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Interplay of reservoirs in a bidirectional system
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Motivated by the interplay of multiple species in several real world transport processes, we propose a bidi-
rectional totally asymmetric simple exclusion process with two finite particle reservoirs regulating the inflow of
oppositely directed particles corresponding to two different species. The system’s stationary characteristics, such
as densities, currents, etc., are investigated using a theoretical framework based on mean-field approximation and
are supported by extensive Monte Carlo simulations. The impact of individual species populations, quantified
by filling factor, has been comprehensively analyzed considering both equal and unequal conditions. For the
equal case, the system exhibits the spontaneous symmetry-breaking phenomena and admits both symmetric as
well as asymmetric phases. Moreover, the phase diagram exhibits a different asymmetric phase and displays a
nonmonotonic variation in the number of phases with respect to the filling factor. For unequal filling factors,
the phase schema can display at most five phases including a phase that shows maximal current for one of the
species.
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I. INTRODUCTION

Over decades, there has been a great deal of interest in
stochastic transport phenomena of various complex systems
such as intracellular transport of cargo vesicles [1,2] and ve-
hicular flow [3,4], both theoretically and physically. Particles
either self-driven or driven by some external field traveling
stochastically along a one- or multidimensional lattice have
been utilized to model various transport processes, both nat-
ural as well as man-made [5–8]. In order to analyze the
propelled dynamics of these driven diffusive systems, totally
asymmetric simple exclusion process (TASEP) is widely used
as the most prominent paradigm of the driven models to ex-
amine several stationary system features [9–11]. The TASEP
model is extensively employed to study the characteristics
of various physical systems such as pedestrians [12], vehic-
ular traffic [3], and ants [13], as well as biological systems
including movement of motor proteins [14] and protein syn-
thesis [15]. It was originally proposed in 1968 in the context
of biopolymerization by ribosomes [16,17]. Since then, this
model has served as a discipline of considerable interest to
investigate the nonequilibrium behavior of particles moving
along a one-dimensional lattice. It studies the collective dy-
namics of active species, represented by particles that are
permitted to enter and exit through the extreme ends of a
lattice and hop along a preferred direction in the bulk while
considering the hard-core exclusion principle. In such models,
the lattice is subject to different boundary conditions which
may be either open or periodic. In the case of open boundaries,
the steady-state particle density acts as the order parameter
and categorizes the phase diagram into three regions, namely
low density (LD), high density (HD), and maximal current
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phase (MC). Moreover, the transition line from LD to HD
phase is of the first order and corresponds to a coexistence
phase with nonstationary shock, while the transitions from
LD to MC and HD to MC phase are of second order with
respect to density [11]. If one considers current as the order
parameter, all these transitions are of second order. Many
complex nonequilibrium phenomena such as shock formation,
phase transitions, phase separations, symmetry-breaking, etc.,
are successfully explained by utilizing this simple model and
its several variants [9–11,18–22].

In biological systems, transport of cargoes, viruses, and
other information from one particular location to another
along microtubules is crucial for the proper functioning of
eukaryotic cells [23]. Microtubules are filaments that are
directionally polarized with distinguishable plus and minus
ends, often serving as a path for many motor proteins, e.g.,
dynein and kinesin [24]. The movement of motor proteins
directed in opposite directions to the extreme ends of the
filaments leads to multispecies bidirectional transport. In par-
ticular, the kinesin proteins generally travel to the plus end
of the microtubule which is away from the nucleus, whereas
dyneins tend to walk towards the minus end which is near
the nucleus while carrying cargo. This bidirectional flow is
not only limited to the biological process but has also been
observed in different man-made systems such as vehicular
traffic and pedestrian dynamics [3,25,26]. Several attempts
have been made focusing on the generalization of the TASEP
model from a single-species to a multiparticle system where
two different species of particle travel on a lattice in opposite
directions. Contrary to the single-species model, these exten-
sions have reported various cooperative phenomena, such as
spontaneous symmetry breaking (SSB) and phase separation
[22,27–32]. For two different types of propelled particles on
a linear path, the “bridge model” was the first model to ad-
dress the existence of the broken symmetry under analogous
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dynamical conditions [33]. While the mean-field approach
confirms the persistence of one of the asymmetric phases
(low-low density phase) to a narrow region, Monte Carlo
simulations reveal that this phase may not prevail in the ther-
modynamic limit [30,34]. Later, this study was extended to
analyze multispecies models comprising of two lanes where
particles travel in opposite directions and interact only at
the boundaries [29,31,35]. However, our understanding of
the mechanisms of the SSB phenomenon is very limited
[22,27–37].

The majority of the studied TASEP models with open
boundaries explore the dynamics of the multispecies system
equipped with infinite resources which are far from reality.
Many realistic phenomena both physical and biological such
as protein synthesis, movement of motor proteins, pedestrian
flow, and vehicular traffic involve competition for limited
resources on either single or multilane systems. In this di-
rection, several variants of TASEPs have evolved where the
entrance rate of the particles is regulated by the occupancy
of the reservoir, which leads to an addition of localized
shock in the density profile [35,38–52]. In a recent study, a
bidirectional system coupled to a finite reservoir has been
investigated where the exit rate is also affected by the presence
of limited resources [32]. All the research available on such
extensions have primarily focused on global constraint on
the total number of particles in the system. In a bidirectional
system connected to a unified finite reservoir that can hold all
the particles, the total occupancy of the reservoir determines
the entrance rates of the particles. Circumstantially, a scenario
could develop in which the reservoir contains no particle of
a certain species and as the entry rates depend upon the total
number of particles in the reservoir rather than that of indi-
vidual species, the dynamics of the system then promote the
entry of this species, which is absurd. Several intriguing char-
acteristics could arise if the total particle number of individual
species is regulated.

Instigated by the indispensable significance of several
reservoirs in a transport process with multispecies systems,
the present study examines the dynamics of two particle
species moving in opposite directions on a single lattice
strategically coupled to two different reservoirs. Our pur-
pose is to investigate the impact of constrained resources for
both the species on the stationary properties and character-
ize its essential features. We attempt to provide a theoretical
framework for the system by utilizing mean-field approxi-
mation for bidirectional flow on a lattice connected to two
reservoirs, each accommodating particles of a single species
only. It is interesting to scrutinize the impact of constraints
on resources available for each species on the stationary
properties of the system, such as the SSB phenomenon and
phase separation. Specifically, we aim to address the follow-
ing queries. (i) How does the presence of finite resources
influence the bidirectional flow? (ii) How is the SSB phe-
nomenon affected, when both the particle species are available
in equal quantities? (iii) Does the SSB phenomenon still
prevail in the case of different capacities of the two reser-
voirs? (iv) If not, what qualitative and quantitative differences
arise in the complex system properties for these two different
scenarios?

II. MODEL DESCRIPTION AND THEORETICAL
FRAMEWORK

We consider a one-dimensional lattice comprising of L
sites identified as i = 1, 2, . . . , L. The boundaries of the lat-
tice are represented by the sites i = 1 and i = L, whereas
the remaining sites are referred to as bulk. Two species of
particles denoted by the symbols “+” and “−” translocate on
this lattice in opposite directions depicting the bidirectional
flow as shown in Fig. 1. The particles interact via the hard-core
exclusion principle which guarantees that not more than one
particle occupies a single site. In particular, it is assumed that a
+ particle transverses from left to right, whereas a − particle
hops in the reverse direction with a unit rate whenever the
adjacent site is empty. If two different species of particles en-
counter each other on the lattice, they exchange their positions
at a rate s, if the direction permits.

Furthermore, it is assumed that the lattice is connected to
two finite reservoirs R+ and R− having no internal dynamics.
The reservoir R+ can accommodate only + particles, whereas
the reservoir R− solely sustains − particles. The total number
of particles of an individual species is taken to be constant
in our system. Specifically, Nt+ and Nt− quantify the total
number of + and − particles, respectively. A + (−) particle
from R+ (R−) enters the lattice through the site i = 1 (L) if
empty, with innate entry rate α, hops along the lattice, and
then escapes through the site i = L (1) with a removal rate β

to rejoin the reservoir R+ (R−). As the lattice is coupled to two
particle reservoirs, the ingress rate of each species of particle
will no longer be constant; instead, it is regulated according
to the number of particles in the associated reservoir. Also,
a smaller number of particles in the reservoir implies lower
entrance rates and enhanced content in the reservoir will lead
to an increase in the entrance rates. Therefore, it is reasonable
to modify the entrance rate [45] of both species as

α+ = α
Nr+

Nt+
, α− = α

Nr−

Nt−
, (1)

where Nr+ (Nr− ) is the instantaneous number of + (−) parti-
cles in the reservoir R+ (R−). Clearly, Nr+ � Nt+ and Nr− �
Nt− imply that the modified entrance rates remain confined
between 0 and α. To scrutinize the effect of coupling the bidi-
rectional transport to two reservoirs, we associate a parameter,
namely the filling factor defined as μ j = Ntj /L, j ∈ {+,−},
to each reservoir. Additionally, we define the reservoir quo-
tient as ρr j = Nrj /L.

To characterize the occupancy status of each site i, we
designate two symbols denoted by τ i

+ and τ i
−, which take

binary value 1 in case the site is occupied by + and − par-
ticle, respectively, and 0 otherwise. The master equations that
govern the dynamics of both the particles in the bulk are
given by

d〈τ i
+〉

dt
= Ji−1,i

+ − Ji,i+1
+ , (2)

d〈τ i
−〉

dt
= Ji+1,i

− − Ji,i−1
− , (3)

where 〈· · · 〉 represents the statistical average. The terms Ji−1,i
+

and Ji+1,i
− represent the currents in the bulk arising due to
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FIG. 1. Schematic diagram for a bidirectional transport model comprised of a lattice connected to two reservoirs, each accommodating
particles of a single species only. Blue and red circles denote two oppositely directed particles traveling from left to right and right to left,
respectively. The entrance rates of the two particle species are given by α+ and α−, which are controlled by the occupancy of the corresponding
reservoirs. The exit rates for both the particles is β. Two particles of distinct kinds are permitted to swap their positions with a rate s, if they
encounter each other on neighboring sites.

+ and − particles, expressed as

Ji−1,i
+ = 〈τ i−1

+ (1 − τ i
− − τ i

+)〉 + s〈τ i−1
+ τ i

−〉, (4)

Ji+1,i
− = 〈τ i+1

− (1 − τ i
− − τ i

+)〉 + s〈τ i+1
− τ i

+〉. (5)

The first and the second terms on the right-hand sides of the
above two equations correspond to the hopping of a particle to
the adjacent vacant site and the interchange of the two species
of particles in the appropriate direction, respectively. It can
be readily seen from Eqs. (4) and (5) that the two bulk current
equations are decoupled for s = 1 and hence we consider only
this case for further study. However, some insight about the
scenarios when s �= 1 is given in Sec. V.

For s = 1, Eqs. (4) and (5) can be written in simplified form
as

Ji−1,i
+ = 〈τ i−1

+ (1 − τ i
+)〉, Ji+1,i

− = 〈τ i+1
− (1 − τ i

−)〉, (6)

which implies that a + (−) particle does not distinguish be-
tween a hole and a − (+) particle while moving forward.
Similarly, the particle evolution equations at the boundaries,
i = 1 and i = L, can be written as

d〈τ 1
+〉

dt
= Jenter

+ − J1,2
+ ,

d〈τ L
+〉

dt
= JL−1,L

+ − Jexit
+ , (7)

d〈τ 1
−〉

dt
= J2,1

− − Jexit
− ,

d〈τ L
−〉

dt
= Jenter

− − JL,L−1
− , (8)

where

Jenter
+ = α+〈(1 − τ 1

+ − τ 1
−)〉, Jexit

+ = β〈τ L
+〉, (9)

Jenter
− = α−〈(1 − τ L

− − τ L
+)〉, Jexit

− = β〈τ 1
−〉. (10)

Analyzing Eqs. (2) and (3) along with Eqs. (7) and (8) in
the present form is intractable due to the involvement of
both one-point and two-point correlators. Therefore, a sim-
ple approach known as the mean-field approximation, which
has been often used for mathematical treatment in the bidi-
rectional model [22,27,32], is employed. This approximation
ignores all kinds of correlations among the particles and the

correlator functions are written as a product of individual
occupancy numbers, i.e.,

〈τ i
+τ k

+〉 = 〈τ i
+〉〈τ k

+〉, 〈τ i
−τ k

−〉 = 〈τ i
−〉〈τ k

−〉, (11)

where i, k ∈ {1, 2, . . . , L − 1, L}. Further, the mean-field den-
sities at site i for particles of either kind are designated as
ρ i

+ = 〈τ i
+〉 and ρ i

− = 〈τ i
−〉. Likewise, the currents correspond-

ing to both particles are written as

Ji−1,i
+ = ρ i−1

+ (1 − ρ i
+), Ji+1,i

− = ρ i+1
− (1 − ρ i

−). (12)

We coarse grain the discrete lattice by introducing a quasi-
continuous variable x = i/L ∈ [0, 1] using the lattice constant
ε = 1/L and rescaling time as t ′ = t/L, in the thermodynamic
limit. On expanding the mean-field densities in Eqs. (2) and
(3) in powers of ε and retaining the terms up to the second
order, we obtain

∂ρ±
∂t ′ = ∂

∂x

(
ε

2

∂ρ±
∂x

∓ ρ±(1 − ρ±)

)
. (13)

Note that, based on the spatial homogeneity in the continuum
limit, the superscript i is dropped. At steady state, the above
equation reduces to

ε

2

∂2ρ±
∂x2

± (2ρ± − 1)
∂ρ±
∂x

= 0. (14)

In the limit ε → 0, this equation yields (1 − 2ρ±) ∂ρ±
∂x = 0,

i.e., ∂J±
∂x = 0, where J± gives us the bulk current of each

species of particle as

J+ = ρ+(1 − ρ+), J− = ρ−(1 − ρ−). (15)

Meanwhile, the boundary currents are expressed as

Jenter
+ = α+(1 − ρ1

+ − ρ1
−), Jexit

+ = βρL
+, (16)

Jenter
− = α−(1 − ρL

− − ρL
+), Jexit

− = βρ1
−. (17)

As evident from Eqs. (15)–(17), the bulk currents of both
species are decoupled and the particle of different kinds effec-
tively interacts only at the boundaries by blocking the entry to
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particles of other type. Therefore, the system can be viewed as
two independent single species TASEP models coupled only
at the boundaries. So, it is reasonable to define the effective
entrance rates α+

eff and α−
eff similar to Refs. [22,27] for the two

species of particles by exploiting the continuity of current in
bulk and the boundaries of the lattice as

α+
eff = J+

J+
α+ + J−

β

, α−
eff = J−

J−
α− + J+

β

. (18)

Due to the continuity of current in the bulk, J+ = Jenter
+ = Jexit

+
and J− = Jenter

− = Jexit
− . Since the extreme ends of the lattice

are coupled to two different finite reservoirs R+ and R−,
we utilize the particle number conservation condition which
gives

Nt+ = Nr+ + N+, Nt− = Nr− + N−, (19)

where N+ and N− denote the number of + and − particles
on the lattice, respectively. The above equation can also be
rewritten as

μ+ = ρr+ +
∫ 1

0
ρ+(x) dx, μ− = ρr− +

∫ 1

0
ρ−(x) dx.

(20)
Now our objective will be to calculate the effective entrance
rates α±

eff and the particle densities by utilizing Eqs. (15),
(16), and (17) along with Eq. (20). These explicitly ob-
tained expressions for the effective rates will help to quantify
the stationary properties of the system such as phase dia-
grams, density profiles, particle currents, and possible phase
transitions.

III. EXISTENCE OF PHASES

To explore the impact of coupling the bidirectional system
to separate particle reservoirs corresponding to each species,
we study the dynamic properties of the system in the α − β

parameter space and inspect all the stationary system prop-
erties such as density profiles, particle currents, and phase
transitions. In literature, the one-dimensional TASEP model
for open boundaries with parameters α and β has been re-
ported to exhibit three stationary phases, namely low density
(LD), high density (HD), and maximal current (MC) phase
[19]. Incorporating constraint on the available resources in-
duces an additional localized shock phase (SP) as a key
feature [39,42]. Furthermore, it has been observed that the
bidirectional TASEP model with unlimited resources ex-
hibits symmetry-breaking phenomenon [22,27]. Such a model
demonstrates two symmetric [i.e., low density (LD-LD) and
maximal current (MC-MC) phase] and two asymmetric [i.e.,
low-low (L-L) and high-low (H-L) phase] phases. In the
current model, if the restriction on the available resources
is removed, we retrieve the findings for the model with an
infinite number of particles [22,27].

Now, let us investigate the feasible stationary phases that
might persist in the homogeneous bidirectional TASEP model
with two finite particle reservoirs. To clarify, we denote a
phase as A-B where A and B illustrate a phase manifest by
the + and − particles, respectively. For the proposed model,
each species can be found solely in one of the following four
phases: low density, high density, maximal current, or shock.

We classify the various phases as symmetric or asymmetric
based on the nature of their observed stationary properties
such as density profiles, effective entrance rates, and particle
currents.

A. Symmetric phases

Here, we address the occurrence of various symmetric
phases and desire to calculate the explicit effective rates, den-
sity profiles, and phase boundaries. For such phases, the two
species of particles have identical dynamics as well as station-
ary properties including effective entrance rates, densities, and
currents. In particular, μ+ = μ−, α+

eff = α−
eff , ρ+ = ρ−, and

J+ = J−. Under these circumstances, the effective entrance
rates reduce to

α+
eff = αβρr+

βμ+ + αρr+
, α−

eff = αβρr−

βμ− + αρr−
, (21)

and in addition from Eq. (20) we acquire

ρr+ = ρr− . (22)

For the sake of simplification, we designate the common
effective entrance rate, filling factor, and reservoir quotient
by αeff , μ, and ρr , respectively. Our aim is to calculate the
effective entrance rates by utilizing the particle conservation
criteria to theoretically obtain the expressions for the phase
boundaries, shock position, and particle densities.

The system can be thought of as two independent single
species TASEP models coupled only at the boundaries, so
each species can be found in one of four phases, namely LD,
HD, MC, or SP. Keeping in mind the nature of the symmetric
phases, only four phases are possible, namely LD-LD, HD-
HD, MC-MC, and SP-SP. However, out of these, only two
are feasible, specifically LD-LD and MC-MC. The other pos-
sibilities such as SP-SP and HD-HD can be discarded based
on analytical arguments. Precisely, the HD-HD phase cannot
exist as the total particle density cannot be greater than 1. In
the case of the SP-SP phase, the constraint αeff = β must be
satisfied. However, this condition has no feasible solutions for
any value of μ. A summary of the explicit expressions for the
existential conditions, effective entrance rates, and the reser-
voir quotient is given in Table I. The stationary properties,
such as particle density, bulk current, reservoir quotient, etc.,
in each symmetric phase, are detailed in Appendix A.

B. Asymmetric phases

The symmetry of the system is affected by the local-
ized interactions between the distinct particles species at the
boundaries, leading to the SSB phenomenon when μ+ = μ−.

In the case μ+ �= μ−, only asymmetric phases exist where
the stationary properties of the two species of particles are
generally different. Specifically, the densities of the + and −
particles in the system are unequal, i.e.,

ρ+ �= ρ−, (23)

which leads to

α+
eff �= α−

eff . (24)

Each particle species can illustrate any of the four phases: low
density, high density, shock, or maximal current phase leading
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TABLE I. Summary of the existential conditions, effective entrance rates, shock position, and the reservoir quotients for the possible
symmetric as well as asymmetric phases for the proposed model. LD-LD and MC-MC represent symmetric phases, while H-L, M-L, S-L and
M-M correspond to asymmetric phases. The notations α±

eff and ρr± denote the effective entrance rates and the reservoir quotients for the two
particle species, whereas xw gives the position of shock in the S-L phase.

Phase Phase region/Shock position α±
eff ρr±

LD-LD αeff < min{0.5, β} μ − ρr
α(μ−β )−βμ+

√
4αβμ2+[α(μ−β )−βμ]2

2α

MC-MC 0.5 < min{αeff , β} αβ(2μ−1)
2μ(α+β )−1 μ − 0.5

H-L β < min{α+
eff , 0.5} α+

eff = α(β−1)β2ρr+
αρr+ (α−

eff −1)α−
eff +β2μ+ (β−1)

ρr+ = μ+ − (1 − β )

α−
eff < min{β, 0.5} α−

eff = αρr− +μ−−
√

(αρr− +μ− )2−4αβμ−ρr−
2μ− ρr− = 1

2(α+μ− ) (α(μ− − β ) + μ−(2μ− − 1)

+
√

[α(μ− − β ) + μ−(2μ− − 1)]2 + 4(1 − μ− )μ2−(α + μ− ) )

M-L 0.5 < min{α+
eff , β} α+

eff = βαρr+
βμ++4αρr+ J− ρr+ = μ+ − 0.5

α−
eff < min{β, 0.5} α−

eff = β(μ−+αρr− )
2βμ− ρr− = 1

8β(α+μ− ) [α[4β(μ− − 1) + 1] + 4βμ−(2μ− − 1)

−
√

β[αμ−ρr− +β(μ−−αρr− )2]

2βμ− +
√

(α[1 + 4β(μ− − 1) + 4μ−β(2μ− − 1)]
2 − 64β2(μ− − 1)μ2−(μ− + α))]

S-L 0 � xw � 1 α+
eff = βμ++αβρr+

2βμ+ ρr+ = (β−1)β2μ+
α[α−

eff (1−α−
eff )+β(β−1)]

α−
eff < min{β, 0.5} −

√
β[β(μ+−αρr+ )2−4(α−

eff −1)α−
eff αμ+ρr+ ]

2βμ+ ρr− = 1
2(α+μ− ) (α(μ− − β ) + μ−(2μ− − 1)

xw = β+μ+−ρr+ −1

α+
eff +β−1

α−
eff = μ−+αρr− −

√
(μ−+αρr− )2−4αβμ−ρr−

2μ− +
√

α2(β − μ− )2 + μ2− + 2αμ−[β + μ−(1 − 2β )])

M-M 0.5 < min{α+
eff , β} α+

eff = αρr+
βμ++αρr+

ρr+ = μ+ − 0.5

0.5 < min{α−
eff , β} α−

eff = αρr−
βμ−+αρr−

ρr− = μ− − 0.5

to the total number of possible asymmetric phases displayed
by the system being equal to 42 = 16. Keeping in view that
the total particle density is bounded above by 1, phases such as
M-H, H-M, S-M, M-S, H-S, S-H, and H-H are discarded. The
S-S phase can be eliminated based on mathematical argument.
Now, to calculate the effective entrance rates for the remaining
eight feasible phases, we need to determine the reservoir quo-
tients by utilizing the particle number conservation for each
species. These expressions will be further employed to obtain
the phase boundaries, the position of shock, and the particle
densities. Table I summarizes the existence criteria, effective
entrance rates, the position of shock, and the reservoir quo-
tients for each possible asymmetric phase. The theoretical
computation for the expressions of each phase in this category
is explained in Appendix B.

We have obtained the explicit theoretical expressions
for the stationary particle densities, phase boundaries, and
reservoir quotients for each feasible phase by employing a
mean-field approach. Additionally, the steady-state particle
densities can also be procured from Eq. (13) along with the
boundary conditions given by Eqs. (16) and (17) numerically
by utilizing a finite difference scheme outlined in Appendix C.
Although the approach is simple to use, the theoretical phase
boundaries cannot be obtained through this method, making
it difficult to conduct a thorough analysis of how different
parameters, such as the filling factors, affect the stationary
features of the system.

IV. RESULTS AND DISCUSSION

In this section, we inquire about the effect of coupling the
system with two finite reservoirs on the steady-state properties
and obtain the phase diagrams for specific values of μ+ and
μ− in the parameter space α − β. We perceive both qualitative
and quantitative changes in the topology of the phase diagram
specifically in terms of symmetry breaking for μ+ = μ− and
the emergence of other phases. The theoretical outcomes ob-
tained in the previous section involve several approximations;
therefore, to validate these results, we perform elementary
Monte Carlo simulations following the random-sequential up-
date rule for 2 × 107L time steps. At each simulation step, a
site is chosen randomly, upon which the dynamic rules de-
scribed in Sec. II are implemented. The initial 5% of the time
steps are scraped ensuring the system reaches a steady state.
We segregate our further analysis into two distinct categories:
(i) when the filling factors are symmetric, μ+ = μ−, and (ii)
when the filling factors are asymmetric, μ+ �= μ−.

A. Symmetric filling factor (μ+ = μ−)

Motivated by the findings of a bidirectional TASEP model
with a single infinite reservoir where symmetry-breaking phe-
nomena have been observed, we wish to study a constrained
system where the number of particles of both species is equal.
To simplify, we prefer to refer to the common filling fac-
tors by μ. Initially, for a very small value of μ, the phase
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FIG. 2. Stationary phase diagrams for (a) μ = 0.3, (b) μ = 0.9, (c) μ = 1.1, and (d) μ = 100. Symmetric phases are represented by
white regions, while the colored regions denote asymmetric phases. Red symbols correspond to Monte Carlo simulation results. The L-L
phase remains confined to a curve and acts as a boundary separating H-L and LD-LD phases, displaying a first order phase transition taking
average current as the order parameter. The size of the system is taken to be 1500.

diagram is comprised of one symmetric phase namely LD-LD
as presented in Fig. 2(a) for μ = 0.3. Despite the symmetry
in the dynamic rates of both + and − particles, the system
reveals two asymmetric phases: S-L and L-L. The stationary
characteristics of the two species vary in such phases. It is
noteworthy to specify that symmetry-breaking phenomenon
is observed in the system even when the total number of par-
ticles of each species is much less. Moreover, the L-L phase
remains confined to a curve forming a boundary separating
the LD-LD and the S-L phase regions. No substantial changes
are observed in the phase schema until μ = 0.5, except for
the expansion of the S-L and shrinkage in the LD-LD region.
With the enhancement in μ from 0.5, another symmetric phase
namely MC-MC appears in the phase diagram in addition to
the previously existing phases, which is evident from Fig. 2(b)
for μ = 0.9. This appearance of a symmetric maximal current
phase after μ = 0.5 is affirmed by Eqs. (A6) and (A7). At this
stage, adequate particles are available to fill the lattice entirely
and retain the MC-MC phase.

With the further advent in μ, no other symmetrical phase
is observed. As soon as μ > 1, an asymmetric phase precisely
H-L enters the phase schema next to the S-L phase, resulting
in the shrinkage of the later mentioned phase region [as pre-
scribed in Fig. 2(c)]. It can also be guaranteed from Eq. (B5)
that a necessary condition for the existence of H-L is μ > 1.
Further increasing the value of μ results in the expansion
of the H-L phase region and, as μ → ∞, the S-L phase
disappears altering the topology of the phase diagram both
qualitatively and quantitatively. Note that, in the extreme case
of μ → ∞, the rates α+ and α− approach the innate entrance
rates and the global limitation on the number of particles is
bygone. As expected, the system behaves as a bidirectional
two species model with infinite resources where two sym-
metric phases, LD-LD, MC-MC, and two asymmetric phases,
L-L and S-L persist [22,27]. Clearly, the number of ob-
served phases in the stationary phase diagrams changes from
3 → 4 → 5 → 4 as μ increases, displaying a nonmonotonic
trend.
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FIG. 3. Particle density histogram for (a) L-L and (b) H-L phases
with the parameters (α, β, μ) = (1, 0.1, 0.3) and (2,0.1,1.5), respec-
tively. Insets show the two-dimensional contour plot.

1. Spontaneous symmetry-breaking phenomenon (SSB)

One of the most remarkable features of a bidirectional
system is the spontaneous symmetry-breaking phenomenon.
To investigate this occurrence in detail through Monte Carlo
simulations, we generate particle density histograms by con-
tinuously monitoring the instantaneous particle densities ρ+
and ρ− of the positive and the negative species. In simula-
tions, considering a system size of L = 1000, initial 109 time
steps are discarded and then we gather data for 9 × 109 time
steps. If the peak in the density histogram distribution satisfies
ρ+ = ρ−, the corresponding phase is labeled as symmetric;
otherwise, it is labeled as an asymmetric phase. Figure 3
shows the typical density histogram plots for L-L and H-
L phases in the case of the symmetric filling factor with
(α, β, μ) = (1, 0.1, 0.3) and (2,0.1,1.5), respectively. In the
case of the L-L phase, Fig. 3(a) demonstrates that a peak
occurs for ρ+ < ρ− < 0.5, which means that the symmetry
breaking is observed. For the H-L phase, as anticipated, a peak
with ρ+ > 0.5 and ρ− < 0.5 is obtained as shown in Fig. 3(b).

FIG. 4. Plot of currents (a) (J+ + J−)/2, |J+ − J−|, J+, and J−
and (b) (J+ + J−)/2 vs β for α = 3 and μ = 1.1. Inset in (b) displays
a discontinuity in (J+ + J−)/2 near β ≈ 0.326. Solid lines represent
theoretical results and symbols refer to Monte Carlo simulations.

The SSB phenomenon can also be analyzed by inspecting
the nature of the currents corresponding to the two species of
particles as well as the possible phase transitions for a chosen
set of parameters. The currents J+ and J− when plotted with
respect to β for α = 3 with filling factor μ = 1.1, as shown
in Fig. 4(a), display a sudden change at the value β ≈ 0.326
after which they remain equal. To investigate this observation
in detail, we further plot the value of the currents (J+ + J−)/2
and |J+ − J−| for α = 3 and μ = 1.1. The average particle
current in the system along the line α = 3 also displays similar
behavior near the critical point β ≈ 0.326 [see Fig. 4(b)]. This
abrupt change is a consequence of the transition from symmet-
ric to asymmetric phases. Moreover, the behavior of |J+ − J−|
also changes at the point β ≈ 0.326, after which it remains
constant and takes the value zero, confirming the emergence
of the symmetric phase. Note that the phase diagram for
μ = 1.1 given by Fig. 2(c) illustrates a phase transition from
asymmetric to symmetric phases as S-L → H-L → L-L →
LD-LD → MC-MC as β varies. Further, when the particle
currents for each species are individually analyzed, it can be
noted that the current associated with the + particles is greater
than or equal to the current associated with the − particles [see
Fig. 4(b)]. Mathematically, the existential conditions given by
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FIG. 5. (a), (b) Position and height of the shock with respect to β for μ = 1.1 and α = 0.1, 1, 3. (c) Density profiles for fixed α = 1 and
β = 0.1, 0.2, 0.25 with μ = 1.1. (d), (e) Position and height of the shock with respect to α for μ = 1.1 and β = 0.1, 0.2, 0.3. (f) Density
profiles for fixed β = 0.2 and α = 0.5, 1, 2 with μ = 1.1. (g) Effective entrance rates with respect to μ for α = 2 and β = 0.1. (h) Density
profiles for α = 2 and β = 0.1 for μ = 0.5, 0.8, 1.1. (i) Position of the shock with respect to μ for α = 2, 20 and β = 0.1. Inset shows the
change in position of the shock with respect to μ for α = 20 and β = 0.1. In all figures, solid lines represent theoretical results and symbols
correspond to Monte Carlo simulations. The size of the lattice is taken to be 3000.

Eqs. (B5) and (B12) of H-L and S-L phases, respectively,
require the effective entrance rate of the negative species
to remain lower than the exit rate implying that the current
J− = α−

eff (1 − α−
eff ) is less than the current J+ = β(1 − β ).

Thus one can conclude that the transition from asymmetric
phases to symmetric phases with respect to current is of the
first order.

2. Shock dynamics

We now discuss the features of the localized shock that
appears in the density profile of the asymmetric S-L phase. In
the thermodynamic limit, Eq. (13) reduces to the continuity
equation given by ∂ρ±/∂t ′ ± ∂J±/∂x = 0 and the speed of
shock for + species is expressed as s = β − α+

eff . For the
existence of shock, its speed in the corresponding lattice must
be equal to zero. Using this condition, as well as the particle
number conservation, the steady-state properties of the S-L

phase have been thoroughly investigated and details are pro-
vided in Appendix B.

Now, we focus on the propagation of shock with respect
to the exit rate as well as the entry rate using the analytical
expression of shock position given by Eq. (B11), which is
detailed in Appendix B. From Fig. 5(a) and Fig. 5(c), one
can observe that upon the variation of exit rate, the shock
position changes continuously from 0 to 1. It means that,
with an increase in β after a certain critical value, marking
the phase boundary S-L and H-L, the shock enters the lat-
tice from the left end. Further increase in β shifts the shock
towards the right until it attains the value corresponding to
the phase boundary between S-L and L-L, beyond which
the shock leaves the lattice. In this case, the nonzero shock
height, which depends solely on β, decreases linearly [see
Fig. 5(b)]. Similarly, upon varying the entry rate, the position
of shock displays a shift from the right end towards the left
end [see Fig. 5(d) and Fig. 5(f)]. The height of this shock
remains constant throughout the variation of entry rate due
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FIG. 6. Effect of finite lattice length L on the S-L profile for fixed
(α, β, μ) = (1, 0.2, 1.1) and varied values of L.

to dependence on β that remains fixed [see Fig. 5(e)]. Thus,
if one considers the position and height of shock as order
parameters, then the transitions are of second and first order,
respectively.

The localized shock appears as a consequence of finite
resources; therefore, it is imperative to understand how the
filling factor impacts the propagation of shock. In this regard,
we choose a point from α − β space and analyze the impact
of varying μ on the properties of shock. Due to the depen-
dence of shock height only on β, one can readily conclude
that it remains constant with respect to μ. This subsequently
means that α+

eff remains constant throughout the S-L phase.
However, α−

eff is found to increase. To support these analytical
arguments, we have plotted the effective rates in Fig. 5(g)
and Fig. 5(h). Moreover, from Fig. 5(h) one can observe that
the shock shifts towards the right end with respect to μ for
constant (α, β ) until it reaches the left end and finally leaves
the lattices. This signifies the transition from S-L to H-L phase
that appears as a consequence of the effective entry rate ex-
ceeding the exit rate for + species [see Fig. 5(g)]. To validate
it mathematically, the effective rates for both the species have
been calculated in the limit μ → ∞ and are given as

α+
eff → 2αβ2(β − 1)

α3 + 2(β − 1)β2 − α2[2β − 1 +
√

(1 + α)2 − 4βα]
(25)

and

α−
eff → 1 + α −

√
(1 + α)2 − 4αβ

2
, (26)

which satisfies the existential conditions for the H-L phase.
Furthermore, the shift in position is predominantly linear for
higher values of μ, which can be viewed from Fig. 5(i) where
the derivative approaches a linear profile with an increase
in μ.

3. Finite size effect on asymmetric phases

It has been observed in past studies that TASEP with sym-
metry breaking phenomenon results in rigorous size-scaling
dependencies [27,33]. So, to further analyze this effect of the

FIG. 7. Region width (�) of low-low density (L-L) phase with
respect to β for fixed α = 0.5 and μ = 0.5. The solid curve is a guide
to the eye with best-fit polynomial for the discrete simulation data
(shown by red markers) until L ≈ 5000.

finite lattice length L on the shock-low density phase in the
proposed model, we have plotted the density profiles for a
point (α, β ) = (1, 0.2) chosen in the S-L region with μ = 1.1
for different values of L (see Fig. 6). As anticipated, the shock
profile is primarily sharpened by an increase in the value of L,
while the underlining S-L phase remains intact.

The other asymmetric phase, L-L, arises in the system even
for a relatively small number of particles of each species and
persists for its higher value, as illustrated in Fig. 2. According
to the mean-field approximation, this phase exists on a curve
while simulations reveal that it appears for a considerable
domain, as also reported earlier [29,30]. To study this effect of
the system size on the L-L phase, we plot the region width (�)
with respect to β for fixed α = 0.5 and μ = 0.5 in Fig. 7. As
observed from the figure, the region width � decreases with
an increase in L and almost shrinks to a restricted range at
L ≈ 5000. We have plotted �(L) with best-fit polynomial as
a guide to the eye for the discrete simulation data in Fig. 7. As
expected, based on simulations, the L-L phase region exists
for a significant range of β for smaller values of L, while, for
larger system size, it shrinks to a narrow region, thereby sub-
stantiating the theoretical observations in the thermodynamic
limit.

B. Asymmetric filling factors (μ+ �= μ−)

Now let us inquire into the bidirectional system when the
filling factors corresponding to the two species of particles
are distinct. Even if both the particle species demonstrate the
same phase, all their stationary properties cannot be equal,
specifically, the particle density, and therefore there is no
point in talking about the SSB phenomenon in this case. The
difference in the filling factor forces the system to mani-
fest only asymmetric phases. Without loss of generality, we
choose to discuss the crucial properties such as the density
profiles, phase diagrams, and phase transitions for the case
when μ+ > μ−. The reverse scenario where μ+ < μ− can be
investigated from the results attained for μ+ > μ− by utiliz-
ing the transformations discussed at the end of this section.

034103-9



GUPTA, PAL, AND GUPTA PHYSICAL REVIEW E 107, 034103 (2023)

To explore the impact of coupling the system with two
different reservoirs on the stationary properties, we analyze
our system in two distinct cases: (i) taking fixed small, inter-
mediate, or large values of μ−; simultaneously varying μ+
and (ii) fixing μ+ and changing values of μ−.

1. Stationary properties: Impact of μ+

Here, we aim to focus on the structural variations that occur
in the phase diagram when μ− is kept fixed and the filling
factor corresponding to positive particles μ+ changes. For the
case when both the filling factors were equal, our discussion
in Sec. IV A reveals that important topological changes were
encountered in the phase diagram at critical points μ = 0.5
and 1. Therefore, we consider three different circumstances:
μ− � 0.5, 0.5 < μ− � 1, and 1 < μ−.

When the filling factor μ− is kept less than min{0.5, μ+},
varying the other filling factor strongly influences the sta-
tionary phase diagram as presented in Fig. 2(a) and Fig. 8
for μ− = 0.3. Initially, when μ+ = μ−, three phases were
observed comprising one symmetric (LD-LD) and two asym-
metric phases (L-L and S-L). As soon as μ+ �= μ−, the
LD-LD phase disappears because the system no longer sat-
isfies symmetric conditions for the rates. This phase is
substituted by the asymmetric L-L phase where the particle
densities of the two species are dissimilar. The vanishing of
the symmetric phases also indicates the termination of the
SSB phenomena. As μ+ increases beyond 0.5, two phases,
M-L and H-L, emerge in the phase schema; see Fig. 8(a).
On further increment in μ+, the regions for M-L and H-L
grow in size. This expansion is attributed to the fact that,
with increasing μ+, the particle flux of the positive species
becomes larger while the flux of the negative species remains
unaltered. As μ+ → ∞, the S-L phase is no longer realized,
along with H-L and M-L covering the majority of the phase
diagram [see Fig. 8(b)]. Note that the number of phases with
respect to μ+ changes from three to four and then reduces to
three, which depicts a nonmonotonic trend.

We now concentrate on the stationary properties of the
system when μ− satisfies 0.5 < μ− � μ+. The outcomes
of the theoretical analysis and Monte Carlo simulations are
presented in Fig. 9 for μ− = 0.9 and different values of μ+.
There are four phases in the system for μ+ = μ− = 0.9 [see
Fig. 2(c)] among which LD-LD and MC-MC are the phases
which are the most sensitive to the change in the value of
μ+. These phases are replaced with L-L and M-M phases
for μ+ �= μ− along with the introduction of the maximal-low
(M-L) region into the phase representation. The persistence of
asymmetric maximal-low phase requires either one of μ+ or
μ− must be greater than 0.5. The corresponding topological
structure of the phase diagram is illustrated in Fig. 9(a). It
is important to note that, though the bulk characteristics of
the two particle species are the same in both MC-MC and
M-M phases, the particle densities are not equal at the bound-
aries. Specifically, the effective entrance rates are different
in cases of M-M [as confirmed from Eq. (24)] implying that
ρ+(0) �= ρ−(1). Now, as μ+ increases, the H-L phase enters
the phase diagram next to the S-L phase when μ+ > 1 [see
Fig. 9(b)]. This critical point after which H-L appears in the
phase schema is obtained from the condition that the existence

FIG. 8. Stationary phase diagrams for (a) μ+ = 1 and (b) μ+ =
20 with μ− = 0.3. Solid lines represent theoretical results and sym-
bols correspond to Monte Carlo simulations. The length of the lattice
is 1500.

of this phase requires α+
eff > β. It is compelling to mention

that Fig. 9(b) corresponds to a circumstance where the system
experiences the maximum number of phases at steady state.
With further increasing μ+, the M-L and H-L region expands
followed by the shrinkage in L-L and S-L regions. Eventually,
when μ+ → ∞, the S-L phase disappears from the phase
structure as shown in Fig. 9(b), with the system still displaying
the other four stationary phases. In this case, initially, the
number of phases displayed is 5, which reduces to 4, then
further rises to 5, and finally decreases to 4.

Upon comparison of the phase diagram in the present case
with that of the symmetric filling factor, the nature of the
S-L phase is expected to have a distinct behavior. One can
readily observe that the shock may move towards either of
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FIG. 9. Stationary phase diagrams for (a) μ+ = 0.98, (b) μ+ =
1.5, and (c) μ+ = 15 with μ− = 0.9. Solid lines represent theoretical
results and symbols correspond to Monte Carlo simulations. The
length of the lattice is set to 1500.

the boundaries with respect to β depending upon the fixed α

[see Fig. 10(b)]. However, with respect to α, the shock moves
towards the left for any constant value of β [see Fig. 10(c)].
The shock height has a behavior similar to the symmetric

conditions and remains constant with the variation of α while
other parameters are unchanged, whereas it decreases mono-
tonically with respect to β, provided the remaining parameters
are unaltered.

Finally, we intend to analyze how the filling factor μ+
impacts the dynamics of the S-L phase for a fixed value
of μ−. Towards this direction, we have plotted Fig. 10(a),
which depicts the variation of shock position and its change
(inset) with respect to μ+. Clearly, the shock enters from
the right end and leaves the lattice from the left end with
respect to μ+ for μ− = 0.3. One can readily conclude that
the variation is almost linear revealing that the shock position
is nearly proportional to the filling factor of the concerning
species.

2. Stationary properties: Impact of μ−

Now, let us focus on the properties of the system for fixed
μ+ and varying values of μ− such that μ+ > μ−. When μ+ <

0.5, two phases are realized in the phase diagram, namely L-L
and S-L phases with the majority of the region covered by
the L-L phase. One can see from Fig. 11(a) that, for μ− <

0.5 < μ+ = 0.55, four asymmetric phases are displayed by
the system (L-L, M-L, S-L, and H-L). As μ− takes the value
0.5, the H-L phase disappears from the phase diagram along
with the shrinkage of S-L and M-L regions as shown in
Fig. 11(b). This is because, with an increase in μ−, enough
negative particles are available in the system to hinder the
movement of the positive particles. Mathematically, it is also
affirmed by Eq. (B5) that the H-L phase does not persist for
μ− = 0.5. As soon as μ− > 0.5, the maximal-maximal (M-
M) phase emerges in the phase diagram changing its topology
qualitatively [see Fig. 11(c)]. It is noteworthy to mention here
that, when μ+ > μ−, the density of the positive particles
always remains greater than that of the negative particles.
One of the major consequences of coupling the system with
two particle reservoirs having distinct filling factors is the
appearance of the M-L phase in the phase diagram which
has not been observed in previous studies [22,27]. For fixed
α, β, and μ+ chosen such that these parameters lie in the
M-L region, we study the changes in the bulk densities for
the two particle species. In this phase, the positive particles
manifest maximal current phase with bulk density equal to
0.5, while the negative species depict an entrance dominated
phase with the bulk density given by Eq. (B14). It can be noted
that the value α−

eff is entirely expressed in terms of α, β, and
μ−. As we plot the effective entrance rate α−

eff against μ− for
α = 15, β = 0.8, and μ+ = 0.55, it can be observed that α−

eff
increases with increase in μ− [see Fig. 12(a)]. Eventually, at
the critical point μ− = 0.55, α−

eff takes the value 0.5, indicat-
ing the termination of low density phase corresponding to the
− particles. Now, to focus on the variation in particle density
corresponding to negative species with respect to change in
both α and β, we plotted ρ− vs α for different values of
β in Fig. 12(c). For fixed β, an increase in α enhances the
inflow of negative species leading to an increase in the bulk
density ρ−. Similarly, upon varying the exit rate, the density
corresponding to negative species increases with an increment
in β [see Fig. 12(b)].
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FIG. 10. Position of the shock vs (a) μ+ with μ− = 0.3, (b) β with μ+ = 1, μ− = 0.3, and (c) α with μ+ = 1, μ− = 0.3. The rest of the
parameter values are mentioned in the respective figures. Inset in (a) shows the change in xw with respect to μ+, which is almost linear. Inset
in (b) is a zoomed figure for smaller values of β. In all figures, solid lines represent theoretical results and symbols correspond to Monte Carlo
simulations. The length of the lattice is set to 1500.

Furthermore, it is necessary to point out the essential fea-
ture of the asymmetric M-M phase. Even though the bulk
densities for both species in the M-M phase take the value 0.5,
this phase is not identical to MC-MC, as in the former case
the boundary densities corresponding to + and − particles are
different. It is also evident from Eq. (B19) that, for μ+ �= μ−,

α+
eff − α−

eff = αβ(μ+ − μ−)∏
j∈{+,−}[2βμ j + α(2μ j − 1)]

�= 0. (27)

In the above analysis, our discussion was focused on the case
μ+ � μ−. The feasible phases, density profiles, and phase
diagrams for the case when μ+ < μ− can be obtained from
the results acquired when μ+ > μ− by the implementation of
the following transformation:

ρ+ ↔ ρ−,

μ+ ↔ μ−,

A-B phase ↔ B-A phase. (28)

We summarize eleven possible distinct regimes identified
for different filling factors in Fig. 13. Without loss of gener-
ality, for the case when μ+ = μ−, we have assumed that the
particle density of positive particles is greater than that of the
negative species, i.e., the system displays H-L and S-L phases
along the line μ+ = μ−. The density profiles corresponding
to different phases are shown in Fig. 14.

V. SWAPPING RATE OF TWO SPECIES
OTHER THAN 1 (s < 1)

Our above investigation, as well as previous studies
[27,34], reveal that the predictions of the mean-field approxi-
mation are consistently supported by Monte Carlo simulations
in the case of s = 1. Several attempts have been made focus-
ing on the case when the exchange rate of the two particle
species if they encounter each other is not equal to 1 [8,27].
It is reasonable to anticipate that the mean-field technique
will also perform admirably for the case of s �= 1 as well. In
this direction, if the mean-field approximation is employed on
Eqs. (4) and (5), we obtain the bulk currents corresponding to

both the particle species as

Ji−1,i
+ = ρ i−1

+ (1 − ρ i
+ − ρ i

−) + sρ i−1
+ ρ i

−,

Ji+1,i
− = ρ i+1

− (1 − ρ i
− − ρ i

+) + sρ i+1
− ρ i

+. (29)

Applying a similar approach as discussed in Sec. II, we use
Taylor’s series expansion for ρi±1 and, retaining the terms
up to second order, the continuum equation obtained using a
mean-field approach given by Eq. (29) reduces to

∂ρ±
∂t

= ∂

∂x

(
ε

2

∂ρ±
∂x

∓ ρ±(1 − ρ±)

)

± (1 − s)

(
ρ+

∂ρ−
∂x

+ ρ−
∂ρ+
∂x

)

± (1 − s)
ε

2

(
ρ+

∂2ρ−
∂x2

− ρ−
∂2ρ+
∂x2

)
. (30)

This equation can be solved numerically by using a finite
difference scheme, which has been outlined in Appendix C.
It has been discovered that this solution highly depends upon
the initial densities of the two species and does not match
with the simulation results [see Fig. 15(a)], while, in some
cases, agreement between simulations and mean-field results
are remarkable [see Fig. 15(b)]. This depicts the failure of
the mean-field theory in case the switching rate of the two
particle species is not equal to 1. The identical observation
was also made previously in Ref. [27] for the case of an
infinite reservoir. Therefore, an alternate technique needs to be
used to capture the system properties theoretically for s �= 1,
which will require further investigation.

VI. SUMMARY AND CONCLUSIONS

To summarize, we investigate a theoretical model that
mimics the bidirectional movement of particles along a one-
dimensional track, as is seen in the movement of cargo
vesicles driven by motor proteins on microtubules and vehic-
ular traffic on narrow roads. This model can be viewed as a
two species bidirectional totally asymmetric simple exclusion
process with distinct finite particle reservoirs for each species.
The entry of each particle species on the lattice is governed

034103-12



INTERPLAY OF RESERVOIRS IN A BIDIRECTIONAL … PHYSICAL REVIEW E 107, 034103 (2023)

FIG. 11. Stationary phase diagrams for (a) μ− = 0.3, (b) μ− =
0.5, and (c) μ− = 0.54 with μ+ = 0.55. Solid lines represent theo-
retical results and symbols correspond to Monte Carlo simulations.
The length of the lattice is taken to be 1500.

by the occupancy of the respective particle reservoir. The total
number of particles for each species remains constant in the
system and is characterized by the corresponding filling fac-
tor. Our model significantly differs from the previous studies

FIG. 12. (a) Effective entrance rate α−
eff with respect to μ− for

μ+ = 0.55, α = 15, and β = 0.8. (b) Particle density ρ− with re-
spect to α for distinct values of β. (c) Density profiles of the negative
species for different values of β, α = 3, μ+ = 1, and μ− = 0.3. The
rest of the parameter values are mentioned in the respective figures.
In all figures, solid lines represent theoretical results and symbols
correspond to Monte Carlo simulations. The length of the lattice is
taken to be 1500.

where only one unified reservoir is taken into account. We
theoretically examine the effect of the system dynamics on
the crucial steady-state properties, such as phase diagrams,
density profiles, phase boundaries, and phase transitions,
in the framework of mean-field theory. All these theoreti-
cal outcomes are validated through extensive Monte Carlo
simulations.

034103-13



GUPTA, PAL, AND GUPTA PHYSICAL REVIEW E 107, 034103 (2023)

FIG. 13. Different dynamic regions based on the filling factors
μ+ and μ−. Eleven distinct regions numbered I to XI have phase
regimes that are qualitatively different. Table II provides a tabular
description of the phase regimes that can exist in each of these
different regions. In the table, a phase that does not exist is indicated
by empty entries.

To study the impact of coupling the lattice to different
finite reservoirs, we have explicitly considered two different
scenarios: (i) the symmetric case when the filling factors for
both the species are equal and (ii) the asymmetric case where
these factors are different. In the former case, we observe a
maximum of five stationary phases, two symmetric phases
namely low density (LD-LD), maximal current phase (MC-
MC), and three asymmetric phases: low-low density (L-L),
shock-low density (S-L), and high-low density (H-L) phase.
Despite the dynamics of the two species being identical,
symmetry breakdown is recorded in this case, which persists

TABLE II. The phases that exists in eleven different possible
phase regions of the bidirectional system. The empty entries denote
the phase that does not exist in the corresponding region.

Phase I II III IV V VI VII VIII IX X XI

S-L
√ √ √ √ √ √ √

H-L
√ √ √

M-L
√ √ √

MC-MC
√ √

L-L
√ √ √ √ √ √ √ √ √ √ √

LD-LD
√ √ √

M-M
√ √ √ √

L-M
√ √ √

L-H
√ √

L-S
√ √ √ √

even for a very small magnitude of the filling factor. Further,
particle density histograms are studied to examine the effect of
this phenomenon through Monte Carlo simulation results. The
S-L phase is an asymmetric phase that has not been previously
obtained in bidirectional systems with infinite resources. The
number of perceived phases in the phase diagram changes
from 3 → 4 → 5 → 4 with increasing values of the common
filling factor, which represents a nonmonotonic trend.

For the case when the filling factors are unequal, a max-
imum of 42 = 16 asymmetric phases can be observed in
the system. Out of these, only eight phases are realized
in the phase schema and the rest are discarded based on
either physical or analytical arguments. Since, in this cat-
egory, the two filling factors always remain different, the
system cannot manifest a symmetric phase. The introduction
of asymmetric filling factors leads to significant changes in
the phase structure both quantitatively and qualitatively. A
noteworthy feature of the phase diagrams is the presence
of maximal-low (M-L) and maximal-maximal (M-M) phases
which have not been detected in analogous systems with
infinite resources. Even in this case, the variation in the num-
ber of phases in the phase diagram shows a nonmonotonic
trend.

For deeper analysis of the S-L phase, we study the position
and the height of the shock as well as the particle densities of
both the species with respect to change in all the parameters:
entry-exit rates and the filling factors. The exact number,
dynamic characteristics, and region of various phases rely on
the number of particles in each reservoir. We have identified
the critical points where the appearance and disappearance of
phases occur in the system.

It is important to note that the proposed model differs from
the previous study [32] in several ways. Unlike the bidirec-
tional system with reservoir crowding and a global constraint
on the total number of particles in the system examined in
the previous study, the current model imposes a global con-
straint on the number of resources of an individual species
and regulates only the entrance rates based on the reservoir’s
capacity. Additionally, the present model introduces another
feature—the M-L phase, which was not observed in Ref. [32].
All the phase boundaries in the present study exhibit a concave
downward shape, in contrast to the convex upward trend,
observed in the case of a unified reservoir [32].

The proposed model is an attempt to qualitatively under-
stand the steady-state properties of a bidirectional system
with a constraint on the number of particles of both species.
This study might contribute to a greater understanding of
the intricate dynamics in numerous biological and physical
transport processes, both natural and man-made. It is sig-
nificant to mention here that the study of our model in the
case of s �= 1 may be rather convoluted and it is difficult to
conclude anything from the proposed analysis which works
very well for s = 1. This situation may be addressed in our
subsequent works. Additionally, the model can be generalized
by including dynamics such as the creation and annihilation
of particles on the lattice, which might add intriguing features
to the system’s stationary properties.
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FIG. 14. Density profiles for (a) H-L, (b) L-L, (c) S-L phases, (d) LD-LD and (e) MC-MC with (α, β, μ) =
(2, 0.2, 10), (2, 0.315, 1.1), (1, 0.1, 0.3), (1, 0.5, 0.9), and (3.5, 0.8, 1.1) with symmetric filling factors, and (f) M-M phase with
(α, β, μ+, μ−) = (4.5, 0.8, 15, 0.9). The lattice length is taken to be 1500. Red and blue solid lines are mean-field results for + and −
particles, respectively, while filled markers correspond to Monte Carlo simulations.
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APPENDIX A: SYMMETRIC PHASES

There are two feasible symmetric phases for which the
explicit expressions for the phase boundaries, particle den-
sity, and the effective entrance rate αeff can be theoretically
computed by utilizing the framework presented in Secs. II
and III A. In all of these phases, the two species of particles
display identical stationary properties, which are examined in
the following discussion.

(i) Low density phase (LD-LD). In this phase, both the
species of the particles are in low density with bulk densities
equal to αeff and the current corresponding to both the particle
species is equal to

J+ = J− = αeff (1 − αeff ). (A1)

As a result, Eq. (20) reduces to

μ = ρr + αeff . (A2)

Upon solving Eqs. (21) and (A2) along with the fact that
α+

eff = α−
eff , the reservoir quotient is obtained as

ρr = 1

2α
(α(μ − β ) − βμ

+
√

4αβμ2 + [α(μ − β ) − βμ]2). (A3)

The existential conditions of this phase require the effective
entrance to be less than 0.5 and β, which leads to

min{0.5, β} >
1

2α
(α(μ + β ) + βμ

−
√

4αβμ2 + [α(μ − β ) − βμ]2). (A4)

Note that, in the limiting case of μ → ∞, αeff is given by
αβ/(α + β ), which matches with the corresponding effective
entry rate obtained for the LD-LD phase in the case of the
bidirectional model with no restriction on the number of par-
ticles in the system [27].

(ii) Maximal current phase (MC-MC). This case persists
when both the particle species are individually in the MC
phase with bulk densities 0.5 and bulk particle currents J+ =
J− = 0.25. Such a phase is characterized by the following
conditions:

αeff > 0.5, β > 0.5. (A5)
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FIG. 15. (a) Density profile of the two particle species for α =
0.7, β = 1, μ1 = μ2 = 1.1, and s = 0.8 obtained using mean-field
theory. Dashed lines correspond to solution obtained with initial
condition ρ+ = ρ− = 0.4, dotted line is plotted for initial con-
dition ρ+ = ρ− = 0.7, and symbols correspond to Monte Carlo
simulations. (b) Density profile of the two particle species for
α = 0.5, β = 0.2, μ1 = μ2 = 1.1, and s = 0.8. Solid lines rep-
resent mean-field results and symbols correspond to Monte Carlo
simulations.

Using Eq. (20), we have

ρr = μ − 0.5, (A6)

which provides the existential conditions in the α − β plane
as

α >
2βμ

(2μ − 1)(2β − 1)
, β > 0.5. (A7)

Further, it is evident from Eq. (A6) that the MC-MC phase
exists only when

μ > 0.5. (A8)

For μ → ∞, Eq. (A7) reduces to α >
β

2β−1 , which is the
condition for the MC-MC phase in the standard bidirectional
TASEP with a common reservoir containing infinite resources
[27].

APPENDIX B: ASYMMETRIC PHASES

In each of the asymmetric phases discussed below, first the
effective entrance rates α+

eff and α−
eff are computed, which are

then utilized to determine particle densities, the position of
shock, and existential criteria in each phase.

(i) High-low density phase (H-L). It is assumed that the +
particles exhibit high density phase where density is greater
than 0.5 and the − particles portray low density phase. Em-
ploying the expressions for currents given by Eq. (15), we
attain

J+ = β(1 − β ), J− = α−
eff (1 − α−

eff ). (B1)

Substituting the above expressions of J+ and J− in Eq. (18),
the value of effective entrance rates is procured as

α−
eff = 1

2μ−

(
αρr− + μ− −

√
(αρr− + μ−)2 − 4αβμ−ρr−

)
,

α+
eff = α(β − 1)β2ρr+

αρr+ (α−
eff − 1)α−

eff + β2μ+(β − 1)
. (B2)

Utilizing the particle number conservation given by Eq. (20)
provides

μ+ = ρr+ + 1 − β, μ− = ρr− + α−
eff , (B3)

which along with Eq. (B2) gives the reservoir quotients as

ρr+ = μ+ − (1 − β ),

ρr− =
(
α(μ− − β ) + μ−(2μ− − 1) + {

α(μ− − β )

2(α + μ−)

+ μ−(2μ− − 1)2 + 4(1 − μ−)μ2
−(α + μ−)

}0.5)
2(α + μ−)

.

(B4)

These calculated values of the reservoir quotients can be re-
placed in Eq. (B2) to obtain the effective entrance rates. The
feasible region corresponding to this phase satisfies

β < min{α+
eff , 0.5}, α−

eff < min{β, 0.5}, (B5)

along with the filling factors satisfying μ+ � μ− and μ+ >

0.5. Moreover, the condition α+
eff > β is satisfied only if μ− <

0.5 < μ+ or (0.5 < μ− and 1 < μ+). It is worth pointing
out that, in case both the filling factors are equal, the SSB
phenomenon is observed. Moreover, all the stationary prop-
erties such as particle densities, reservoir’s quotients, and the
particle currents for the case of symmetric filling factors can
be calculated by substituting μ+ = μ− = μ in all the above
obtained expressions.

Clearly, when both μ+ → ∞ and μ− → ∞, the condi-
tions for the existence of the H-L phase in a bidirectional
system with an infinite particle reservoir is recovered [27].

(ii) Shock-low density phase (S-L). We presume that the
+ particles display shock phase, while the − particles are in
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low density phase. This phase persists when the boundary-
controlling parameters assure the following constraints:

J+ = β(1 − β ) = α+
eff (1 − α+

eff ),

J− = α−
eff (1 − α−

eff ),
(B6)∫ 1

0
ρ+ dx =

∫ xw

0
α+

eff dx +
∫ 1

xw

(1 − β ) dx,

where xw is the position of shock in the density profile. The
effective entrance rates for the particles can be retrieved from
Eq. (18) as

α−
eff = 1

2μ−
(μ− + αρr− −

√
(μ− + αρr− )2 − 4αβμ−ρr− ),

α+
eff = 1

2βμ+
(βμ+ + αβρr+ − {β[β(μ+ − αρr+ )2

− 4α(α−
eff − 1)α−

effμ+ρr+ ]}0.5). (B7)

Now we make use of Eq. (20) to calculate the reservoir quo-
tient for − particles, which yields

ρr− = 1

2(α + μ−)
(α(μ− − β ) + μ−(2μ− − 1)

+
√

α2(β − μ−)2 + μ2− + 2αμ−[β + μ−(1 − 2β )]).

(B8)

Since the existence of such a phase requires α+
eff = β, we have

ρr+ = (β − 1)β2μ+
α[α−

eff (1 − α−
eff ) + β(β − 1)]

. (B9)

The position of the shock can be procured by utilizing
Eqs. (20) and (B6) along with Eqs. (B8) and (B10), as

xw = β + μ+ − ρr+ − 1

2β − 1
. (B10)

Finally, the boundary parameters must satisfy the following
conditions for the S-L phase to exist:

0 � xw � 1, α−
eff < min{β, 0.5}. (B11)

It must be noted that, when μ+ = μ−, spontaneous
symmetry breaking is observed in the system and the corre-
sponding results can be attained by replacing μ+ and μ− by μ

in all the above expressions. Furthermore, this phase vanishes
when both μ+ and μ− tend to ∞.

(iii) Maximal-low phase (M-L). In this phase, it is assumed
that the + particles manifest maximal current with density
given by 0.5, whereas the average particle density of − par-
ticles remains less than 0.5. Here, the particle currents are

J+ = 0.25, J− = α−
eff (1 − α−

eff ). (B12)

These expressions when substituted in Eq. (18) and solved for
the effective entrance rates provide

α−
eff = 1

2βμ−
(β(μ− + αρr− )

−
√

β[αμ−ρr− + β(μ− − αρr− )2]),

α+
eff = βαρr+

βμ+ + 4αρr+J−
, (B13)

and further α+
eff can be calculated. Moreover, from Eqs. (20)

and (B14), we have

ρr+ = μ+ − 0.5, (B14)

ρr− = (α[4β(μ− − 1) + 1] + 4βμ−(2μ− − 1)

8β(α + μ−)

+ {(α[1 + 4β(μ− − 1)] + 4μ−β(2μ− − 1))2

− 64β2(μ− − 1)μ2
−(μ− + α)}0.5). (B15)

Using the above obtained expressions for the boundary
parameters, the conditions of existence for this phase are
framed as

min{α+
eff , β} > 0.5 > α−

eff ,

μ+ > max{μ−, 0.5}. (B16)

(iv) Maximal-maximal phase (M-M). All the stationary
properties of this phase are similar to the MC-MC phase
except the fact that here α+

eff �= α−
eff , which further implies

μ+ �= μ−. In this phase, the reservoirs’ quotients are given
by ρr j = μ j − 0.5 for j ∈ {+,−}. Since these quotients must
be non-negative, the existential criteria for this phase are

min{μ+, μ−} > 0.5, min{α+
eff , α

−
eff , β} > 0.5, (B17)

where

α+
eff = αρr+

βμ+ + αρr+
, α−

eff = αρr−

βμ− + αρr−
. (B18)

(v) Low-low density phase (L-L). This phase exists when
the particle densities for both species are entry dominated and
remain less than 0.5. Such a phase exists when

α+
eff < min{β, 0.5}, α−

eff < min{β, 0.5}. (B19)

The corresponding particle currents are expressed as

J+ = α+
eff (1 − α+

eff ), J− = α−
eff (1 − α−

eff ). (B20)

Utilizing the fact that the particles are conserved along with
ρ+ = α+

eff and ρ− = α−
eff , we have

ρr+ = μ+ − α+
eff , ρr− = μ− − α−

eff . (B21)

Solving Eq. (18) along with Eqs. (B20) and (B21), the effec-
tive entrance rates for both species can be obtained. In the case
of symmetric filling factors, one can substitute μ+ = μ− = μ

in all of the above expressions.
The existential conditions of the phases such as L-S, L-M,

and L-H can be obtained by interchanging the roles of the
parameters for the + and the − particles in S-L, M-L, and
H-L phases, respectively.

APPENDIX C: NUMERICAL SCHEME

In this section, we delineate a numerical approach to obtain
the density profiles for the bidirectional system. Our system
seems quite simple but it is difficult to solve second order
differential equations (13) and (30) analytically. The term in-
volving time is retained in the system and steady-state particle
density for both the species is captured in the limit t → ∞,
where t is the total number of time steps to guarantee the
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occurrence of steady state. The differential equation is dis-
cretized by choosing �x = 1/L and �t is selected so that
the stability criteria �t/�x2 � 1 is maintained. Time and
the space derivatives involved in the equation are replaced
with forward and central difference formulas. Denoting the
approximation to ρ j at (i�x, n�t ) by ρ i,n

j for j ∈ {+, −}, we
obtain the following equations:

ρ i,n+1
+ = ρ i,n

+ + ε�t

2
(1 − s)ρ i,n

+

(
ρ i+1,n

− − 2ρ i,n
− + ρ i−1,n

−
�x2

)

+ ε�t

2
[1 − (1 − s)ρ i,n

− ]

(
ρ i+1,n

+ − 2ρ i,n
+ + ρ i−1,n

+
�x2

)

+ �t[2ρ i,n
+ − 1 + (1 − s)ρ i,n

− ]

(
ρ i+1,n

+ − ρ i−1,n
+

2�x

)

+ �t (1 − s)ρ i,n
−

(
ρ i+1,n

− − ρ i−1,n
−

2�x

)
(C1)

for the positive particles. Since the above equation is not valid
for i = 1 and i = L and both the species interact explicitly
only at the boundaries, we cannot directly include bound-

ary conditions in the above discretization. Instead, we utilize
Eqs. (7) and (8), which can be written as

ρ1,n+1
+ = ρ1,n

+ + �t

[
α

(
1 −

∑
ρ i,n

+
Lμ+

)
(1 − ρ1,n

+ − ρ1,n
− )

− ρ1,n
+ (1 − ρ2,n

+ − ρ2,n
− ) − sρ1,n

+ ρ2,n
−

]
,

ρL,n+1
+ = ρL,n

+ + �t[ρL−1,n
+ (1 − ρL,n

+ − ρL,n
− )

+ sρL−1,n
+ ρL,n

− − βρL,n
+ ]. (C2)

In the case of s = 1, Eq. (C1) simplifies considerably and is
given by

ρ i,n+1
+ = ρ i,n

+ + ε�t

2

(
ρ i+1,n

+ − 2ρ i,n
+ + ρ i−1,n

+
�x2

)

+ �t

(
ρ i+1,n

+ − ρ i−1,n
+

2�x

)
(2ρ i,n

+ − 1). (C3)

Similar equations can be written for the negative particles as
well.

[1] B. Alberts, A. Johnson, P. Walter, J. Lewis, M. Raff, and K.
Roberts, Molecular Cell Biology (Garland Science, New York,
2008).

[2] C. Appert-Rolland, M. Ebbinghaus, and L. Santen, Intracellular
transport driven by cytoskeletal motors: General mechanisms
and defects, Phys. Rep. 593, 1 (2015).

[3] D. Chowdhury, L. Santen, and A. Schadschneider, Statistical
physics of vehicular traffic and some related systems, Phys.
Rep. 329, 199 (2000).

[4] M. Schreckenberg, A. Schadschneider, K. Nagel, and N. Ito,
Discrete stochastic models for traffic flow, Phys. Rev. E 51,
2939 (1995).

[5] R. Mahnke, J. Kaupužs, and I. Lubashevsky, Probabilistic de-
scription of traffic flow, Phys. Rep. 408, 1 (2005).

[6] V. Belitsky, J. Krug, E. J. Neves, and G. M. Schütz, A cellular
automaton model for two-lane traffic, J. Stat. Phys. 103, 945
(2001).

[7] B. Widom, J. L. Viovy, and A. D. Defontaines, Repton model
of gel electrophoresis and diffusion, J. Phys. I (France) 1, 1759
(1991).

[8] T. Chou and D. Lohse, Entropy-Driven Pumping in Zeo-
lites and Biological Channels, Phys. Rev. Lett. 82, 3552
(1999).

[9] V. Popkov and G. M. Schütz, Steady-state selection in driven
diffusive systems with open boundaries, Europhys. Lett. 48, 257
(1999).

[10] J. Krug, Boundary-Induced Phase Transitions in Driven Diffu-
sive Systems, Phys. Rev. Lett. 67, 1882 (1991).

[11] A. B. Kolomeisky, G. M. Schütz, E. B. Kolomeisky, and J. P.
Straley, Phase diagram of one-dimensional driven lattice gases
with open boundaries, J. Phys. A: Math. Gen. 31, 6911 (1998).

[12] H. J. Hilhorst and C. Appert-Rolland, A multi-lane tasep model
for crossing pedestrian traffic flows, J. Stat. Mech. (2012)
P06009.

[13] B. Holldobler and E. O. Wilson, The Ants (Harvard University
Press, Cambridge, MA, 1990).

[14] D. Chowdhury, A. Schadschneider, and K. Nishinari, Physics
of transport and traffic phenomena in biology: From molecular
motors and cells to organisms, Phys. Life Rev. 2, 318 (2005).

[15] T. Chou and G. Lakatos, Clustered Bottlenecks in mRNA
Translation and Protein Synthesis, Phys. Rev. Lett. 93, 198101
(2004).

[16] C. T. MacDonald, J. H. Gibbs, and A. C. Pipkin, Kinetics of
biopolymerization on nucleic acid templates, Biomol.: Original
Res. Biomol. 6, 1 (1968).

[17] C. T. MacDonald and J. H. Gibbs, Concerning the kinetics
of polypeptide synthesis on polyribosomes, Biomol.: Original
Res. Biom. 7, 707 (1969).

[18] B. Derrida, E. Domany, and D. Mukamel, An exact solution
of a one-dimensional asymmetric exclusion model with open
boundaries, J. Stat. Phys. 69, 667 (1992).

[19] B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, Exact
solution of a 1d asymmetric exclusion model using a matrix
formulation, J. Phys. A: Math. Gen. 26, 1493 (1993).

[20] B. Derrida and M. R. Evans, The asymmetric exclusion model:
exact results through a matrix approach, in Non Equilibrium
Statistical Mechanics in One Dimension, edited by V. Privman
(Cambridge University Press, Cambridge, UK, 1997), pp. 277–
304.

[21] G. Schötz and E. Domany, Phase transitions in an exactly sol-
uble one-dimensional exclusion process, J. Stat. Phys. 72, 277
(1993).

034103-18

https://doi.org/10.1016/j.physrep.2015.07.001
https://doi.org/10.1016/S0370-1573(99)00117-9
https://doi.org/10.1103/PhysRevE.51.2939
https://doi.org/10.1016/j.physrep.2004.12.001
https://doi.org/10.1023/A:1010361022379
https://doi.org/10.1051/jp1:1991239
https://doi.org/10.1103/PhysRevLett.82.3552
https://doi.org/10.1209/epl/i1999-00474-0
https://doi.org/10.1103/PhysRevLett.67.1882
https://doi.org/10.1088/0305-4470/31/33/003
https://doi.org/10.1088/1742-5468/2012/06/P06009
https://doi.org/10.1016/j.plrev.2005.09.001
https://doi.org/10.1103/PhysRevLett.93.198101
https://doi.org/10.1002/bip.1968.360060102
https://doi.org/10.1002/bip.1969.360070508
https://doi.org/10.1007/BF01050430
https://doi.org/10.1088/0305-4470/26/7/011
https://doi.org/10.1007/BF01048050


INTERPLAY OF RESERVOIRS IN A BIDIRECTIONAL … PHYSICAL REVIEW E 107, 034103 (2023)

[22] M. R. Evans, D. P. Foster, C. Godrèche, and D. Mukamel,
Spontaneous Symmetry Breaking in a One Dimensional Driven
Diffusive System, Phys. Rev. Lett. 74, 208 (1995).

[23] V. Soppina, A. K. Rai, A. J. Ramaiya, P. Barak, and R. Mallik,
Tug-of-war between dissimilar teams of microtubule motors
regulates transport and fission of endosomes, Proc. Natl. Acad.
Sci. USA 106, 19381 (2009).

[24] W. O. Hancock, Bidirectional cargo transport: Moving beyond
tug of war, Nat. Rev. Mol. Cell Biol. 15, 615 (2014).

[25] T. Kretz, A. Grünebohm, M. Kaufman, F. Mazur, and M.
Schreckenberg, Experimental study of pedestrian counterflow
in a corridor, J. Stat. Mech. (2006) P10001.

[26] W. H. K. Lam, J. Lee, and C. Y. Cheung, A study of the
bi-directional pedestrian flow characteristics at hong kong sig-
nalized crosswalk facilities, Transportation 29, 169 (2002).

[27] M. R. Evans, D. P. Foster, C. Godrèche, and D. Mukamel,
Asymmetric exclusion model with two species: Spontaneous
symmetry breaking, J. Stat. Phys. 80, 69 (1995).

[28] A. Jindal and A. K. Gupta, Exclusion process on two intersect-
ing lanes with constrained resources: Symmetry breaking and
shock dynamics, Phys. Rev. E 104, 014138 (2021).

[29] N. Sharma and A. K. Gupta, Phase segregation and spon-
taneous symmetry breaking in a bidirectional two-channel
non-conserving model with narrow entrances, J. Stat. Mech.
(2017) 043211.

[30] M. Clincy, M. R. Evans, and D. Mukamel, Symmetry breaking
through a sequence of transitions in a driven diffusive system,
J. Phys. A: Math. Gen. 34, 9923 (2001).

[31] V. Popkov and I. Peschel, Symmetry breaking and phase coex-
istence in a driven diffusive two-channel system, Phys. Rev. E
64, 026126 (2001).

[32] B. Pal and A. K. Gupta, Persistence of spontaneous
symmetry breaking in bidirectional transport system with
reservoir crowding, J. Phys. A: Math. Theor. 54, 405002
(2021).

[33] D. W. Erickson, G. Pruessner, B. Schmittmann, and R. K. P.
Zia, Spurious phase in a model for traffic on a bridge, J. Phys.
A: Math. Gen. 38, L659 (2005).

[34] P. F. Arndt, T. Heinzel, and V. Rittenberg, First-order phase
transitions in one-dimensional steady states, J. Stat. Phys. 90,
783 (1998).

[35] A. K. Verma, N. Sharma, and A. K. Gupta, Far-from-
equilibrium bidirectional transport system with constrained
entrances competing for pool of limited resources, Phys. Rev.
E 97, 022105 (2018).

[36] A. Jindal, A. B. Kolomeisky, and A. K. Gupta, Effect of lo-
cal dissociations in bidirectional transport of driven particles,
J. Stat. Mech. (2020) 113202.

[37] A. Jindal and A. K. Gupta, Effect of local dissociation on sym-
metry breaking in exclusion model constituted by bridge lane

and input-output taseps, Chaos Solitons Fractals 152, 111354
(2021).

[38] L. J. Cook and R. K. P. Zia, Feedback and fluctuations in a to-
tally asymmetric simple exclusion process with finite resources,
J. Stat. Mech. (2009) P02012.

[39] L. J. Cook, R. K. P. Zia, and B. Schmittmann, Competition
between multiple totally asymmetric simple exclusion pro-
cesses for a finite pool of resources, Phys. Rev. E 80, 031142
(2009).

[40] L. J. Cook, J. J. Dong, and A. LaFleur, Interplay between finite
resources and a local defect in an asymmetric simple exclusion
process, Phys. Rev. E 88, 042127 (2013).

[41] C. A. Brackley, L. Ciandrini, and M. C. Romano, Multiple
phase transitions in a system of exclusion processes with limited
reservoirs of particles and fuel carriers, J. Stat. Mech. (2012)
P03002.

[42] D. A. Adams, B. Schmittmann, and R. K. P. Zia, Far-from-
equilibrium transport with constrained resources, J. Stat. Mech.
(2008) P06009.

[43] A. K. Verma and A. K. Gupta, Stochastic transport on flexible
lattice under limited resources, J. Stat. Mech. (2019) 103210.

[44] L. Ciandrini, I. Neri, J. C. Walter, O. Dauloudet, and A.
Parmeggiani, Motor protein traffic regulation by supply-
demand balance of resources, Phys. Biol. 11, 056006 (2014).

[45] P. Greulich, L. Ciandrini, R. J. Allen, and M. C. Romano, Mixed
population of competing totally asymmetric simple exclusion
processes with a shared reservoir of particles, Phys. Rev. E 85,
011142 (2012).

[46] A. Schadschneider, D. Chowdhury, and K. Nishinari, Stochastic
Transport in Complex Systems: From Molecules to Vehicles
(Elsevier, Amsterdam, 2010).

[47] J. Krug, Phase separation in disordered exclusion models, Braz.
J. Phys. 30, 97 (2000).

[48] W. S. B. Dwandaru, in Numerical Study of the Totally Asym-
metric Simple Exclusion Process that Consists of Only a Single
Site for Modeling the Dynamics of Coulomb Blockade in 2D
Quantum Dot, AIP Conf. Proc. No. 1788 (AIP Publishing LLC,
Melville, NY, 2017), p. 030070.

[49] A. John, A. Schadschneider, D. Chowdhury, and K. Nishinari,
Traffic Like Collective Movement of Ants on Trails: Absence
of a Jammed Phase, Phys. Rev. Lett. 102, 108001 (2009).

[50] A. Kunwar, A. John, K. Nishinari, A. Schadschneider, and D.
Chowdhury, Collective traffic-like movement of ants on a trail:
Dynamical phases and phase transitions, J. Phys. Soc. Jpn. 73,
2979 (2004).

[51] B. Schmittmann and R. K. P. Zia, Statistical mechanics of driven
diffusive systems, Phase Transit. Crit. Phenom. 17, 3 (1995).

[52] B. Schmittmann and R. K. P. Zia, Driven diffusive systems.
An introduction and recent developments, Phys. Rep. 301, 45
(1998).

034103-19

https://doi.org/10.1103/PhysRevLett.74.208
https://doi.org/10.1073/pnas.0906524106
https://doi.org/10.1038/nrm3853
https://doi.org/10.1088/1742-5468/2006/10/P10001
https://doi.org/10.1023/A:1014226416702
https://doi.org/10.1007/BF02178354
https://doi.org/10.1103/PhysRevE.104.014138
https://doi.org/10.1088/1742-5468/aa6813
https://doi.org/10.1088/0305-4470/34/47/301
https://doi.org/10.1103/PhysRevE.64.026126
https://doi.org/10.1088/1751-8121/ac21e2
https://doi.org/10.1088/0305-4470/38/41/L01
https://doi.org/10.1023/A:1023229004414
https://doi.org/10.1103/PhysRevE.97.022105
https://doi.org/10.1088/1742-5468/abbed7
https://doi.org/10.1016/j.chaos.2021.111354
https://doi.org/10.1088/1742-5468/2009/02/P02012
https://doi.org/10.1103/PhysRevE.80.031142
https://doi.org/10.1103/PhysRevE.88.042127
https://doi.org/10.1088/1742-5468/2012/03/P03002
https://doi.org/10.1088/1742-5468/2008/06/P06009
https://doi.org/10.1088/1742-5468/ab417c
https://doi.org/10.1088/1478-3975/11/5/056006
https://doi.org/10.1103/PhysRevE.85.011142
https://doi.org/10.1590/S0103-97332000000100009
https://doi.org/10.1103/PhysRevLett.102.108001
https://doi.org/10.1143/JPSJ.73.2979
https://doi.org/10.1016/S1062-7901(06)80014-5
https://doi.org/10.1016/S0370-1573(98)00005-2

