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Brillouin propagation modes of cold atoms undergoing Sisyphus cooling
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An exact expression for the average velocity of cold atoms in a driven, dissipative optical lattice in terms of the
amplitudes of atomic density waves is derived from semiclassical equations for the phase space densities of the
Zeeman ground-state sublevels. The calculations are for a Jg = 1/2 → Je = 3/2 transition, as it is customary
in theoretical studies of Sisyphus cooling. While the driver, an additional beam of small amplitude, sets the
atoms into directed motion, the new expression permits the quantification of the contribution to the atomic
motion of a specific atomic wave, revealing unexpected counterpropagating contributions from many modes.
Additionally, the method is shown to provide the generic threshold for the transition into the regime of infinite
density, regardless of the details, or even the presence, of driving.
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I. INTRODUCTION

Laser cooling of atoms to very low temperatures [1] has
been a crucial experimental achievement in atomic, molecular,
and condensed matter physics. Several Nobel Prizes have been
awarded for the development of techniques in this subject.
Among them, Sisyphus cooling [2] is widely used to cool
atoms below the Doppler temperature limit.

Cold atoms offer an invaluable setup to study directed
transport, and many experimental realizations of dissipative,
Sisyphus cooling based [3–8], and nondissipative [9,10] ratch-
ets [11,12] have been demonstrated on them. They provide
quantum ratchets [12] with a high degree of tunability, com-
plementing other known quantum setups [13–16].

Additionally, cold atoms are also known to exhibit un-
usual transport behavior beyond Boltzmann-Gibbs statistical
mechanics [17], usually referred as a regime of infinite
density [18–21] in which the probability distributions are non-
normalizable due to the broken ergodicity.

This paper is focused in cold atoms in laser setups
associated with Sisyphus cooling. They are created by coun-
terpropagating laser beams that can be tuned experimentally
with a high level of control. The system is theoretically an-
alyzed at the level of semiclassical equations for the atomic
phase-space densities [22]. The study is restricted to atoms
with a transition Jg = 1/2 → Je = 3/2, as it is customary in
the theoretical analysis of Sisyphus cooling [2] because it
exhibits the essential ingredients observed in atoms with more
complex atomic transitions when the optical potential wells
are not too deep [22]. It is worth mentioning, though, that the
method proposed here could be lengthy, but straightforwardly
applied to the semiclassical equations of atoms with more
complex transitions.

Special attention is paid to atomic transport. A perturbing
probe beam is introduced [2,23–25] to break the system sym-
metries [12,26] and put the atoms into directed motion. The
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probe perturbation excites atomic density waves, which are
referred to as Brillouin propagating modes [24,25] due to the
resemblance to acoustic waves rippling through a dense fluid.

Previous research mostly focused on one propagating
mode, the one with same frequency and wave number as the
propagating perturbation, ignoring the effect of other excited
modes, propagating or not. Here, we address this issue by
deriving an exact expression for the current as a sum of terms
proportional to the amplitudes of the excited atomic density
waves. Since other modes are observed to contribute signifi-
cantly to the directed motion, as demonstrated in Sec. IV, the
derived expression can provide a useful tool in order to prop-
erly rationalize the dynamical properties of the ratchet system.

Additionally, the summation directly reveals a singularity
that is identified with the threshold to the regime of infinity
density. The threshold values are in agreement with previous
analytical results [18,19] obtained from a simplified, approxi-
mate Fokker-Planck equation [27] based on space and Zeeman
sublevel averaging of the semiclassical equations, thus with
drastic approximations whose validity is difficult to evaluate.
The method presented here does not make such approxima-
tions, being based on the semiclassical equations it takes
explicitly into account the microscopic origin of Sisyphus
cooling, thus providing desirable support for previous results
[18,19] on infinity densities.

The paper is organized as follows. In Sec. II the system
models studied are described. A new method, relating the
current and higher moments to atomic density modes, is pre-
sented in Sec. III. The application of the method to the system,
its analytical results and numerical validation, is described in
Sec. IV. The transition to the regime of infinity density, com-
ing out naturally from a singularity in the analytical results,
is discussed in Sec. V. Finally, Sec. VI summarizes the main
conclusions.

II. SYSTEM MODELS

First, we consider the simplest model of dissipative
Sisyphus cooling, a one-dimensional (1D) system gener-
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ated by atoms with a closed transition Jg = 1/2 → Je =
3/2, mass ma, illuminated by two counterpropagating laser
fields with orthogonal linear polarizations. This setup gen-
erates a 1D optical lattice in the light polarization so-called
lin ⊥ lin configuration [2]. The atom, in the Zeeman sub-
level of the atomic ground state |Jg = 1/2, Mg = +1/2〉 or
|Jg = 1/2, Mg = −1/2〉, which for convenience we abbreviate
to + or −, respectively, experiences the optical potential

U±(x) = U0

2
[−2 ± cos(2klx)], (1)

where x is the laser beam propagation axis, kl the laser field
wave vector, and U0 the optical lattice depth.

In the semiclassical approximation for weak laser inten-
sities, the atoms in the ground state |±〉 satisfy [22] the
following coupled Fokker-Planck equations for the phase
space density P±(x, p, t ) at the position x with momentum p:[

∂

∂t
+ p

ma

∂

∂x
− U ′

±(x)
∂

∂ p
+ F±(x, t )

∂

∂ p

]
P±

= −γ±(x)P± + γ∓(x)P∓ + ∂2

∂ p2
[D0P±], (2)

where U ′
± = ∂U±/∂x, γ±(x) are the transition rates between

the ground-state sublevels, D0 is a noise strength describing
the random momentum jumps that result from the interaction
with the photons, and F±(x, t ) are nonconservative forces,
coming, for example, from radiation pressure, or an arbitrary
time-dependent driving force F (t ) that can be generated by
phase modulating one of the lattice beams [28].

Equation (2) is complemented by the normalization
condition,∫

dx
∫

d p[P−(x, p, t ) + P+(x, p, t )] = 1. (3)

A quantity of special interest is the average atomic current,
which measures the directed motion, defined as

〈v〉 = lim
t→∞

〈[x(t ) − x(0)]〉
t

= lim
t→∞

1

t

∫ t

0
dt ′

∫
dx

∫
d p

p

ma

× [P+(x, p, t ′) + P−(x, p, t ′)]. (4)

A. 1D lin ⊥ lin setup

In the 1D lin ⊥ lin configuration without driving there is
no radiation pressure, i.e., F±(x, t ) = 0, and

U0 = −2h̄�′/3 > 0, (5)

where �′ is the light shift per beam for our closed Jg = 1/2 →
Je = 3/2 transition. Furthermore, the transition rates between
the internal states are given by

γ±(x) = g0 ± g1 cos(k0x), (6)

where k0 = 2kl , g0 = �′/9, and g1 = g0 are rates related to
the photon scattering rate per lattice beam �′.

Note that in writing (2) we are not explicitly considering
an extra diffusive term that comes up in the semiclassical
approximation [22], ∂2D∓±P∓/∂ p2, which describes a further

momentum kick when the transitions take place, and needs to
be corrected to avoid artificial numerical singularities, in the
form of divergent momentum, produced by the semiclassical
approximation, as discussed in Ref. [19]. When corrected,
the effect of that term is nevertheless small, and commonly
neglected, unless shallow optical potentials are considered
[19]; more about this issue in Sec. V.

In addition, we are not explicitly considering any state
or spatial dependence of the noise coefficient D0, because
their effect is observed to be small in the simulation results
reported in this paper. Neglecting D∓± and taking the space
average of the remaining diffusion coefficient in the original
semiclassical equations [22] yields D0 = 35h̄2k2

l �
′/90.

The application of an additional weak probe beam gener-
ically produces extra small contributions to all the functions:
the optical potential, radiation pressure forces, transition rates,
and noise terms, though the most relevant contribution is the
one in the optical potential. Numerical simulations show that
the contributions from the former terms are usually small,
not altering the qualitative picture offered by a model with
a probe potential addition. We consider here a probe beam
that is polarized parallel to the 1D counterpropagating lattice
beam, which yields the optical potential

U±(x, t ) = U0

2
[−2 ± cos(k0x) + εp cos(k0x − δpt + φp)],

(7)

where, for the 1D setup, εp = 2Ep/E0 is defined as twice the
ratio between the electric field of the probe Ep to that of
the underlying optical lattice E0, δp = ωp − ωl is the probe
frequency detuning, with ωp the probe frequency and ωl the
lattice beam frequency, and φp is the probe phase.

B. 3D lin ⊥ lin setup

In addition to the above 1D lin ⊥ lin configuration, we will
study the one-dimensional system that arises in the standard
3D lin ⊥ lin configuration [2], after neglecting movement in
the two directions perpendicular to the direction of interest,
usually taken as the x axis [23,24,29–31]. weak y-polarized
probe propagating in the z direction is added [24,25,31], yield-
ing in the optical potential an extra term proportional to

cos(kxx) cos(δt ) = 1
2 [cos(−kxx − δpt ) + cos(+kxx − δpt )],

(8)

where kx = kl sin θx, thus being the superposition of two si-
nusoidal potentials traveling in the x direction, each with
opposite velocity and similar shape as in the previous 1D
system model. By formally considering y = z = 0 and one
of the traveling probe drives, the optical potential in each
sublevel of the ground state is given by [2,31]

U±(x, t ) = U0

2

[
−3

2
− 1

2
cos(2k0x) ± cos(k0x)

+ εp cos(k0x − δpt + φp)

]
, (9)

with transition rates given by

γ±(x) = g0 ± g1 cos(k0x) + g2 cos(2k0x), (10)
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where now k0 = kx, U0 = −16h̄�′
0/3, �′

0(< 0) is the light
shift per lattice field, g0 = 2�′/3, g1 = 8�′/9, g2 = 2�′/9,
and now εp = Ep/(2E0) for the 3D setup. Like before, for the
sake of simplicity, we are neglecting the probe contribution to
the transition rates, the radiation forces, and noise terms, being
observed their effect to be small in the simulations. Finally, the
noise strength is D0 = 5h̄2k2

0�
′/18.

III. FOURIER MODE THEORY

We develop in this section a theory that will allow us
to visualize the atomic density modes excited by the probe
and their contribution to the current. First, the atomic Fourier
modes are defined from the phase-space density P±(z, p, t ) by
means of the following Fourier transform:

P±
ω,k,q = 1

Tp

∫ Tp

0
dt e−iωt

∫
dx eikx

∫
d p eipq/h̄P±(x, p, t ),

(11)

where Tp = 2π/δp is the time period introduced by the probe,
ω and k are a frequency and a wave number, respectively,
associated with the time and space Fourier transform, and
q is an extra Fourier coordinate needed to account for the
atomic momentum. The fact that the driving probe is time
periodic allows us to focus on solutions, which have the same
periodicity, i.e., to

ω = lδp, (12)

with l integer, thus neglecting transitory dependencies on a
specific initial condition, which are expected to die out after
a transient time interval (involving necessarily many atomic
transitions for Sisyphus dissipation to take place). In addition,
the fact that the phase-space densities are real implies

P±
−ω,−k,−q = (P±

ω,k,q)∗, (13)

where ∗ denotes complex conjugate.
Now, let us consider a generic 1D setup determined by (2)

and (3), with a periodic optical potential

U±(x + 2π/k0) = U±(x), (14)

and space periodic transition rates,

γ±(x + 2π/k0) = γ±(x), (15)

and time and space periodic driving,

F±(x + 2π/k0, t ) = F±(x, t + 2π/δp) = F±(x, t ), (16)

for all x, t .
Using (11), the Fokker-Planck Eq. (2) is transformed into

iωP±
ω,k,q − h̄k

ma

∂

∂q
P±

ω,k,q

− iq

h̄

⎛⎝∑
n

F (0)±
n P±

ω,k−nk0,q
+

∑
l,m

F p±
l,mP

±
ω−lδp,k−mk0,q

⎞⎠
= −

∑
n

(γ ±
n P±

ω,k−nk0,q
− γ ∓

n P∓
ω,k−nk0,q

) − q2

h̄2 D0P±
ω,k,q,

(17)

where we have taken advantage of the periodicity, allowing us
to write

−∂U±
∂x

=
∑

n

F (0)±
n e−ink0z, (18)

F±(z, t ) =
∑
l,m

F p±
l,me−i(mk0z−lδpt )‘, (19)

and

γ±(z) =
∑

n

γ ±
n e−ink0z. (20)

In the problems considered here, there is no force bias, i.e.,

F (0)±
0 = F p±

0,0 = 0, (21)

and the states are symmetric:

γ ±
0 = γ0. (22)

From (11), the application of the normalization condition
(3) yields

P+
lδp,0,0 + P−

lδp,0,0 = 1

Tp

∫ Tp

0
dt exp[−ilδpt], (23)

thus,

P−
lδp,0,0 = −P+

lδp,0,0 for l 
= 0, and (24)

P+
0,0,0 + P−

0,0,0 = 1. (25)

Once P±
ω,k,q is known, the phase-space density is retrieved

back by means of the inverse transform,

P±(x, p, t ) = 1

4π2 h̄

∑
l

∫
dk

∫
dq e−i(kx−t lδp)e−ipq/h̄P±

lδp,k,q.

(26)

We are specially interested in the marginal probability
P±(x, t ) = ∫

d pP±(x, p, t ), which can be obtained from
P±

ω,k,q with q = 0,

P±(x, t ) = 1

2π

∑
l

∫
dk P±

lδp,k,0e−i(kx−t lδp). (27)

The normalization condition (25) and the equations of motion
(17) only requires excitation of a discrete set of wave number
values

k = nk0 (28)

where n is an integer.
Note Eq. (27) expresses the atomic density as a sum of

plane waves, atomic density modes, each moving with ve-
locity (l/n)δp/k0. The case (l, n) = (1, 1) has been explicitly
referred to as a Brillouin-like propagation mode [2,23,24],
because of the analogy with the resonances produced by
light scattering on propagative modes in fluids, such as sound
waves.

Assuming, like in (11), that at time t = 0 all the transients
have already died out, the atomic current (4) can be written in
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terms of the mode amplitudes as

〈v〉 = δp

2π

∫ 2π/δp

0
dt

∫
dx

∫
d p

p

ma

× [P+(x, p, t ) + P−(x, p, t )]

= lim
q→0

h̄δp

ima2π

∂

∂q

∫ 2π/δp

0
dt

∫
dx

∫
d p ei(kx−ωt+pq/h̄)

× [P+(x, p, t ) + P−(z, p, t )]
∣∣
ω=k=0

= h̄

ima
lim
q→0

(
∂P+

0,0,q

∂q
+ ∂P−

0,0,q

∂q

)
. (29)

The equations (17) and (25) can be used to find ∂P±
0,0,0/∂q

in terms of the mode amplitudes P±
ω,k,0, thus providing the

exact contribution of each excited mode to the atomic current,
yielding one of the central analytical results of this paper, in
which the current (4) is written as

〈v〉 =
∑
l,n

v[l, n] =
∑
l,n

v+
l,nP+

lδp,nk0,0
+ v−

l,nP−
lδp,nk0,0

, (30)

with explicit analytical expressions for the coefficients v±
l,n for

the specific system at hand, as reported in Sec. IV.
The same procedure can be applied to compute any mo-

ment of the velocity distribution, 〈vn〉, with n a positive
integer, since following similar steps as in (29) one easily
obtains

〈vn〉 =
(

h̄

ima

)n

lim
q→0

(
∂nP+

0,0,q

∂qn
+ ∂nP−

0,0,q

∂qn

)
, (31)

with q derivatives that can be found in terms of the amplitudes
of the atomic waves in a similar fashion as before.

A. Basic symmetry

Due to the vectorial nature of both the driving force
F±(x, t ) and the current 〈v〉, the inversion transformation
x → −x yields an inverted current [32], a fact which is behind
the (easy to verify) statement that the solution of the problem
with conservative force

F̂ (0)±
n = −F (0)±

−n , (32)

and driving force

F̂ p±
l,m = −F p±

l,−m, (33)

is just

P̂±
ω,k,q = P±

ω,−k,−q, (34)

which, by virtue of (29), yields

〈̂v〉 = −〈v〉. (35)

Note if the potential is spatially symmetric, then

F (0)±
n = −F (0)±

−n , (36)

and to produce a current we need a symmetry-breaking probe.

B. Sketch of the calculation of the current
in terms of mode amplitudes

From (29), the calculation of the current is reduced to find
an expression for ∂P±

0,0,0/∂q. However, this is not a trivial
task, because the term proportional to ∂/∂q in (17) vanishes
for k = 0.

To proceed, we focus in (17) on ω = k = 0, and for small
q Taylor expand the dependency on q,

P±
0,0,q = P±

0,0,0 + q
∂P±

0,0,0

∂q
+ q2

2

∂2P±
0,0,0

∂q2
+ · · · (37)

After summing the − and + forms of Eq. (17) for ω = k = 0
and inserting expansion (37), we find, in each order, with n a
non-negative integer,

0 =
∑

n

(
F (0)+

n′ P+
0,−n′k0,0

+ F (0)−
n′ P−

0,−n′k0,0

)
+

∑
l,m

(
F p+

l,mP
+
−lδp,−mk0,0

+ F p−
l,mP

−
−lδp,−mk0,q

)
, (38)

and

(n + 1)D0

ih̄

(
∂nP+

0,0,0

∂qn
+ ∂nP−

0,0,0

∂qn

)

=
∑

n′

(
F (0)+

n′
∂n+1P+

0,−n′k0,0

∂qn+1
+ F (0)−

n′
∂n+1P−

0,−n′k0,0

∂qn+1

)

+
∑
l,m

(
F p+

l,m

∂n+1P+
−lδp,−mk0,0

∂qn+1
+ F p−

l,m

∂n+1P−
−lδp,−mk0,0

∂qn+1

)
.

(39)

Equation (39) with n = 1 facilitates the task to calculate the
current, because, by means of (29), it provides a useful ex-
pression in terms of derivatives with respect to q of amplitudes
with either k 
= 0 or ω 
= 0. These derivatives can be calcu-
lated by using the following equations, obtained by using the
Taylor expansion:

∂n′P±
ω,k,q

∂qn′ = ∂n′P±
ω,k,0

∂qn′ + q
∂1+n′P±

ω,k,0

∂q1+n′ + q2

2

∂2+n′P±
ω,k,0

∂q2+n′ + · · ·
(40)

with n′ a non-negative integer, in (17),

h̄k

ma

∂P±
ω,k,0

∂q

= iωP±
ω,k,0 +

∑
n

(
γ ±

n P±
ω,k−nk0,0

− γ ∓
n P∓

ω,k−nk0,0

)
, (41)

h̄k

ma

∂2P±
ω,k,0

∂q2
= iω

∂P±
ω,k,0

∂q
− i

h̄

∑
n

F (0)±
n P±

ω,k−nk0,0

− i

h̄

∑
l,m

F p±
l,mP

±
ω−lδp,k−mk0,0

+
∑

n

(
γ ±

n

∂P±
ω,k−nk0,0

∂q
− γ ∓

n

∂P∓
ω,k−nk0,0

∂q

)
.

(42)
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The direct use of (41)–(42) allows us to calculate most terms,
except the case ∂P∓

ω,0,0/∂q with ω 
= 0. In this latter case,
the first derivatives can still be found from (42), but requires

inversion of a 2×2 matrix, because both first derivative terms
also appear on the right-hand side of the equation. Performing
that calculation we obtain

∂P±
ω,0,0

∂q
= 1

2γ0iω − ω2

⎡⎣γ0i

h̄

⎡⎣∑
n

(
F (0)+

n P+
ω,−nk0,0

+ F (0)−
n P−

ω,−nk0,0

) +
∑
l,m

(
F p+

l,mP
+
ω−lδp,−mk0,0

+ F p−
l,mP

−
ω−lδp,−mk0,0

)⎤⎦
− ω

h̄

⎡⎣∑
n

F (0)±
n P±

ω,k−nk0,0
+

∑
l,m

F p±
l,mP

±
ω−lδp,k−mk0,0

⎤⎦ − iω
∑
n 
=0

(
γ ±

n

∂P±
ω,−nk0,0

∂q
− γ ∓

n

∂P∓
ω,−nk0,0

∂q

)⎤⎦.

(43)

It is then straightforward to arrive at an explicit expression
for the current 〈v〉 or an arbitrary moment 〈vn〉 using similar
steps, in the form (30). The application to a system with
Sisyphus cooling, such as those presented in Sec. II, reveals
the presence of the regime of infinity density, as discussed
in Sec. V.

C. Calculation of the mode amplitudes
in the computer simulation

Numerical solutions of Eq. (2) are obtained by generating
a large number of individual atomic trajectories [22] using a
stochastic algorithm [33]. At a particular time, the atom is in
a definite state + or −.

For convenience, let us denote the atomic mode amplitudes
for q = 0 as

P±[l, n] = P±
lδp,nk0,0

. (44)

They are the Fourier transform of the atomic density P±(x, t ),

P±[l, n] = δp

2π

∫ 2π/δp

0
dt e−ilδpt

∫
dx eink0xP±(x, t ).

= lim
l ′→∞

δp

2π l ′

∫ 2π l ′/δp

0
dt e−ilδpt

∫
dx eink0xP±(x, t ).

(45)

The atomic density can be expressed in terms of atomic tra-
jectories x j (σ j (t ), t ), where σ j (t ) = +1 or −1 is the occupied
state at time t in that trajectory, using the Dirac delta function
and the Kronecker delta

P±(x, t ) = 1

N

N∑
j=1

δ[x − x j (σ j (t ), t )]δσ j (t ),±1. (46)

Thus, inserting (46) into (45) yields

P±[l, n] = lim
l ′→∞

δp

2π l ′N

N∑
j=1

∫ 2π l ′/δp

0
dt

× ei[nk0x j (σ j (t ),t )−lδpt]δσ j (t ),±1. (47)

Since in the simulation individual atomic trajectories are gen-
erated, Eq. (47) can be readily implemented to compute the
atomic mode coefficients, involving an average over many
atomic trajectories and many probe periods.

IV. APPLICATION OF THE METHOD
TO THE SYSTEM MODELS

Our goal is to express the current as (30), i.e., as a sum-
mation of terms proportional to the atomic mode amplitudes
P±[l, n], with explicit analytical expressions for the interme-
diate coefficients v±

n,l . In the 1D lin ⊥ lin system, the force
and rate constants (18) and (20), defining the optical potential
(1) and transition rates (6), respectively, are given by

F (0)+
±1 = ∓F0

2i
, F (0)−

±1 = −F (0)+
±1 (48)

γ ±
±0 = g0, γ +

±1 = g1

2
, γ −

±1 = −γ +
±1. (49)

with F0 = k0U0/2.
In the 3D lin ⊥ lin system, Eqs. (9)–(10), in addition to

(48)–(49), there are the following coefficients:

F (0)+
±2 = ±F0

2i
, F (0)−

±2 = F (0)+
±2 (50)

γ +
±2 = g2

2
, γ −

±2 = γ +
±2. (51)

In both cases, the addition of the probe to the potential
has the same form, and the driving force coefficients (19) are
given by

F p±
1,1 = −Fpe−iφp

2i
, F p±

−1,−1 = Fpe+iφp

2i
, (52)

where Fp = U0εpk0/2.
It can be checked that the solution, of both systems, pos-

sesses the following atomic state symmetry:

P−
lδp,nk0,q

= (−1)n−lP+
lδp,nk0,q

. (53)

The proof involves verifying that (53) provides indeed a valid
solution of (17), because of the specific way the sign of each
term is changed in each atomic state, and invoking the unique-
ness of the solution. This general, simple relation for the mode
amplitudes P− in terms of the coefficients in the other state,
P+ allows us to focus only on the densities of one atomic
sublevel.
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A. 1D lin ⊥ lin system

By following the steps presented in Sec. III B, we obtain a
summation of the current in terms of mode amplitudes

〈v〉1D = ma

maF0g1 − 2D0k0

[
− Im[P+[0, 1]]8F0g2

0

k0

+ Im[P+[0, 2]]F0(−4g0g1 + F0k0/ma)

k0

+ Im[eiφpP+[1, 2]]2F0Fp

ma
+ Im[eiφpP+[1, 1]]2Fpδ

2
p

k0

+ Im[ei2φpP+[2, 2]]F 2
p

ma

]
. (54)

Note the only contribution that depends explicitly on the probe
frequency δp is the Brillouin mode (l, n) = (1, 1), the same
propagating mode as the probe potential, all other modes
only explicitly depend on the optical potential force F0, probe
amplitude Fp, or transition rates g0 and g1.

All terms in (54) share a common denominator, maF0g1 −
2D0k0, which produces a singularity when it is zero. The
consequences will be discussed in Sec. V.

The expression (54) is validated numerically in Fig. 1,
where we depict the contribution of each mode, v[l, n], after
numerically calculating the mode amplitudes P+[l, n] in the
simulations using (47). As a test, we also show the sum of
all contributions and compare it with the current calculated
directly from its definition (4), confirming the analytical cal-
culation. in all simulations, units are defined such that ma =
h̄ = kl = 1.

Previous research [23,24,29,30] focused on one propagat-
ing mode, the mode (l, n) = (1, 1), which travels at speed
δp/k0 and is obviously excited by the probe potential, having
the same frequency and wave number. Here this mode is
confirmed to provide the most important contribution to the
current. However, other modes are also excited as illustrated
in Fig. 1. The atomic mode (1,2), which moves with a reduced
phase velocity δp/(2k0), also significantly contributes to the
current, though producing current in the opposite direction.

FIG. 1. Current and mode contributions to the current as a func-
tion of the probe amplitude εp for the 1D lin ⊥ lin system under a
probe perturbation propagating to the right (7). Each mode (l, n) has
a frequency ω = lδp and wave number k = nk0. Mode amplitudes are
measured in the simulation via (47), and their precise contribution to
the current determined using (54), taking averages over 1.5×106 tra-
jectories. Units are defined such that ma = h̄ = kl = 1. Here U0 = 50
and �′ = 7.5, δp = 10, and φp = −π/2. The dashed line is the sum
of all current contributions, and the filled diamonds are the current
calculated from its definition (4). From top to bottom, the blue, black,
green, red, and orange solid lines denote the contributions v[1, 1]
v[0, 1], v[2, 2], v[0, 2], v[1, 2], respectively.

The nonpropagating mode (0,2) is also observed to produce
contributions to the current in the opposite direction.

B. 3D lin ⊥ lin system

When compared with the 1D lin ⊥ lin system, in the
3D lin ⊥ lin system the additional terms (50)–(51) pro-
duce new terms in the summation making up the average
velocity, both new contributing terms appearing for the pre-
viously discussed modes, and new contributions from other
modes,

〈v〉3D = ma

maF0g1 − 2D0k0

[
− Im[P+[0, 1]]F0

(
8g2

0−4g2
2/3 + F0k0/(2ma)

)
k0

+ Im[P+[0, 2]]F0(−4g0g1−8g1g2/3 + F0k0/ma)

k0

+ Im[P+[0, 3]]F0
(−16g0g1/3 − 2g2

2 − 3F0k0/(2ma)
)

k0
+ Im[P+[0, 4]]F0(−2g1g2/3 + F0k0/(2ma))

k0

− Im[P+[0, 5]]F02g2
2

3k0
+ Im[eiφpP+[1, 2]]2F0Fp

ma
+ Im[eiφpP+[1,−1]]F0Fp

2ma

− Im[eiφpP+[1, 3]]3F0Fp

2ma
+ Im[eiφpP+[1, 1]]2Fpδ

2
p

k0
+ Im[ei2φpP+[2, 2]]F 2

p

ma

]
. (55)

Figure 2 shows the numerical results in the 3D lin ⊥ lin
system. Like in the previous one, the biggest contributor to the
current is the propagating mode (1,1), which produces move-
ment in the same direction as the propagating probe potential.
The nonpropagating mode (0,1) also produces a contribution

comparable to that of the mode (1,1). New contributions from
the nonpropagating modes (0,3), (0,4) and (0,5)—due to the
extra mode-connecting terms in (9) and (10)—are observed,
all producing current in the opposite direction of propagation.
A similar feature is observed in the new mode (1,3), which
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FIG. 2. Current and mode contributions to the current as a func-
tion of the probe amplitude εp for a 3D lin ⊥ lin system under
a probe perturbation propagating to the right in the x direction
(9), with U0 = 200, �′ = 2.85, θx = θy = 25, δp = 12, and φp =
π—values matching the experiment in [25]. The dashed line is the
sum of all current contributions, and the filled diamonds is the current
measured directly in the simulation. From top to bottom, the blue,
black, brown, red, thin blue, green, cyan, and orange solid lines
denote the contributions v[1, 1], v[0, 1], v[1, −1], v[0, 2], v[0, 4],
v[0, 3], v[1, 3], and v[1, 2], respectively (v[0, 5] is almost zero, and
thus not appreciable).

similarly to the propagating mode (1,2), produces current in
the opposite direction. On the other hand, the mode (1,−1) is
observed to produce a very small contribution to the current
in the direction of propagation of the probe potential. The
contributions of the modes (0,5) and (2,2) are so small they
cannot be seen in Fig. 2. The overall current is much smaller,
about four times smaller, than the one produced alone by the
Brillouin mode (1,1).

V. INTO THE REGIME OF INFINITE DENSITY

Note the optical potential force F (0)±
±1 , Eq. (48), inverts

its sign when the atomic state is changed. This fact is cru-
cially coupled to the state-alternating sign in the transition
rate γ ±

±1, Eq. (49). This is responsible for the celebrated Sisy-
phus cooling, that is, for the dissipative mechanism resulting
from the transitions taking place with higher probability when
the atoms are at the top of the optical potential barriers. As
the atoms move around the potential wells, random kicks
resulting from the interaction with circularly polarized pho-
tons increase their kinetic energy, which is then lost in the
transition. As a result, the atoms are spending most of the
time climbing hills, like the punishment inflicted on the king
Sisyphus of ancient Greek mythology. But this requires the
concerted action of the potential and the transition rates, as the
position of potential barriers must be changing accordingly to
the rate’s maxima in each transition.

However, it is known the potential should not be too
shallow [27], or the dynamics may yield non-normalizable
probability densities [17,19], which is known to exhibit su-
perdiffusion [8]. Indeed, the calculations presented in Sec. IV

indicate that the current diverges to infinity, in both studied
systems, when

F0g1 − 2D0k0/ma = 0, (56)

It is a consequence of the appearance of a term proportional
to ∂P+

0,0,0/∂q + ∂P−
0,0,0/∂q on the right-hand side of Eq. (39)

(with n = 1), after the substitutions (41)–(42) are applied.
Those terms have to be taken to the left-hand side in order
to complete the calculation.

In fact, a similar singularity happens in any moment 〈vn〉.
Using (31) and (39), and looking for the terms on the right-
hand side that yield a contribution containing ∂nP+

0,0,0/∂qn +
∂nP−

0,0,0/∂qn, i.e., the terms proportional to F (0)±
+1 γ ±

−1 and

F (0)±
−1 γ ±

+1, yields the common factor, [1 − F0g1ma/(D0k0(n +
1)]−1, and thus the following singularity condition,

F0g1 − (1 + n)D0k0/ma = 0, (57)

which in terms of the potential depth is written as

U0 = 2(1 + n)D0

g1ma
. (58)

Though this result has been obtained from the semiclassical
equations (2), which do not explicitly contain all the diffusive
terms predicted by the semiclassical derivation, that is, the
terms ∂2D∓±P∓/∂ p2 and the spatial dependence of the noise
coefficient, performing the calculation in the more complex
system model shows that the exact same result (57) is obtained
if one considers D0 as the spatial average of all diffusive terms.

This singularity can be identified with the threshold for the
transition into an anomalous regime, in which the n moment
of the velocity distribution, 〈v(t )n〉, diverges for long times.
The result (58) is in perfect agreement with the prediction
[18,19] for the system 1D lin ⊥ lin obtained from a simplified,
approximate Fokker-Planck equation [27] for shallow lattices,
when the noise strength D0 contains the spatial average of
both diffusive terms D∓± and D±± [22], i.e., D0 = (35 +
6)h̄2k2

l �
′/90. This is remarkable, as our method uses the full

semiclassical equations (2), and hence, unlike the approximate
Fokker-Planck equation, it does explicitly take into account
the microscopic origin of Sisyphus cooling, including the
periodicity of the lattice potential and transitions between the
atomic sublevels.

The only assumption made by the method presented here
is the existence of the Taylor expansion (40), which is nu-
merically confirmed by the simulations presented in the paper
in the regime above the singularity. In contrast, in shallow
lattices, i.e., with potential wells U0 below the threshold
given by (58), this assumption does not hold, giving rise
to the regime of infinite densities, with diverging moments
and non-normalizable densities. In the 3D lin ⊥ lin system,
to accurately cover the shallow potential regime, D0 should
also include the spatial average the diffusive term D∓±, thus
D0 = (1 + 1/5)5h̄2k2

0�
′/18.

VI. CONCLUSIONS

Starting from the semiclassical equations for the atomic
phase-space densities, we have presented an exact method to
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calculate the contribution to the current of the excited atomic
density waves in cold atoms undergoing Sisyphus cooling. Ex-
plicit analytical expressions are provided for the 1D lin ⊥ lin
system under a simple symmetry-breaking perturbation, as
well as the one-dimensional model that results from focusing
on a specific direction in the 3D lin ⊥ lin system.

The analytical results are validated with numerical simu-
lations of the stochastic atomic trajectories associated with
the semiclassical equations. They show that several atomic
modes, not just the one associated with the perturbation, con-
tribute relevantly to the directed motion, with most of them
doing so in the opposite direction of propagation than that of
the applied perturbation.

Additionally, the analytical solution predicts a singular-
ity for each moment of the velocity distribution, which is

identified with the threshold for the transition to the regime
of infinite density. The threshold values of the present work
are identical to the ones obtained [18,19] from an approxi-
mated Fokker-Planck equation of the semiclassical equations,
derived by spatial and Zeeman level averaging the latter, in
the 1D lin ⊥ lin system, thus providing a solid ground to
previous analytical results. Finally, it is worth mentioning that
the proposed method can easily be applied to more complex
systems and driving perturbations.
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