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We introduce a family of generalized continuous Maxwell demons (GCMDs) operating on idealized single-
bit equilibrium devices that combine the single-measurement Szilard and the repeated measurements of the
continuous Maxwell demon protocols. We derive the cycle distributions for extracted work, information content,
and time and compute the power and information-to-work efficiency fluctuations for the different models. We
show that the efficiency at maximum power is maximal for an opportunistic protocol of continuous type in
the dynamical regime dominated by rare events. We also extend the analysis to finite-time work extracting
protocols by mapping them to a three-state GCMD. We show that dynamical finite-time correlations in this
model increase the information-to-work conversion efficiency, underlining the role of temporal correlations
in optimizing information-to-energy conversion. The effect of finite-time work extraction and demon memory
resetting is also analyzed. We conclude that GCMD models are thermodynamically more efficient than the
single-measurement Szilard and preferred for describing biological processes in an information-redundant world.
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I. INTRODUCTION

Information-to-work conversion is a fundamental pro-
cess in physics and biology. Paradigmatic examples are the
Maxwell demon and the Szilard engine, small operating de-
vices that fully convert heat into work using measurement
information [1–3]. According to Landauer and Bennett such
devices do not violate the second law as the erasure proce-
dure required to restore the system’s initial state increases
the overall entropy offsetting the Maxwell demon’s gain [4].
The field of thermodynamics of information is witnessing
major progress [5–7] as these ideas are expanding into new
directions [8–12], being also experimentally tested [13–22].

Recently, a continuous version of the Maxwell demon
(CMD) has been introduced and implemented in a Szilard
information-to-work engine operating on single DNA hairpins
[23,24]. The CMD offers a view complementary to the
standard Szilard engine that is analytically solvable and can be
implemented experimentally. In the Szilard engine (hereafter
referred to as SZ), a gas particle occupies a vessel with two
compartments in contact with a thermal bath at temperature
T . At a given time, an observation is made of the compartment
occupied by the particle. A work extraction process follows
by inserting a pulley mechanism with a movable wall such
that the compartment reversibly expands under the particle
collisions. The combination of measurement, work extraction,
and demon resetting defines a cycle in the SZ engine. For
a given compartment, the average extracted work per cycle
equals −kBT ln p where p is the probability of observing
the particle in that compartment. For two compartments
of probability p0, p1 the average extracted work per cycle

in the SZ engine equals WSZ = −kBT (p0 ln p0 + p1 ln p1)
which is bounded from above by WSZ � kBT ln 2 for the
case p0 = p1 = 1/2. For an irreversible work extraction
protocol, the average work extracted is further bounded by the
information content of the single-bit measurement expressed
in nats, ISZ = −(p0 ln p0 + p1 ln p1), also called the Landauer
limit, W � kBT I . The CMD setting is the same as for SZ;
the only difference is the work extraction condition and the
cycle length. In the CMD, an observation of the compartment
occupied by the particle is made, but work is not extracted
right away. Instead, measurements are repeatedly made
every time τ from the initial observation until a change in the
compartment occupied by the particle is observed. Note that in
the CMD a decision to extract work is taken based on a series
of observations made at every τ -consecutive measurement,
irrespective of any unobserved transition in between.
Therefore, any cycle in the CMD contains at least two bits
(for the first compartment observation and the next observed
compartment change) rather than the single-bit cycle of SZ.
The information content of the multiple-bit stored sequences
of the CMD cycle is always larger than for SZ, permitting the
extraction of more work per cycle in the former. The average
work per cycle extracted in the CMD is τ independent
and given by WCMD = −kBT (p0 ln p1 + p1 ln p0). In
contrast to SZ, WCMD is now bounded from below by
kBT ln 2, WCMD � kBT ln 2, with WCMD = kBT ln 2 for
p0 = p1 = 1/2. The average work per cycle is bounded
from above by the information content of the multiple-bit
sequences generated by the CMD, WCMD � kBT ICMD(τ ),
where τ is the time between consecutive measurements.
For uncorrelated observations (τ � 1/R with R systems’
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relaxation rate), the information content of the stored
sequences is minimal and equals ICMD(τ → ∞) =
−(p0 ln p0)/p1 − (p1 ln p1)/p0 + WCMD/kBT defining the
Landauer limit in this case, WCMD < kBT ICMD. Given the
simplicity of the CMD protocol and its complementarity to
SZ, it is surprising that the CMD was not conceived before.
The motivation in Ref. [23] was to devise a model for which
large amounts of work could be extracted. The average work
extracted −kBT ln p is large for compartments of low p, so
a measurement protocol designed to seek for low p events
maximizes work extraction. Indeed, in the limits p0 → 0 and
1, WCMD diverges while WSZ vanishes.

In the single-molecule experimental realization of the SZ
and CMD, a DNA hairpin hops between two states, folded and
unfolded, of probabilities p0 and p1 = 1 − p0, and a discrete
or continuous feedback protocol was implemented to extract
work depending on the measurement outcome [23,24]. Work
extraction is operated at the first measurement time in the SZ
engine. In contrast, in the CMD, measurements are repeatedly
made at intervals τ ≈ 10−3 s, and work is extracted only when
the system is observed to switch state for the first time (folded
to unfolded or unfolded to folded). As previously said, the
CMD exhibits other features as compared to the SZ, such as a
larger average work per cycle (with the Landauer limit being
a lower bound rather than an upper bound) and maximum
efficiency η < 1 in the regime dominated by rare transition
events (p0 → 0, 1).

Here we combine the SZ and CMD models into a work
extraction protocol, where either one of the options (SZ or
CMD) is implemented with a finite probability depending on
the measurement outcome (0 or 1). The so-called general-
ized continuous Maxwell demon (GCMD) defines a family
of models interpolating between SZ and CMD.

What is the biological relevance of such kinds of mod-
els? There have been efforts to translate Maxwell demons
to biological systems, particularly for signal transduction in
regulatory pathways with feedback loops. In these cases,
there is no apparent work extraction but a second law re-
lating transfer entropy to the system’s entropy production.
The GCMD model is an example of a double-protocol model
for information-to-energy conversion. It is akin to molecu-
lar folding models with two productive folding pathways:
one pathway ends in a low free energy molecular state
while the other ends in a higher free energy molecular state.
Similarly, one can envision a regulatory process with two
distinct feedback pathways with different transfer entropies.
The applicability of the Maxwell demon to biology remains a
long-debated and open question.

This paper investigates power fluctuations in the GCMD,
establishing the fundamental differences between the two
classes (discrete SZ versus continuous CMD) of information
machines. The paper is divided into six main sections. In
Sec. II we introduce the GCMD as a two-pathway model for
information-to-energy conversion that combines features of
SZ and CMD. Section III analyzes cycle-power and cycle-
efficiency fluctuations in the GCMD, the main distinctive
feature of continuous models compared to the SZ model.
Section IV addresses the temporal correlations introduced in
Ref. [19] on the power and efficiency at finite times. Finally,
Secs. V and VI are devoted to discussion and conclusions.

II. GCMD

We introduce a family of GCMDs that expands the previ-
ously studied work extraction protocols to multiple repeated
measurements and has the SZ and the CMD as particular
cases. Figure 1 illustrates the GCMD in the case of a single-bit
measurement outcome (0,1).

A GCMD operates as follows. A system hops between
two states σ = 0, 1 generating a two-level dichotomous signal
[Fig. 1(a)] of probability pσ (p0 + p1 = 1). Examples are
(i) a free molecule in a volume V that is subdivided into
two compartments (V0,V1) such that V = V0 + V1 and (ii)
a biomolecule in solution with two conformations, folded
(σ = 0) and unfolded (σ = 1). For a system in equilibrium,
we have p0 = 1/[1 + exp(�G/kBT )] with �G the free en-
ergy difference between states 0 and 1 (hereafter, we set
kBT = 1). In example (i), �G = ln(V1/V0) and pσ = Vσ /V
[Fig. 1(b), top]. In example (ii), �G is the folding free energy
and p0/p1 = exp(−�G) [Fig. 1(b), bottom]. A cycle in the
GCMD starts with an observation of the system’s state σ and
two possible actions: with probability qσ the SZ protocol is
operated, and the amount of work per cycle (W SZ

σ = − ln pσ )
readily extracted; with probability 1 − qσ the CMD protocol
is operated, meaning that new observations are made every τ

until the system switches state σ → 1 − σ and the work per
cycle (W CMD

σ = − ln p1−σ ) is extracted. The q0 and q1 define
two independent processes with 0 � q0, q1 � 1 (i.e., q0 + q1

must not be equal to 1). The model interpolates between SZ
(q0 = q1 = 1) and CMD (q0 = q1 = 0). The GCMD model
is symmetric with respect to the transformation p0 ↔ 1 − p0

and 0 ↔ 1, so we can restrict the analysis to 0 < p0 � 1/2.

A. Average work, information content, and cycle time

The average work per cycle in the GCMD (in kBT units) is
given by

W =
∑

σ=0,1

pσ

[
qσW SZ

σ + (1 − qσ )W CMD
σ

]
(1)

= −
∑

σ=0,1

pσ [qσ ln pσ + (1 − qσ ) ln(1 − pσ )].

Similarly, we analyze the information content of the stored
sequences of cycles C, defined as I (C) = − ln P(C) (nat units).
SZ cycles are one-bit sequences, C = {σ }, with P(C) = pσ qσ .
In contrast CMD cycles consist of n + 1 (n � 1) bit sequences
that start at the first bit (σ ) which is repeated n times, un-
til the bit outcome switches (σ → 1 − σ ) at the (n + 1)th
time. Therefore, a CMD cycle contains at least two bits, C =
{

n︷ ︸︸ ︷
σ, σ, . . . , σ , 1 − σ }, where 1 − σ indicates state switching.

Note that the stopping time n is stochastic, and varies from
cycle to cycle. The probability of the CMD cycle is given
by P(C) = pσ (1 − qσ )T n−1

σσ (1 − Tσσ ), where Tσσ is the condi-
tional probability of a repeated measurement outcome σ after
time τ . It has been shown [23,24] that the lowest sequence in-
formation content (i.e., minimum redundancy) is obtained for
fully uncorrelated bit sequences, that is, when the relaxation
kinetic rate of the system R is such that Rτ � 1, in which
case Tσσ = pσ . In this limit, the probability of a GCMD cycle
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FIG. 1. Illustration of the GCMD. (a) Single-bit dichotomous signal (left) and position, work, and information distributions (right). In a
noisy environment fluctuations widen the single-peaked distributions into Gaussians. (b) Two examples of the model: a single particle moving
in a compartmentalized vessel and a molecule hopping between two states. (c) Schematics of the work-extracting protocol in the GCMD. SZ,
Szilard-type protocol; CMD, continuous-type protocol.

is given by

PGCMD(C) =
{

qσ pσ (n = 1, SZ)
(1 − qσ )p1−σ pn

σ (n � 1, CMD) , (2)

and the corresponding average information content

I =
∑
C

P(C)I (C) = −
∑

σ=0,1

pσ qσ ln(pσ qσ ) (3)

−
∑

σ=0,1

(1 − qσ )p1−σ

∞∑
n=1

pn
σ ln

[
(1 − qσ )p1−σ pn

σ

]

where we used p1−σ = 1 − pσ .
In the context of the thermodynamics of feedback, the

thermodynamic efficiency of information-to-energy conver-
sion is defined as the ratio between the average work extracted
(W ) relative to the average energy converted into heat (Q)
that is necessary to erase the stored sequences: ηth = W /Q.
According to the second law, W � Q and ηth � 1. Following
Landauer, the minimum energy Q for erasure (assuming a
zero-work measurement process) is given by the Shannon
information content I of the stored sequences [19,25] as given
in Eq. (3) in the limit case of decorrelated measurements,
Rτ � 1. Therefore, from Eqs. (1) and (3) we define the ther-
modynamic efficiency as ηth = W /I . The second law ensures
that ηth � 1, which for SZ is saturated (ηth = 1), while for
CMD ηth > 1/3 approaching 1 in the limit p0 → 0 where rare
events dominate dynamics [23].

We also consider the thermodynamic power Pth = W /tC , as
the ratio of W , Eq. (1), and the average cycle time, tC . Com-
bining SZ cycles (duration n = 1) and CMD cycles (n + 1

duration, with n � 1), we get for tC (in τ units)

tC =
∑

σ=0,1

⎡
⎣pσ qσ + (1 − qσ )

∑
n�1

(n + 1)pn
σ (1 − pσ )

⎤
⎦

= 1 + (1 − q0)
p0

p1
+ (1 − q1)

p1

p0
(4)

which reduces to tC = 1 for SZ (qσ = 1) and to tC = [p0(1 −
p0)]−1 − 1 � 3 [23] for CMD (qσ = 0). While the CMD does
extract more work than the SZ [23], this is at the price of
a larger tC : in both cases, Pth vanishes asymptotically like
−p0 ln p0 when p0 → 0.

B. Family of GCMD models

Besides the SZ and CMD particular cases, we now consider
other physically relevant choices defined by the qσ values.
These are as follows.

(i) The maximum work model (MaxW) where q0 = 1,

q1 = 0 if p0 � p1 (q0 = 0, q1 = 1 if p0 � p1) which ensures
maximum extracted work W = − ln[minσ (pσ )]. This model
may be called opportunistic because it extracts the maximum
work for all measurement outcomes.

(ii) The constant work model (ConstW) where W = ln(2),
∀p0. From Eq. (1) we see that for this to occur q0 and q1 have
to obey

p0q0 + p1(1 − q1) = ln(2p1)/ ln(p1/p0). (5)

(iii) The thermostable model (TS) where both W and I are
independent of p0 in which case ηth = const. This is obtained
by applying Eq. (5) to solve for q1 in terms of q0 and p0,
replacing in I , and then finding a dependence of q0 on p0

which makes I independent of p0 [32].
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FIG. 2. Thermodynamic parameters for the different GCMD models. (a) Average work (W ), information content (I), and cycle time (tC)
vs p0. (b) Average power (Pth) and efficiency (ηth) vs p0. In the limit p0 → 0, 1 all models reach maximum efficiency, ηth → 1. Note the
symmetry p0 → 1 − p0. SZ, Szilard model, blue; CMD, continuous Maxwell demon, red; MaxW, maximum work, green; ConstW, constant
work, black; TS, thermostable, orange.

Figure 2 shows W , I, tC, ηth, and Pth for the different
models. We observe that SZ beats all models in terms of
Pth and ηth; however, SZ also gives the lowest average work
per cycle [Fig. 2(a)]. While the models exhibit different fea-
tures (CMD, lowest Pth and largest I; MaxW, largest W ;
ConstW and TS, large Pth) all GCMD variants show the same
trend: ηth → 1 and Pth → 0 when p0 → 0, 1.

C. Physical interpretation of the GCMD model

The SZ protocol describes what might be called a store-
take strategy where the most probable state is the one
preferentially chosen for work extraction. Instead, in the CMD
the first measurement of the system’s state is followed by
repeated measurements (store) until a specific condition is
met (check) and the work extraction is operated (take). The
store-check-take strategy of the CMD extracts work from
the less probable state, maximizing average work extraction
compared to SZ. One might call the two strategies low risk
(SZ) and high risk (CMD). Here risk stands for repetitive
measurement operations that increase the information content
of the stored sequences and extract work only at the end. High-
risk strategies rely on rare events of low probability p and
large information content that deliver a large amount of work,
−kBT ln p. High-risk strategies rely on rare events of low
probability p and large information content that deliver a large
amount of work, −kBT ln p. Instead, low-risk strategies rely
on high probability p and low information content events that
deliver a small amount of work, −kBT ln p � kBT (1 − p) for
p close to 1. High-risk strategies (CMD) trade large amounts
of work and information, whereas low-risk strategies (SZ)
trade small amounts of work and information.

III. CYCLE-POWER AND CYCLE-EFFICIENCY
FLUCTUATIONS

A main feature of the GCMD is the stochastic nature
of W, I , and tC , which leads to large fluctuations in the
power and efficiency when measured over individual cycles
[26,27]. From Eq. (2) we can readily derive the corresponding
W, I, and tC distributions from which the distributions for
cycle power P = W/tC (in kBT/τ units) and cycle efficiency
η = W/I (denoted as cycle P and cycle η) follow. For cycle P
we get a discrete distribution:

P (P) =
∑

σ=0,1

[
pσ qσ δ(P + ln pσ )

+ p1−σ (1 − qσ )

p1+(ln p1−σ )/P
σ

θ (P∗
1−σ − P)

]
, (6)

where θ is the Heaviside function, P∗
σ = −(ln pσ )/2 are

thresholds, and the values that P can take in the argument
of the Heaviside functions for each σ are discrete: P =
P∗

1−σ /(n + 1) (n � 1). Similarly, for cycle η we get

P (η) =
∑

σ=0,1

[
pσ qσ δ

(
η − ln pσ

ln(pσ qσ )

)
+ p

1
η

1−σ θ (η∗
σ − η)

]
,

(7)
where η∗

σ = {1 + ln[pσ (1 − qσ )]/ ln p1−σ }−1 are thresholds,
and in the Heaviside functions η takes discrete values η =
{1 + ln[pn

σ (1 − qσ )]/ ln p1−σ }−1 (n � 1). As expected, SZ
(q0 = q1 = 1) does not fluctuate: P (P) = p0δ(P + ln p0) +
p1δ(P + ln p1) and P (η) = δ(η − 1).
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FIG. 3. Statistics of cycle power and cycle efficiency for the different GCMD models. (a) Cycle-power (left) and cycle-efficiency (right)
distributions for decreasing values of p0 = 0.1 (black), 0.01 (blue), and 0.001 (red) for the MaxW model. Insets show the second, third, and
fourth cumulants of the distributions vs p0. (b) Average cycle power (P, left) and cycle efficiency (η, middle) vs p0 (continuous lines). Dashed
lines are the thermodynamic efficiencies of Fig. 2. The orange thick line in the left panel is the maximum power as given by MaxW (p0 � 0.3)
and SZ (0.3 � p0 � 1/2). Information-to-work efficiency at maximum power (right panel, red) is shown. Model abbreviations and colors are
as in Fig. 2.

In the large fluctuation regime of continuous-type models
(p0 → 0), distributions can be approximated by

Pp0→0(P) ≈ q1δ(P) + p0(1 − q1)

(1 − p0)1+(ln p0 )/P
, (8)

Pp0→0(η) ≈ q1δ(η) + p1/η

0 , (9)

where the values of P and η in the second terms of the right-
hand side are discretized as above.

We find an interesting asymptotic behavior for power and
efficiency fluctuations in the small p0 limit. In Fig. 3(a) we
show P (P) and P (η) for various values of p0 
 1 for the
MaxW model (q0 = 1, q1 = 0): the probability of the power
becomes increasingly uniform with decreasing p0, while that
of the efficiency peaks at η = 1. The insets in Fig. 3(a) show
the second, third, and fourth cumulants of the distributions as
a function of p0 (all cumulants vanishing for SZ). In Fig. 3(b)
we show the first moments of (6) and (7), and the average
cycle power (P) and cycle efficiency (η) for several mod-
els. These are larger than the corresponding thermodynamic
values, P � Pth and η � ηth, for a wide range of p0.

Notice that while Pth is always maximum for SZ, P is max-
imum for SZ in the intermediate regime 0.3 � p0 � 0.7 [33],
while in the strongly fluctuating regime p0 → 0 (or p1 → 0),
P is maximum for the MaxW model [see left panel of Fig. 3(b)
(orange envelope)]. Although ηth = η = 1 for SZ, this is at
the cost of the lowest P in the limit p0 → 0 where GCMDs
are most relevant. In the right panel of Fig. 3(b) we show the
efficiency at maximum power, η∗, among all possible models
(qσ ). In the intermediate regime 0.3 � p0 � 0.7 η∗ = 1 is

maximal for SZ, whereas if p0 � 0.3 (or p1 � 0.3) we get
η∗ = ηMaxW. These results demonstrate (1) the efficiency at
maximum power is strongly sensitive to fluctuations and (2)
in the rare events regime, p0 � 0.3, an opportunistic (MaxW)
model maximizes the efficiency.

Store-take versus store-check-take strategies

One may ask which average (thermodynamical or cycle
average) is physically more relevant. In small biological sys-
tems (such as molecular machines operating in a cellular
environment), we envision dynamics as a sequence of re-
peated regulatory-feedback cycles of different time duration.
During each regulatory cycle, a physical variable is contin-
uously monitored until a specific condition is met, at which
point information-to-energy conversion occurs. For example,
neuronal transmission consists of three phases [28]: first, a
stimulus drives cell depolarization and a rise in membrane
potential (storage phase); the membrane potential reaches a
threshold value (check phase); the action potential (spike)
is triggered followed by stimulus propagation and energy
release at the terminal axon (take phase). Upon cycle ter-
mination, the system is reset, and the stored information is
erased. The duration of these elementary cycles cannot be
too long as the robustness of the stored information is at
stake in the noisy cellular environment. In other words, the
transduction and consumption of the energy accumulated in
regulatory-feedback cycles inside the cell must occur over
time intervals sufficiently short for the stored information to
persist before the thermal forces erase it. In a strategy of
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FIG. 4. Power and efficiency at finite times: the 3-GCMD model. (a) A series of repeated measurements terminating at a given finite time
t (t = 9 in the illustration). Work is extracted at specific times (empty and filled circles) depending on the chosen protocol (SZ or CMD) and
the measurement outcome (σ = 0, 1). Work is always extracted at the last measurement time t even if a CMD-type cycle has not terminated.
(b) Three-state (3-GCMD) model (σ =0,1,W) to calculate the work and information content up to t . W denotes the third state corresponding
to work extraction. (c) Average cycle power and cycle information (top) and average power and efficiency (bottom) vs t . Dashed lines are the
t → ∞ thermodynamic limit.

store-check-take, it seems more appropriate to consider cycle
quantities rather than thermodynamic quantities averaged over
long times. The efficiency at maximum power η∗ in the region
0 < p0 � 0.3 where continuous GCMD models show a higher
power [Fig. 3(b), right panel] suggests that the store-check-
take strategy of repeated measurement protocols is better than
the single-measurement action store-take of the SZ model.

IV. ENHANCED POWER AND EFFICIENCY
BY TEMPORAL CORRELATIONS

We can further assess the fluctuating nature of cycle power
and efficiency by calculating the average power and effi-
ciency measured over a finite time t encompassing multiple
work-extracting cycles. This defines a work-extracting engine
that operates along consecutive cycles until time t , where
the engine stops and work is extracted for the last time. To
address this type of multicycle engine, we have extended the
GCMD model of Fig. 1 to sequences of cycles, each cycle
defined as before, i.e., a series of measurements terminating
in a work extraction process [see Fig. 4(a)]. We calculate the
average work, information, power, efficiency, and number of
cycles over a finite time t (W t , It , Pt , ηt , Kt ). A sequence of
measurements of time duration t consists of a series of SZ
cycles and CMD cycles that are selected with probabilities
qσ and 1 − qσ , respectively, depending on the measurement
outcome σ at the beginning of each cycle. The full sequence

of measurements terminates at state σt from which the last
work − ln pσt is extracted. The end state σt determines three
possible situations: it is the end of a CMD cycle, with σt =
1 − σt−1; it is an SZ cycle; or it is the end time reached
before a cycle of the CMD type has completed, in which case
σt = σt−1.

Dynamics can be represented by three states, σ = 0, 1
(corresponding to mid-CMD cycle states), and an extra state
σ ≡ W for the work extraction steps. We denote this as the 3-
GCMD model. The dynamics between the states are encoded
in the three-state (discrete time) Markov network of Fig. 4(b).
For instance, for t = 9 a possible sequence in the 3-GCMD

model could be [Fig. 4(b)]: {
︷︸︸︷

0
S

,
︷ ︸︸ ︷
0, 0, 0, 1

C
,
︷︸︸︷

1
S

,
︷︸︸︷

1
S

,
︷︸︸︷
1, 0

C
}.

This sequence has Kt = 5 cycles [three SZ (S) and two
CMD (C) ones] and the work extracted equals Wt =
−2 ln p0 − 3 ln p1. In the 3-GCMD model, the sequence reads
{W, 0, 0, 0,W,W,W, 1,W }, and for calculating the average
quantities (W t , It , Pt , ηt , Kt ) it is not necessary to distinguish
between the W states [all that matters are transitions ending in
W , Fig. 4(b)].

For t → ∞ it is easy to prove that Pt → Pth and ηt → ηth,
while W t/Kt → Wth and It/Kt → Ith [see Fig. 4(c)]. Sig-
nificantly, in some cases, the 3-GCMD performs better at
finite times than it does at long times: in the bottom panel
of Fig. 4(c) we show that in the MaxW model Pt � Pth for
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FIG. 5. Effect of the finite-time τe for work extraction and demon resetting. (a) Thermodynamic power Pth vs p0 for the three models (SZ,
blue dashed line; CMD, red dashed line; MaxW, green continuous line) for different values of τe with τ = 1. (b) Pth vs τe/τ for p0 = 0.5 (top)
and p0 = 0.1 (bottom). GCMD models become more efficient than SZ for τe/τ > 1. Panel (b) uses the same color and line codes as panel (a).

all times, while both in the CMD and MaxW the finite-time
efficiency ηt � ηth for all times.

Throughout the paper, we neglected temporal correlations
in the demon state (i.e., Rτ � 1), making the statistics of all
relevant quantities solvable for finite times in the 3-GCMD
model. Interestingly, the intrinsic correlations of the 3-GCMD
model [Fig. 4(b)] make It/Kt decrease faster than W t/Kt

for lower t [Fig. 4(c), top] enhancing efficiency [Fig. 4(c),
bottom]. Such intrinsic correlations model are apparent from
the fact that direct transitions 1 → 0 and 0 → 1 are forbid-
den in the 3-GCMD model [Fig. 4(b)]. They are on top of
those that would appear for correlated measurements Rτ ≈
1, in which case Tσ ′σ = pσ ′ (Tσ ′σ being the probability of
measuring σ ′ conditioned to measuring σ at the previous
time τ ). In general, Tσ ′σ also depends on σ , and such extra
correlations should further increase efficiency. The role of
temporal correlations in maximizing power and information-
to-work efficiency has been considered in Ref. [19] where a
wall is repeatedly moved to rectify the motion of a diffusive
colloidal particle against a flow. It would be interesting to
extend the present analysis to finite τ , and different stopping
conditions [29,30], finding optimal regimes that maximize
efficiency. Combining SZ- and CMD-type protocols appears
to be a promising route to develop improved protocols for
information-to-energy conversion. These can be readily im-
plemented in currently available experimental setups.

Effect of finite-time work extraction and demon resetting

Throughout the paper, we assumed that the time of the
work extraction and the resetting processes of the demon (era-
sure of the stored sequences) is negligible. This is a justified
approximation in the CMD in the limit Rτ � 1 of largely
separated and uncorrelated measurements. Also, in this limit,
redundancy of the stored sequences’ information content is
minimized, while the average extracted work is τ indepen-
dent, making the information-to-work efficiency maximum

for all GCMD cases. However, a finite-time duration τe for
the combination of the work extraction and reset-erasure pro-
cesses of the demon might change the thermodynamic power
and information-to-work efficiency of generic GCMD models
relative to SZ. Indeed, a finite time τe would be detrimental to
the performance of the SZ where the total experimental time t
is increased by Ktτe, where Kt is the number of measurement
cycles. In contrast, for the same t , the number of cycles of
the CMD-type Kt would be lower, and the average extracted
work per cycle larger, increasing the thermodynamic power
of the CMD relative to SZ. Therefore, for τe/τ > 1, the ther-
modynamic power of SZ will decrease relative to the other
models (CMD, MaxW, ConstW, and TS). In Fig. 5 we plot
Pth as a function of p0 [Fig. 5(a)] and τe/τ [Fig. 5(b)] for the
CMD (red), MaxW (green), and SZ (blue) models. GCMD
models become thermodynamically more efficient than SZ for
τe/τ > 1.

V. DISCUSSION

The CMD-type and SZ-type cycles might be put in analogy
with the anabolic pathways of cell metabolism. In anabolic
or biosynthetic pathways, high-energy complex molecules
are built in a sequence of steps. Conversely, high-energy
molecules are broken into smaller components in catabolic or
degradation pathways. In this analogy, the high-information-
content sequences (multiple-bit sequences) stored in the
CMD might be seen as the equivalent of the high-energy
molecules produced in the anabolic pathway. Instead, the low-
information-content sequences (single-bit sequences) in the
SZ are analogous to the much lower free energy molecules
that can be produced in biosynthetic reactions with a fixed
number of steps. A typical example of an anabolic reaction
of the SZ type is glucose production from carbon dioxide in
photosynthetic cells. Here the SZ-type cycle is envisioned as
a well-defined reaction that produces a molecule (glucose)
with a well-defined amount of energy. In contrast, an an-
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abolic reaction of the CMD type might be realized in the
biosynthesis of a polypeptide chain. In protein synthesis, the
amino acids are sequentially linked in a three-step process
(initiation, elongation, and termination) where termination
occurs when a specific condition (stop codon) is met. The
analogy between the CMD and protein synthesis lies in the
proteins of variable length and free energy that can be assem-
bled during ribosomal translation. This is analogous to the
varying information content of the (multiple bits) sequences
in the CMD. The interest of the GCMD model is that it
allows for two information-content pathways, reminiscent of
the different biosynthetic pathways of anabolism. An efficient
metabolism requires synthesizing many molecules of variable
length and free energy, each specific molecular type for a
given metabolic step. Analogously, the GCMD model con-
siders two information-to-energy conversion pathways (SZ
and CMD) that generate bit sequences of variable informa-
tion content (single-bit sequences for SZ versus multiple-bit
sequences for CMD).

VI. CONCLUSIONS

An important quest in the field of thermodynamics of
information is to search for protocols that maximize the
information-to-energy conversion efficiency, a quantity that
has been hypothesized to be optimized in small biological sys-
tems. Indeed, the large efficiency of many molecular motors
and enzymes is remarkable. Light harvesting is an example of
how the energy of a single light photon absorbed by chloro-
phyll powers single electron transfer reactions with almost
100% quantum efficiency. In our paper, we digress about
neuronal transmission as an example of a work extraction
cycle of three phases under information feedback: information
storage (cell depolarization), state check (potential threshold),
and energy release (voltage spike). It is argued that these ac-
tivity cycles resemble more the continuous version of the MD
(CMD) than the Szilard protocol (SZ). Indeed, no state-check
condition is present in SZ, which is equivalent to a hypothet-
ical neuronal transmission activity without threshold-driven
spiking. There is no irrefutable evidence that efficiency is an
optimized quantity in small biological systems, although it is
clear that a high efficiency is achieved by biological processes
when compared to equivalent man-made machines.

A general result of our paper is the more significant
thermodynamic efficiency of the SZ relative to the different
variants of the GCMD with a CMD component (qσ < 10).
However, this holds if we assume a negligible time for the
work extraction and erasure process (Sec. IV). Moreover, the
high thermodynamic efficiency of SZ comes at the price of

a bounded extracted work per cycle [< kBT ln 2 ≈ 0.69kBT ,
Fig. 2(a)]. In contrast, the average work per cycle is much
larger in the CMD, being unbounded in the limit P0 → 0 and
1. The lower thermodynamic efficiency of the CMD stems
from the redundancy of the information content encoded in
the multiple-bit stored sequences. Such a redundancy led us
in Sec. II C to classify SZ as a low-risk strategy (low both
average work and information content per cycle) compared to
CMD (both large average work and information content per
cycle). The large thermodynamic power for SZ is concurrent
with the low work per cycle (< kBT ln 2 ≈ 0.69kBT ), which
does not even reach 1kBT , posing severe limitations to SZ
to perform arbitrary information-to-energy conversion tasks.
From the standpoint of biological systems, it suggests that
information-to-work efficiency is more relevant than thermo-
dynamic power. The limited amount of extracted work per
cycle does not cloud the CMD, a better model for biological
processes in an information-redundant world.

Most results presented in this paper are purely math-
ematical. The message we tried to convey is that CMD
realizations store words of multiple-bit sequences that can be
converted into large amounts of work. The Szilard engine is
the simplest single-bit information-to-energy conversion ma-
chine with limited average work and information content per
cycle. Yet, there is room for designing innovative information-
to-work protocols in systems with a finite number of states
� that can extract more work than just kBT ln �. In a re-
cent work [31], we have addressed the CMD with N states,
finding a rich phenomenology depending on the network of
kinetic rates. Introducing N states into the GCMD will enrich
the families of analytically solvable models for information-
to-energy conversion. This will spur the thinking of novel
experimental realizations of information-to-work protocols
capable of transducing into energy multiple-bit sequences of
significant information content. Plausibly, information con-
tent is also the main trait of the living entities generated
during eons of natural evolution in an information-redundant
world.
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