 in the site approximation, and
peq(S → ∞) = 0.088 27 versus peq(S = ∞) = 0.089 07 in
the pair approximation. In Table I, a comparison is presented
of site- and pair-approximation predictions, and precise KMC
results for peq versus slope, S. The pair approximation is quite
effective in semiquantitatively recovering KMC results.

In Sec. I, we argued why the maximum peq should corre-
spond to S = 1. This feature is captured by the LDE analysis
(matching precise KMC results). However, appropriate in-
terpretation of LDE results relative to KMC results for the
minimum peq is more subtle. We argue that the precise
peq(min) from KMC simulation corresponds to peq(min) =
peq(S → ∞) from the LDE analysis rather than the higher
value peq(S = ∞). The latter is “artificially elevated” by the
feature that the analytic theory considered perfectly straight
vertical interfaces where Ci, j is independent of j. Fluctuations
in the stochastic model imply that on-average vertical inter-
faces actually have some kink sites. This situation for vertical
interfaces in the actual stochastic model is better captured
by interfaces in the LDE treatment for finite but large S. In
Sec. IV, we provide a more detailed analysis and physical
interpretation of peq(S → ∞).

FIG. 3. Ck (t ) vs t for four consecutive k = k0, k0 + 1, k0 + 1, k0 + 3 for a propagation vertical interface in the pair approximation:
(a) p = 0.0895; (b) p = 0.0950.
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FIG. 4. V vs p for various S. Main figure: pair approximation.
Inset: site approximation.

Finally, we note that “propagation failure” is a general
phenomenon observed in LDE-based analysis of the evolution
of interfaces which separate steady states in bistable systems
[13–16]. This can occur over a finite range of control pa-
rameter (corresponding to p) for which the driving force for
propagation is in some sense weak (even when no model quirk
trivially blocks evolution as in our model for vertical inter-
faces). One might regard the feature that a vertical interface
fails to propagate for all of p < peq(S = ∞), rather than for
just for p < peq(S → ∞), as a type of propagation failure.
This view is supported by the following observation. One
could perturb the model considered here in various ways to
remove the “quirk” and allow the populated state to displace
the vacuum state separated from it by a vertical interface. One
possibility is to simply incorporate particle diffusion (hop-
ping to unoccupied neighboring sites) or spontaneous particle
creation at very small rate. Then, one still finds propagation
failure of a vertical interface for a finite range of p centered
around peq(S → ∞) (cf. Ref. [19]). This behavior will be
described in more detail in a separate publication focused on
more general models for N = 4, 8, … and including spon-
taneous particle creation. In addition, analysis of LDEs for
similar models indicates that interface propagation is also pos-
sible for S = 1, but only for an extremely narrow “negligible”
range of width �p ∼ 10−6 [19].

TABLE I. peq vs slope, S, for the site- and pair approximations
vs precise KMC results.

peq site peq pair peq KMC

S = 1 0.187 82 0.096 45 0.08494
S = 2 0.186 34 0.095 18 0.08413
S = 3 0.184 64 0.093 61 0.08274
S = 4 0.183 42 0.092 40 0.08198
S = 5 0.182 58 0.091 51 0.08115
S → ∞ 0.180 77 0.088 27 0.077
Spinodal ps = 0.250 ps = 0.125 ps ≈ 0.096

FIG. 5. Motion of an isolated kink on an otherwise vertical in-
terface. Ci, j = 0 (o); Ci, j > 0 (•). The schematic is idealized in that
the actual Ci, j does not suddenly become identically zero above the
kink in the incomplete row along the step. See Fig. 8 for a realistic
characterization.

IV. LDE ANALYSIS FOR KINK PROPAGATION
DETERMINING peq(min) = peq(S → ∞)

To elucidate behavior for V versus p from the LDE analysis
for large S, we note that interfaces in this large-S regime can be
regarded as vertical interfaces decorated with rare kink sites
with separation 1/S. Here, we consider p < peq(S = ∞) so
that a vertical interface is stationary. For such p > peq(S →
∞), these kinks will move in a direction along the other-
wise stationary interface which expands the vacuum state,
and for such p < peq(S → ∞) their motion expands the pop-
ulated steady state. See Fig. 5. The point p = peq(S → ∞)
should correspond to the special situation where an isolated
kink (i.e., a single kink on an otherwise vertical interface)
is stationary.

Thus, it is instructive to consider evolution for a vertical
interface decorated by a single (completely isolated) kink
in the regime p < peq(S = ∞). However, the setup for the
corresponding 2D LDE analysis is nontrivial, particularly the
assignment of boundary conditions in the necessarily finite-
size simulation system containing the kink. This is illustrated
schematically in Fig. 6. A preliminary analysis is performed
for a perfect vertical interface when p < peq(S = ∞). We de-
termine the nonzero steady-state values of Ci, j = Ci for some
i < i∗ (the location of the vertical interface), with Ci → C+(p)
as i → −∞, and where Ci = 0 for i � i∗. These Ci values
are reported in Table II for p = peq(S → ∞) for the pair
approximation.

Then, in the 2D system with an isolated kink, it is clear
that the concentration profile for a perfect vertical interface
will apply far from the kink site, where the profile will be
shifted by one lattice constant to the left far above the kink
relative to that far below the kink, as shown in Fig. 6. Thus,
this nontrivial 1D concentration profile is used to assign upper
and lower boundary concentrations as also indicated in Fig. 6
(where in numerical analysis both boundaries are ∼100 lattice
constants from the kink). Since Ci quickly approaches C+(p)
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TABLE II. Ci, j = Ci for a vertical interface when p = peq(S → ∞) in the pair approximation.

Column i∗-8 i∗-7 i∗-6 i∗-5 i∗-4 i∗-3 i∗-2 i∗-1 i∗

Ci 0.8706 0.8706 0.8705 0.8697 0.8652 0.8420 0.7309 0.3578 0

to the left of the interface, we assign Ci, j = C+(p) on the left
boundary, about 10 lattice constants from the interface. The
boundary condition on the right boundary is trivially Ci, j = 0.

From numerical integration of the 2D LDE for various
p < peq(S = ∞), we extract the propagation velocity, Vkink,
of the kink along the interface versus p. Results are shown
in Fig. 7 for the pair approximation, and in Sec. SM6 [22]
for the site approximation. The key observation is that the p
value for stationarity of the kink, peq(kink), matches exactly
peq(S → ∞) determined from an analysis of planar interface
propagation. This applies in either the site- or pair approxima-
tion. In Fig. 8, we show the pair-approximation prediction for
the distribution of time-independent concentrations Ci, j , in the
vicinity of the stationary kink corresponding to p = peq(S →
∞). The kink is not sharply defined through a sudden change
in concentration along the interface contrasting the idealized
schematics, Figs. 5 and 6. The “smeared kink” is located in the
rightmost column of Fig. 8 with nonzero Ci, j entries, where
one could assign the kink location (red ellipse) as where the
concentration is ∼0.17 midway between the limiting concen-
tration values of 0 as j → +∞, and 0.357 as j → −∞ in
this column. A more comprehensive listing of Ci, j behavior in
the pair approximation is provided in Sec. SM7 [22] which
demonstrates convergence of the Ci, j in rows far from the
kink to the values for a perfect vertical interface reported in
Table II.

FIG. 6. Boundary conditions for 2D LDE analysis of the evolu-
tion of an isolated kink on a vertical interface.

V. CONCLUSIONS

Our formulation of Schloegl’s second model, also known
as the quadratic process, on a square lattice with a combina-
torial choice of rates is arguably the most natural extension of
the linear contact model [11]. The model exhibits a nonequi-
librium discontinuous phase transition between a populated
state and a vacuum state, including the subtle phenomenon
of generic two-phase coexistence. This phenomenon does not
occur in thermodynamic systems as a result of the Gibbs
phase rule. The combinatorial rate choice induces a simpli-
fication of the exact master equations which facilitates (but
is not essential for) analytic treatment of the model. In the
current contribution, we show that the pair approximation to
the master equations for heterogeneous states is successful
in recovering semiquantitatively the subtle features of model
behavior, as determined precisely by KMC simulation. Our
focus is on analysis of the dependence of the equistability
value of p = peq(S) for stationarity of a planar interface sepa-
rating populated and vacuum steady states as a function of the
slope, S. Of particular interest is determination of the regime
of generic two-phase coexistence, peq(min) = minS peq(S) <

p < peq(max) = maxS peq(S). Determination of peq(max) =
peq(S = 1) follows readily from an analysis for diagonal inter-
faces with S = 1. Determination of peq(min) = peq(S → ∞),
which corresponds to equistability of near-vertical interfaces,
is more subtle. Here, we show that peq(min) can be assessed
from analysis of the dynamics and stationarity of an isolated
kink on an otherwise vertical interface. Results from the pair-
approximation analysis are within 15% of precise values from
KMC analysis.

FIG. 7. Pair-approximation analysis of kink-propagation veloc-
ity, Vkink, along the vertical interface vs p. The kink is stationary when
p = 0.088 27 in the pair approximation.
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FIG. 8. Pair approximation prediction for Ci, j in the vicinity of the stationary kink for p = peq(S → ∞). A color scale is also included to
illustrate the variation in concentration, Ci, j .
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