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Equation-of-state-dependent surface free-energy density for wettability in lattice Boltzmann method
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In thermodynamic theory, the liquid-vapor fluids can be described by a single multiphase equation of state
and the surface wettability is usually characterized by the surface free-energy density. In this work, we propose
an equation-of-state-dependent surface free-energy density for the wettability of the liquid-vapor fluids on a
solid surface, which can lead to a simple closed-form analytical expression for the contact angle. Meanwhile, the
thermodynamically derived equilibrium condition is equivalent to the geometric formulation of the contact angle.
To numerically validate the present surface free-energy density, the mesoscopic multiphase lattice Boltzmann
model with self-tuning equation of state, which is strictly consistent with thermodynamic theory, is employed,
and the two-dimensional wetting condition treatment is extended to the three-dimensional situation with flat
and curved surfaces. Two- and three-dimensional lattice Boltzmann simulations of static droplets on flat and
curved surfaces are first performed, and the obtained contact angles agree well with the closed-form analytical
expression. Then, the three-dimensional lattice Boltzmann simulation of a moving droplet on an inclined wall,
which is vertically and sinusoidally oscillated, is carried out. The dynamic contact angles well satisfy the
Cox-Voinov law. The droplet movement regimes are consistent with previous experiments and two-dimensional
simulations. The dependence of the droplet overall velocity with respect to the dimensionless oscillation strength
is also discussed in detail.
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I. INTRODUCTION

Multiphase flows are widely encountered in daily life and
are of great importance in lots of engineering applications.
In most applications, the solid surface is involved, and the
surface wettability could even dominate the dynamics of mul-
tiphase flows. Related problems include digital microfluidics,
capillary rise, nucleate boiling, dropwise condensation, etc.
The development of the phase interface and the nonzero
surface tension along the phase interface make numerically
modeling multiphase flows a challenging task. Once the solid
surface is involved, the dynamics of the three-phase contact
line further increase the difficulty in numerically model-
ing such problems. Physically speaking, the dynamics of
multiphase flows and surface wettability are the natural conse-
quences of the underlying microscopic molecular interaction,
which is relatively simple compared with the complex and di-
verse macroscopic mechanisms. As a mesoscopic method that
originates from the lattice gas automata, the lattice Boltzmann
(LB) method has the potential to incorporate microscopic
interaction and thus has been widely applied to numerically
modeling multiphase flows over the past three decades [1–6].

In thermodynamic theory, the liquid-vapor fluids, like
water and steam, can be described by a single multiphase
equation of state (EOS), and the liquid-vapor phase inter-
face is diffusive rather than sharp, which means the density
across the phase interface varies continuously rather than as
a step function [7]. With such a diffusive phase interface, the
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nonzero surface tension naturally arises [7] and the viscous
singularity at the moving contact line can also be naturally
circumvented [8]. In addition, the wettability of the liquid-
vapor fluids on a solid surface is usually characterized by the
surface free-energy density [9]. All the existing multiphase
LB models, including the widely applied pseudopotential and
free-energy LB models, are based on the diffusive phase in-
terface. The pseudopotential LB model is originally proposed
by Shan and Chen in 1993 [2], where a pairwise interaction
force is introduced to mimic the underlying microscopic inter-
action responsible for multiphase flows. Due to its simplicity
in concept and computation, the pseudopotential LB model
has attracted continuous attention and significant progress has
been made [10–12]. Shan [10] analyzed the origin of the
spurious current and then proposed a general method to reduce
the magnitude and extent of the spurious current. Sbragaglia
et al. [11] proposed a multirange pseudopotential LB model
that allows independently tuning the multiphase EOS and
surface tension. Li et al. [12] analyzed various schemes to
incorporate the force term into the LB equation and found
the mechanism to adjust the coexistence densities close to
the thermodynamic results. The free-energy LB model is
originally proposed by Swift et al. in 1995 [3], where the
pressure tensor in thermodynamic theory is directly employed
to describe multiphase flows, implying that thermodynamic
consistency can be ensured in advance. Significant progress
has been made to restore the Galilean invariance [13], increase
the density ratio [14], and reduce the spurious current [15]. In
2019, Huang et al. [16] proposed the multiphase LB model
with self-tuning EOS by handling the microscopic molec-
ular interaction. The short-range repulsive and long-range
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attractive molecular interactions are handled by recovering a
self-tuning EOS via the collision operator and incorporating
a pairwise interaction force via the force term, respectively,
which makes this multiphase LB model complies with the
thermodynamic foundations of kinetic theory [17] and thus
be strictly consistent with thermodynamic theory [16].

In the pseudopotential LB model, various schemes have
been proposed for the surface wettability [18–21]. Particu-
larly, Benzi et al. [19] introduced a wall density to fix the
pseudopotential inside the wall, which is then used to cal-
culate the pairwise interaction force on the wall node. They
further derived an analytical expression for the contact angle
and found that the contact angle can be effectively adjusted
by tuning the wall density. In Benzi et al.’s work [19], the
exponential pseudopotential is used to calculate the pairwise
interaction force, implying that the considered multiphase
EOS is a specific one, and the Shan-Chen’s scheme is adopted
to incorporate the pairwise interaction force into the LB equa-
tion. Nevertheless, it is difficult, if not impossible, to connect
the surface wettability in the pseudopotential LB model with
the surface free-energy density in thermodynamic theory be-
cause the model suffers from thermodynamic inconsistency
[17], although equivalent theories can be formulated for this
model to analytically determine thermodynamical properties
like the coexistence densities and surface tension [11,19,22].
In the free-energy LB model, Briant et al. [23,24] first stud-
ied the surface wettability by using the surface free-energy
density in linear form, which is proposed by Cahn [25] for
critical point wetting. They derived a closed-form analytical
expression for the contact angle when the Landau free-energy
functional is employed for the bulk phases (the liquid-vapor
fluids). The linear surface free-energy density has also been
used by Semprebon et al. [26] in the ternary free-energy LB
model. Most recently, Huang et al. [27] proposed a surface
free-energy density in hyperbolic tangent form and derived
the analytical expression for the contact angle when a gen-
eral multiphase EOS is employed. They further investigated
the wetting condition treatment, though two-dimensional, in
the multiphase LB model with self-tuning EOS, which gathers
the distinct advantages of the pseudopotential and free-energy
LB models.

It is worth noting that, in physics, the surface wettability
depends on not only the physicochemical properties of the
solid surface but also the thermodynamical properties of the
liquid-vapor fluids. Therefore, the surface free-energy den-
sity for wettability is expected to be explicitly related to the
multiphase EOS, while the existing surface free-energy densi-
ties, such as the linear one [25] and the hyperbolic tangent
one [27], are proposed without considering any details of
the multiphase EOS. Moreover, when a realistic multiphase
EOS is employed, the analytical expressions for the contact
angle derived with the existing EOS-independent surface free-
energy densities are very complicated, as shown by Huang
et al. [27]. In this work, we will thermodynamically analyze
the wettability of the liquid-vapor fluids on a solid surface
when the multiphase EOS can be arbitrarily specified, and
then we will propose an EOS-dependent surface free-energy
density for wettability, which leads to a simple closed-form
analytical expression for the contact angle that is convenient
for numerical implementation. The existing wetting condition

treatment in the multiphase LB model with self-tuning EOS
will also be extended to the three-dimensional situation with
flat and curved surfaces. The remainder of this work is orga-
nized as follows. In Sec. II, the thermodynamic analysis of
surface wettability is made and the EOS-dependent surface
free-energy density is proposed. In Sec. III, the multiphase
LB model with self-tuning EOS is introduced and the wetting
condition treatment is proposed. The numerical validations
are performed in Sec. IV and a brief conclusion is presented
in Sec. V.

II. THERMODYNAMIC THEORY

For a liquid-vapor system surrounded by a solid surface,
the Helmholtz free-energy functional F can be written as [7]

F =
∫

Ω

(
ρ fb + 1

2
κ|∇ρ|2

)
dV +

∫
∂Ω

ρ fsdA, (1)

where Ω and ∂Ω denote the material volume and its surface
(i.e., the solid surface), respectively, ρ fb is the bulk free-
energy density with ρ the fluid density and fb the specific bulk
free energy, respectively, 1

2κ|∇ρ|2 is the interface free-energy
density for the liquid-vapor phase interface with κ the excess
energy coefficient, and ρ fs is the surface free-energy density
(per unit area) for the solid surface. The equilibrium state of
the liquid-vapor system can be obtained by minimizing the
Helmholtz free-energy functional under the constraint of mass
conservation. For this purpose, the following functionalW is
introduced:

W = F + λM, (2a)

where M = ∫
Ω

ρdV is the total mass and λ is the Lagrange
multiplier. The first variation ofW is

δW =
∫

Ω

δρ

[
∂ (ρ fb)

∂ρ
− κ∇ · ∇ρ + λ

]
dV

+
∫

∂Ω

δρ

[
κ∇ρ · n̂s + ∂ (ρ fs)

∂ρ

]
dA, (2b)

where n̂s is the outward unit normal vector of the solid surface.
MinimizingW with respect to ρ, the equilibrium conditions
of the liquid-vapor system can be obtained from Eq. (2b) as
follows:

∂ (ρ fb)

∂ρ
− κ∇ · ∇ρ = −λ ≡ const in Ω, (3a)

κ∇ρ · n̂s + ∂ (ρ fs)

∂ρ
= 0 on ∂Ω. (3b)

Note that an athermal multiphase system is considered here,
and thus the isothermal equilibrium condition is inherently
implied.

Based on the form of Eq. (3a), a pressure tensor P can be
defined as

∇ · P ≡ ρ∇
[
∂ (ρ fb)

∂ρ
− κ∇ · ∇ρ

]
, (4)

and then calculated as

P =
(

ρ2 ∂ fb

∂ρ
− κρ∇ · ∇ρ − κ

2
∇ρ · ∇ρ

)
I + κ∇ρ∇ρ. (5)
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The quantity ∂ (ρ fb)/∂ρ − κ∇ · ∇ρ on the right-hand side
of Eq. (4) is identified as the chemical potential in previous
works [15,27,28], although it is not strictly the local one in
the theory of van der Waals [7,29,30]. In addition, there is an
infinite number of pressure tensors satisfying Eq. (4), which
differ by symmetric tensors with vanishing divergence, and
the Korteweg’s stress tensor is adopted [31]. With the defini-
tion of the pressure tensor, the equilibrium condition given by
Eq. (3a) also reads

∇ · P = 0 in Ω. (6)

In thermodynamic theory, the specific bulk free energy fb,
with natural variables the specific volume v (v ≡ ρ−1) and
the temperature T , can be chosen as a characteristic function
(thermodynamic potential), and then the thermodynamic pres-
sure pEOS can be defined as

pEOS ≡ −
(

∂ fb

∂v

)
T

= ρ2

(
∂ fb

∂ρ

)
T

. (7)

In real applications, the thermodynamic pressure pEOS is
usually given via the multiphase EOS pEOS(ρ, T ), and the
expression for the specific bulk free energy fb could be un-
known.

A. Thermodynamic properties

To theoretically calculate the thermodynamic properties
(including the saturated liquid and vapor densities, the sat-
uration pressure, the contact angle, etc.), a one-dimensional
system can be taken for simplicity, where both the liquid-
vapor phase interface and the solid surfaces are parallel to
the y-z plane and all the involved quantities only vary with
the x coordinate [27]. For such a one-dimensional system, the
pressure tensor given by Eq. (5) can be simplified as

Pn ≡ Pxx = pEOS − κρ
d2ρ

dx2
+ κ

2

(
dρ

dx

)2

= pEOS + κ

2

d

dv

[
1

ρ

(
dρ

dx

)2]
, (8a)

Pt ≡ Pyy = Pzz = pEOS − κρ
d2ρ

dx2
− κ

2

(
dρ

dx

)2

, (8b)

Pαβ = 0 if α �= β, (8c)

where Pn and Pt denote the normal and tangential pressures,
respectively. The equilibrium condition given by Eq. (6) indi-
cates that Pn should keep constant in Ω . Therefore, we have

Pn = pEOS(ρl ) = pEOS(ρv ) = psat, (9)

considering dρ/dx = 0 and d2ρ/dx2 = 0 in the bulk liquid
and vapor phases. Here, ρl and ρv are the saturated liquid

and vapor densities, respectively, and psat is the saturation
pressure.

With Eq. (9), an indefinite integral of Eq. (8a) can be
derived as

κ

2

(
dρ

dx

)2

= ρ

[∫
(psat − pEOS)dv + C

]
= psat − ρΘ + ρC,

(10)

where Θ = ∫
pEOSdv is the indefinite integral of the multi-

phase EOS, and the integration constant C can be determined
by the condition dρ/dx = 0 when ρ = ρl or ρv . Therefore,
we have

C = Θ (ρl ) − pEOS(ρl )

ρl

= Θ (ρv ) − pEOS(ρv )

ρv

. (11)

The right-hand side of Eq. (10) is a nonnegative function of
the fluid density ρ. To simplify the notation, we define

Φ(ρ) ≡ √
psat − ρΘ + ρC, (12)

and then rewrite Eq. (10) as√
κ

2

∣∣∣∣dρ

dx

∣∣∣∣ = Φ. (13)

Since dρ/dx = 0 when ρ = ρl and ρv , it can be easily ob-
tained from Eq. (10) that∫ ρl

ρv

(psat − pEOS)dv = 0, (14)

which is known as the Maxwell construction (the equal-
area construction in the p-v plane) in thermodynamic theory.
The saturated liquid and vapor densities ρl and ρv , as well
as the saturation pressure psat, can be uniquely determined
from Eq. (14). Then, the function defined in Eq. (12) can
be immediately obtained. Some multiphase EOSs commonly
employed in the LB method and their indefinite integrals are
summarized in the Appendix.

With the function Φ(ρ), the equilibrium condition given
by Eq. (3b) can be rewritten as

Φ − 1√
2κ

∣∣∣∣∂ (ρ fs)

∂ρ

∣∣∣∣ = 0 on ∂Ω, (15)

from which the fluid density ρ on the solid surface ∂Ω can
be uniquely determined [27]. In the following, the ρ on ∂Ω

is denoted by ρsl and ρsv when the solid surface is immersed
in the bulk liquid and vapor phases, respectively. As shown
by Huang et al. [27], the contact angle θ can be analytically
calculated by

cos θ = σsv − σsl

σlv
=

1√
2κ

[ρsv fs(ρsv ) − ρsl fs(ρsl )] + ∫ max(ρsv ,ρv )
min(ρsv ,ρv ) Φdρ − ∫ max(ρsl ,ρl )

min(ρsl ,ρl ) Φdρ∫ ρl
ρv

Φdρ
, (16)

where σlv , σsl , and σsv denote the liquid-vapor, solid-liquid,
and solid-vapor surface tensions, respectively. It can be seen

from Eqs. (15) and (16) that the contact angle θ is unam-
biguously determined by the surface free-energy density ρ fs,
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or more precisely its derivative ∂ (ρ fs)/∂ρ since ρsv fs(ρsv ) −
ρsl fs(ρsl ) in Eq. (16) can be reformulated to the integral
− ∫ ρsl

ρsv
[∂ (ρ fs)/∂ρ]dρ.

B. Surface free-energy density

The simplest surface free-energy density is the linear one
proposed by Cahn [25]

ρ fs = −γ ρ, (17a)

∂ (ρ fs)

∂ρ
= −γ , (17b)

where the parameter γ determines the contact angle. This lin-
ear ρ fs has been widely adopted in the free-energy LB model
for multiphase flows [23,24,26,32]. It is originally proposed
for critical point wetting and could induce large deviations
between ρsl and ρl and between ρsv and ρv far from the critical
point. To remedy this defect, a hyperbolic tangent surface
free-energy density is recently proposed by Huang et al. [27]

ρ fs = −γ (ρl − ρv )

2ζ
tanh

(
ζ

2ρ − ρl − ρv

ρl − ρv

)
, (18a)

∂ (ρ fs)

∂ρ
= −γ sech2

(
ζ

2ρ − ρl − ρv

ρl − ρv

)
, (18b)

where the parameter ζ is used to reduce the deviations be-
tween ρsl and ρl and between ρsv and ρv , and the parameter
γ is used to adjust the contact angle. This hyperbolic tangent
ρ fs has been successfully applied to simulate thermodynamic
wetting with liquid-vapor phase transition via the multiphase
LB model with self-tuning EOS [27]. In addition, the cu-
bic surface free-energy density [ψs = −γ (φ2/2 − φ3/3)] has
been widely adopted in the phase-field description of the
incompressible multiphase flows [33–38], where the densities
are assumed to be constant and the temperature is treated as
a passive scalar. The details of the multiphase EOS (i.e., the
thermophysical properties implied by the multiphase EOS)
are not important for the incompressible multiphase flows and
thus the double-well bulk free-energy density [ψb = βφ2(1 −
φ)2] is employed to describe the incompressible multiphase
fluids. Here, φ is the order parameter with φ = 0 representing
one phase and φ = 1 the other, the free-energy densities ψs

and ψb correspond to the present ρ fs and ρ fb, respectively,
and the parameters γ and β are used to adjust the contact
angle and surface tension, respectively. Since we focus on the
multiphase flows where a realistic multiphase EOS should be
specified, this cubic surface free-energy density in the phase-
field description of the incompressible multiphase flows will
not be further discussed here.

From the above analysis, we can see that the existing sur-
face free-energy densities are proposed without considering
any details of the multiphase EOS. However, the surface wet-
tability depends on not only the physicochemical properties
of the solid surface but also the thermodynamical properties
of the liquid-vapor fluids, implying that the dependence of
the contact angle θ versus the parameter γ in the aforemen-
tioned ρ fs [see Eqs. (17) and (18)] is EOS-dependent and
also temperature-dependent. Moreover, for the linear and hy-
perbolic tangent ρ fs, the fluid density ρ on the solid surface

FIG. 1. Enlarged illustration of the three-phase contact point,
where point A is on the solid surface, ∇⊥wall ρ and ∇⊥interface ρ

on point A are geometrically defined along the line segments BA
and CA, respectively, the line segment BC is locally parallel to the
liquid-vapor phase interface, and the length ratio of CA to BA is
cos θ . Note that when θ > 90◦, ∇⊥interface ρ is defined along AC and
the length ratio of AC to BA is − cos θ . Moreover, the three-phase
contact point is not a geometric point since the liquid-vapor phase
interface is diffusive.

∂Ω cannot be algebraically determined [see Eq. (15)] and
the analytical expression for the contact angle is also very
complicated [see Eq. (16)]. Since the function Φ(ρ) defined
in Eq. (12) can be immediately obtained after the Maxwell
construction, we propose a novel EOS-dependent surface free-
energy density as follows:

∂ (ρ fs)

∂ρ
= −γ

√
2κΦ, (19)

where the parameter γ determines the contact angle. Before
proceeding further, some discussion on the function Φ(ρ)
is useful. It can be concluded from Eq. (13) that Φ(ρl ) =
Φ(ρv ) = 0 (as dρ/dx = 0 in the bulk liquid and vapor
phases) and Φ(ρ) > 0 when ρ �= ρl,v (as |dρ/dx| > 0 in the
inhomogeneous regions). With the present EOS-dependent
∂ (ρ fs)/∂ρ, the equilibrium condition given in Eq. (15) can
be further simplified as

Φ − |γ |Φ = 0 on ∂Ω, (20)

which immediately leads to

ρsl = ρl , ρsv = ρv. (21)

Then, the analytical expression for the contact angle, Eq. (16),
can be simplified as

cos θ = γ , (22)

where the algebraic manipulation ρsv fs(ρsv ) − ρsl fs(ρsl ) =
− ∫ ρsl

ρsv
[∂ (ρ fs)/∂ρ]dρ = γ

√
2κ

∫ ρl
ρv

Φdρ is used. Equa-
tions (21) and (22) are derived from the knowledge of
∂ (ρ fs)/∂ρ given by Eq. (19), implying that the exact
expression for ρ fs is not required in real applications. The
physical implication of this point is thermodynamics deals
with the change of thermodynamic energy rather than its
absolute value. In addition, with the present EOS-dependent
surface free-energy density, the analytical expression for the
contact angle is very simple, and the equilibrium condition
on the solid surface leads to the geometric formulation of the
contact angle (see Fig. 1).

It is noteworthy that the contact angle θ in Eqs. (16)
and (22) is the static contact angle calculated via Young’s
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equation, where the liquid-vapor, solid-liquid, and solid-vapor
surface tensions are theoretically determined for the flat
liquid-vapor phase interface and solid surfaces. In thermo-
dynamic theory, the liquid-vapor surface tension, as well as
the solid-liquid and solid-vapor surface tensions, is curvature-
dependent [7,39–42], which cannot be neglected when the
interface thickness is comparable to the interface radius (such
as the nanodroplet and nanobubble [43]). However, when the
interface thickness is much smaller than the interface radius
(such as for the macroscale, or even mesoscale, situation),
the dependence of the surface tension with the interface cur-
vature can be safely neglected, and then Eqs. (16) and (22)
are applicable to the two- and three-dimensional systems with
curved liquid-vapor phase interface and solid surface. With
the present EOS-dependent ∂ (ρ fs)/∂ρ, the equilibrium con-
dition given by Eq. (3b) can be rewritten as

∇⊥wall ρ − γ

√
2

κ
Φ = 0 on ∂Ω, (23)

where ∇⊥wall ρ is a short notation of ∇ρ · n̂s on ∂Ω and means
the density gradient on the solid surface along its outward nor-
mal direction. Assuming that the structure of the liquid-vapor
phase interface (i.e., the density profile across the liquid-vapor
phase interface) is irrelevant to the geometric configuration,
and then with the help of Eqs. (13) and (22), Eq. (23) can be
reformulated to

∇⊥wall ρ = cos θ

∣∣∣∣dρ

dx

∣∣∣∣
1D

≈ cos θ ∇⊥interface ρ on ∂Ω,

(24)

where ∇⊥interface ρ denotes the density gradient along the nor-
mal direction of the liquid-vapor phase interface. Here, the
normal direction of the liquid-vapor phase interface points
from the vapor to liquid phases, implying that ∇⊥interface ρ �
0. Figure 1 shows an enlarged illustration of the three-phase
contact point, together with the geometric definitions of
∇⊥wall ρ and ∇⊥interface ρ on ∂Ω . It can be seen from Fig. 1
that the equilibrium condition given by Eq. (24), which is
derived from thermodynamic theory with the present EOS-
dependent surface free-energy density, can be interpreted as
the geometric formulation of the contact angle [44].

III. NUMERICAL METHOD

The present EOS-dependent surface free-energy density
is proposed from the thermodynamic analysis of surface
wettability, and thus it can be applied to any thermody-
namically consistent methods/models for multiphase flows.
In this work, to numerically validate the EOS-dependent
surface free-energy density, the multiphase LB model with
self-tuning EOS is employed because the model is based on
the underlying microscopic molecular interaction rather than
the traditional interface capturing/tracking technique and it
is consistent with thermodynamic theory in a strict sense.
In this multiphase LB model, the terminology “self-tuning
EOS” means that the EOS intrinsically recovered by the LB
equation (i.e., by its collision operator without the force term)
can be tuned itself via a built-in variable. This self-tuning
EOS can be physically interpreted as the incorporation of

the short-range repulsive molecular interaction considering
the short-range repulsive molecular interaction can be well
modeled by Enskog theory for dense gases. When the pair-
wise interaction force is introduced into the LB equation to
mimic the long-range attractive molecular interaction, a corre-
sponding attractive term is then introduced into the recovered
self-tuning EOS to constitute a multiphase EOS [see Eq. (28)].
Therefore, the multiphase LB model with self-tuning EOS
is consistent with the kinetic model for multiphase fluids
that combines Enskog theory for dense gases and mean-
field theory for long-range molecular interaction [17], and
the terminology “self-tuning EOS” should not be confused
with the arbitrary specification of a realistic multiphase EOS
[27]. For the sake of completeness, the multiphase LB model
with self-tuning EOS and the corresponding wetting condition
treatment are briefly introduced in this section.

A. LB model with self-tuning EOS

The multiphase LB model with self-tuning EOS is based on
the standard lattice (i.e., the D2Q9 and D3Q27 lattices for the
two- and three-dimensional situations, respectively) and the
multiple-relaxation-time (MRT) collision operator [16,45].
The MRT LB equation for the density distribution function
fi is given as

fi(x + eiδt , t + δt ) = f̄i(x, t ), (25a)

m̄ = m + δt Fm − S
(

m − meq + δt

2
Fm

)

+ SQm − R
(

I − S
2

)(
m − meq + δt

2
Fm

)

− δxT∇ρ − δxX∇η, (25b)

where Eqs. (25a) and (25b) denote the linear streaming pro-
cess in velocity space and the local collision process in
moment space (locally computed at position x and time t),
respectively, and the overbar denotes the post-collision state.
The transformations between velocity and moment spaces are
performed via m = M( fi )T and ( fi )T = M−1m with ( fi)T a
short notation of the lattice vector ( f0, f1, · · · , fN−1)T, m
the moment of ( fi )T, and M the orthogonal transformation
matrix. In the local collision process, the first three terms m +
δt Fm − S(m − meq + δt

2 Fm) constitute the classical MRT col-
lision operator, the term +SQm is a consistent scheme for the
ε3-order term for multiphase flows [46,47], and the last three
terms −R(I − S

2 )(m − meq + δt
2 Fm) − δxT∇ρ − δxX∇η are

aimed to eliminate the additional cubic terms of velocity
in recovering the Newtonian viscous stress [27,48], which
should be seriously considered rather than directly ignored for
multiphase flows [49]. In the LB equation, ei is the discrete
velocity, δx is the lattice spacing, δt is the time step, S is the
collision matrix, meq is the equilibrium moment, Fm is the
discrete force, Qm is the ε2-order source term, I is the unit
matrix, and R, T, and X are N×N , N×D, and N×D matrices,
respectively, with N the number of discrete velocities and D
the dimension of space. Since this work focuses on the surface
free-energy density for wettability in thermodynamic theory,
the technical details of the above LB equation will not be
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covered here, and the reader is referred to our previous works
[16,27,45].

In the multiphase LB model with self-tuning EOS, the
short-range molecular interaction is inherently incorporated
by the MRT collision operator, and the long-range molecular
interaction is mimicked by the pairwise interaction force

Fint(x) = G2ρ(x)
N−1∑
i=1

ω(|eiδt |2)ρ(x + eiδt )eiδt , (26)

where G is the interaction strength, ω(|eiδt |2) is the distance-
dependent weight satisfying

∑N−1
i=1 ω(|eiδt |2)eiei = c2I and∑N−1

i=1 ω(|eiδt |2)eieieiei = c4II/3 to maximize the isotropy
degree of Fint. Here, c = δx/δt is the lattice speed, I = δαβ

is the unit tensor, and II = δαβδγ δ + δαγ δβδ + δαδδβγ . The
macroscopic density ρ and momentum ρu are defined as

ρ =
N−1∑
i=0

fi, ρu =
N−1∑
i=0

ei fi + δt

2
F, (27)

where F is the total force that consists of the pairwise interac-
tion force Fint and the other external force Fext if it exists in
real applications. The multiphase EOS is recovered as

pEOS = pLBE − G2δ2
x

2
ρ2 = c2

s (ρ + η) − G2δ2
x

2
ρ2, (28)

where the first term pLBE = c2
s (ρ + η), with η the built-in

variable in meq and cs = c/
√

3 the lattice sound speed, is the
self-tuning EOS implied by the MRT collision operator and
the second term −G2δ2

x ρ
2/2 is introduced by the pairwise

interaction force.
In the following numerical validations, the Carnahan-

Starling EOS [50] is chosen as an example,

pEOS = KEOS

[
ρRT

1 + bρ/4 + (bρ/4)2 − (bρ/4)3

(1 − bρ/4)3
− aρ2

]
,

(29a)

of which the indefinite integral can be calculated as

Θ =
∫

pEOSdv

= KEOS

[
−RT

3 − bρ/2

(1 − bρ/4)2
− RT ln ρ + aρ

]
. (29b)

Here, the scaling factor KEOS is introduced to adjust the
liquid-vapor surface tension, and the coefficients a and b are
related to the critical properties via the critical conditions
(∂ pEOS/∂ρ)T = 0 and (∂2 pEOS/∂ρ2)T = 0 as follows:

a = 1.3828652346415909
RTcr

ρcr

,

b = 0.5217755367698158
1

ρcr

, (30)

where Tcr and ρcr are the critical temperature and density,
respectively. Note that the coefficient b in pEOS here should
not be confused with the b in the collision matrix S of the
LB equation (see Eq. (6) in Ref. [16]). The critical pressure
pcr can be directly calculated via the multiphase EOS with Tcr

and ρcr, and the reduced temperature is defined as Tr = T/Tcr.

When the Carnahan-Starling EOS is specified in the multi-
phase LB model with self-tuning EOS, the interaction strength
is set to [16]

G = KINT

√
2KEOS

a

δ2
x

, (31a)

and the lattice sound speed is chosen as

cs = KINT

√(
∂ pEOS

∂ρ

)
T

+ 2KEOSaρ

∣∣∣∣∣∣
ρ=ρl

, (31b)

where the scaling factor KINT is introduced to adjust the
liquid-vapor interface thickness. Once a realistic multiphase
EOS is specified in real applications, the built-in variable
η in meq is then inversely calculated by η = pEOS/c2

s +
G2δ2

x ρ
2/(2c2

s ) − ρ [see Eq. (28)]. The liquid-vapor surface
tension and interface thickness satisfy σlv ∝ KEOSKINT and
Wlv ∝ KINT, respectively, where the proportionality constants
can be analytically determined in advance [16,45]. Consider-
ing the liquid-vapor phase interface is diffusive (see Fig. 1
as an illustration), the interface thickness is defined from
ρ = 0.95ρv + 0.05ρl to 0.05ρv + 0.95ρl and the interface po-
sition is defined at ρ = 0.5ρv + 0.5ρl throughout this work.
Before proceeding further, it is worth pointing out that there
is no need to explicitly introduce the scaling factors KEOS

and KINT into the present ∂ (ρ fs)/∂ρ given by Eq. (19) to
ensure that the contact angle θ , the surface tension σlv , and the
interface thickness Wlv can be independently adjusted in real
applications because KEOS and KINT are implicitly included in
∂ (ρ fs)/∂ρ via κ and Φ.

B. Wetting condition treatment

The wettability of the liquid-vapor fluids on a solid surface
can be implemented by enforcing the equilibrium condition
there [see Eq. (23) for the present EOS-dependent surface
free-energy density or Eq. (3b) for the general case], and the
wetting condition treatment proposed by Huang et al. [27]
is adopted here. Note that the two-dimensional situation is
considered by Huang et al. [27], and we extend it to the
three-dimensional situation in this work. In Huang et al.’s
wetting condition treatment, the solid surface is represented
by a series of wall nodes, and the LB simulation is performed
on the fluid and wall nodes but not the solid nodes. After the
streaming process [i.e., Eq. (25a)], some of the distribution
functions on the wall node are unknown due to the absence of
the adjacent fluid/wall nodes, as shown by Figs. 2 and 3 for
the two- and three-dimensional situations, respectively.

The fluid density on the wall node is first determined via
an auxiliary bounce-back process, i.e., the post-collision den-
sity distribution function hitting the solid surface reverses its
direction as follows [51]:

fī,unknown(xwall, t + δt ) = f̄i(xwall, t ), (32)

where ī denotes the reverse direction of i, and the subscript
“unknown” means that the density distribution function in
direction ī is unknown after the streaming process. The mass
conservation on the wall node can be strictly satisfied by the
auxiliary bounce-back process. With this auxiliary bounce-
back process, all the unknown density distribution functions
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FIG. 2. Illustration of the wetting condition treatment for (a) flat surface and (b) curved surface for the two-dimensional situation. The
circular, square, and triangular points denote the fluid, wall, and solid nodes, respectively, and the star denotes a virtual fluid point. The thick
arrow is the outward unit normal vector on the wall node, and the thin arrow indicates the density on one solid node is calculated based on the
density on its corresponding virtual fluid point.

on the wall node are temporarily obtained and then the
density ρ(xwall, t + δt ) can be calculated via the definition
ρ = ∑N−1

i=0 fi.
The key point of the wetting condition treatment is to de-

termine the pairwise interaction force on the wall node, which
can be defined via Eq. (26) as normal. In the interaction stencil
as illustrated in Figs. 2 and 3, the densities on all the fluid and
wall nodes are already known, and the remaining task is to
determine the densities on the solid nodes, which can be done
under the equilibrium condition from thermodynamic theory
[i.e., Eq. (23)]. For this purpose, a virtual fluid point is set
along the inward normal direction [27]

xvf = xsolid − 2δx

max(|n̂s,α|) n̂s, (33)

where max(|n̂s,α|) denotes the maximum magnitude of the
elements of the outward unit normal vector n̂s. For the flat
surface, the virtual fluid point overlaps with a fluid node,
implying that ρ(xvf, t + δt ) is immediately known. For the

FIG. 3. Illustration of the wetting condition treatment for (a) flat
surface and (b) curved surface for the three-dimensional situation.
The circular, square, and triangular points denote the fluid, wall,
and solid nodes, respectively, and the star denotes a virtual fluid
point. The thick arrow is the outward unit normal vector on the wall
node, and the thin arrow indicates the density on one solid node is
calculated based on the density on its corresponding virtual fluid
point.

curved surface, the virtual fluid point lies on a grid line and
face for the two- and three-dimensional situations, respec-
tively, as shown in Figs. 2 and 3, and then ρ(xvf, t + δt ) is
calculated using the linear and bilinear interpolations, respec-
tively. Once ρ(xvf, t + δt ) is obtained, the density on the solid
node is evaluated under Eq. (23),

ρ(xsolid, t + δt ) = ρ(xvf, t + δt ) + 2δx

max(|n̂s,α|)γ
√

2

κ
Φ.

(34)

Note that there could be more than one solid node in the
interaction stencil, and the density on each solid node should
be individually evaluated via Eqs. (33) and (34) for the sake
of accuracy. Meanwhile, the function Φ(ρ) on the right-hand
side of Eq. (34) is related to the fluid density on the solid
surface, which is approximated by the following average one
in real applications [27]:

ρave =
∑N−1

i=0 s(xwall + eiδt )ρ(xwall + eiδt , t + δt )∑N−1
i=0 s(xwall + eiδt )

, (35)

where s(xwall + eiδt ) is a switch function that equals 1
for the fluid and wall nodes while 0 for the solid node.
After the densities on all the solid nodes in the inter-
action stencil are obtained, the pairwise interaction force
Fint(xwall, t + δt ) can then be calculated via the definition
Fint(x) = G2ρ(x)

∑N−1
i=1 ω(|eiδt |2)ρ(x + eiδt )eiδt .

At last, all the density distribution functions on the wall
node are reconstructed by the improved nonequilibrium-
extrapolation scheme to ensure that the momentum definition
ρu = ∑N−1

i=0 ei fi + δt F/2 precisely holds on the wall node
[51]. For this purpose, the moment of the density distribu-
tion function is decomposed into the equilibrium, force, and
nonequilibrium parts,

m = meq − δt

2
Fm + mneq, (36a)
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FIG. 4. Density contours of the static droplet on flat surface obtained by the two-dimensional LB simulations with (a) γ = −0.9,
(b) γ = −0.7, (c) γ = −0.5, (d) γ = −0.2, (e) γ = 0, (f) γ = 0.2, (g) γ = 0.5, (h) γ = 0.7, and (i) γ = 0.9. The reduced temperature
is Tr = 0.7, and the liquid-vapor surface tension and interface thickness are σlv = 0.01 and Wlv = 10, respectively.

and an improved extrapolation term is introduced,

m̃neq =
(

I − S
2

)
mneq. (36b)

On the wall node, the equilibrium part meq (xwall, t + δt )
and the force part −δt Fm(xwall, t + δt )/2 can be directly cal-
culated as ρ(xwall, t + δt ) and Fint(xwall, t + δt ) are already
obtained, while the nonequilibrium part mneq(xwall, t + δt ) is
determined by extrapolating m̃ from the nearest fluid node as
follows:

m̃neq(xwall, t + δt ) = m̃neq(xfluid, t + δt ). (37)

Once m̃neq(xwall, t + δt ) is obtained, mneq(xwall, t + δt ) can be
inversely determined via Eq. (36b), and m(xwall, t + δt ) can
be constructed via Eq. (36a). Therefore, all the density distri-
bution functions fi(xwall, t + δt ) can be updated via the space
transformation ( fi )T = M−1m. Note that Eq. (37) is the first-
order extrapolation, and in real applications, the second-order
extrapolation can also be adopted for the sake of accuracy
[51]. Through the aforementioned procedures, both the wet-
ting and nonslip conditions on the solid surface are achieved.

IV. NUMERICAL VALIDATIONS

In this section, the two- and three-dimensional LB simula-
tions of static droplets on flat and curved surfaces are carried
out to validate the present EOS-dependent surface free-energy
density for wettability and the derived analytical expression
for the contact angle. Then, the three-dimensional LB sim-
ulation of a moving droplet on an inclined wall, which is
vertically and sinusoidally oscillated, is carried out. In the
LB simulations, the lattice spacing is fixed at δx = 1, the
lattice sound speed cs is determined by Eq. (31b), and then
the lattice speed and time step are calculated by c = √

3cs

and δt = δx/c, respectively. The other basic parameters of the
two- and three-dimensional LB models are chosen follow-
ing Refs. [27] and [45], respectively. The coefficients in the
Carnahan-Starling EOS are set to a = 1, b = 4, and R = 1.

The reduced temperature Tr , the liquid-vapor surface tension
σlv , and the liquid-vapor interface thickness Wlv will be indi-
vidually stated in practical simulations, by which the scaling
factors KEOS and KINT can be determined.

A. Static droplet on flat surface

First, a static droplet on a flat surface is considered. The
reduced temperature is set to Tr = 0.7, and thus the satu-
rated liquid and vapor densities are ρl = 0.358131 and ρv =
0.00929415. The liquid-vapor surface tension and interface
thickness are fixed at σlv = 0.01 and Wlv = 10, implying
that the scaling factors are KEOS = 0.201280 and KINT =
2.905016. For the two- and three-dimensional LB simula-
tions, the computational domains are set to 2048×512 and
320×320×120, respectively, and the solid surfaces are put
on the x plane with y = 0 and x-y plane with z = 0, respec-
tively. The symmetric boundary condition is applied on the
opposite plane of the solid surface, and the periodic boundary
conditions are applied in the other directions. The density and
velocity fields are initialized as

ρ(x, 0) = ρl + ρv

2
− ρl − ρv

2
tanh

|x − xc| − r0

Wlv/ ln(19)
, (38a)

u(x, 0) = 0, (38b)

where xc is (1024, 0)T and (160, 160, 0)T, respectively, and r0

is 256 and 64, respectively, for the two- and three-dimensional
LB simulations. The dimensionless relaxation time τ is fixed
at 1.5 in the simulations.

Figures 4 and 5 show the static droplets in the converged
state for the two- and three-dimensional LB simulations,
respectively, where the parameter γ in the EOS-dependent
surface free-energy density [see Eq. (19)] is set to ±0.9,
±0.7, ±0.5, ±0.2, and 0. As can be seen, the wettability of
the liquid-vapor fluids on a flat surface with the analytical
contact angle varying from θ = arccos(−0.9) ≈ 154.158◦ to
θ = arccos(0.9) ≈ 25.842◦ can be successfully handled by
the present multiphase LB model and its wetting condition

025309-8



EQUATION-OF-STATE-DEPENDENT SURFACE … PHYSICAL REVIEW E 107, 025309 (2023)

FIG. 5. Interface positions of the static droplet on flat surface obtained by the three-dimensional LB simulations with (a) γ = −0.9,
(b) γ = −0.7, (c) γ = −0.5, (d) γ = −0.2, (e) γ = 0, (f) γ = 0.2, (g) γ = 0.5, (h) γ = 0.7, and (i) γ = 0.9. The reduced temperature is
Tr = 0.7, and the liquid-vapor surface tension and interface thickness are σlv = 0.01 and Wlv = 10, respectively.

treatment. Moreover, the numerically achieved contact an-
gle can be effectively adjusted by the parameter γ in the
EOS-dependent surface free-energy density. From the den-
sity contours in Fig. 4, the interfacial film above the solid
surface [20] is indistinguishable as ρsl = ρl and ρsv = ρv can
be ensured by the present EOS-dependent surface free-energy
density [see Eq. (21)].

For quantitative comparison, the contact angle is numer-
ically measured by fitting the liquid-vapor phase interface
with a circular/spherical profile. Figure 6 shows the com-
parison of the contact angles obtained by the two- and
three-dimensional LB simulations with the analytical result
derived from thermodynamic theory [see Eq. (22)]. It can

FIG. 6. Comparison of the contact angle obtained by the LB
simulation of a static droplet on a flat surface with the analytical
result derived from thermodynamic theory, where the variation of
the absolute error between the numerical and analytical results with
the contact angle is also plotted. The reduced temperature is Tr =
0.7, and the liquid-vapor surface tension and interface thickness are
σlv = 0.01 and Wlv = 10, respectively.

be seen from the figure that the contact angles by both the
two- and three-dimensional LB simulations correspond well
with the analytical result in the range −0.9 � γ � 0.9. Such
a good agreement validates the thermodynamic analysis in
Sec. II and the numerical method (including the multiphase
LB model with self-tuning EOS and its wetting condition
treatment) in Sec. III. In Fig. 6, the variations of the absolute
error, defined as δθ = θnumerical − θanalytical with θnumerical and
θanalytical denoting the numerical and analytical results, with
the contact angle is also plotted. As it can be seen, the absolute
error falls in the range −1◦ � δθ � 1◦ when the contact angle
θ is close to 90◦ and gradually increases when the contact
angle θ tends to 0◦ and 180◦ (i.e., the parameter γ tends
to ±1). This deviation between the numerical and analytical
results shown in Fig. 6 is caused by the numerical error of the
wetting condition treatment.

B. Static droplet on curved surface

To further demonstrate the capability of the present multi-
phase LB model and its wetting condition treatment, a static
droplet on a curved surface is simulated in this section. The
reduced temperature is set to Tr = 0.8, and the saturated liquid
and vapor densities are ρl = 0.307196 and ρv = 0.0217232,
respectively. The liquid-vapor surface tension and interface
thickness are chosen as σlv = 0.01 and Wlv = 10 unless oth-
erwise stated, implying that KEOS = 0.479820 and KINT =
2.294922. For the two-dimensional LB simulation, the
computational domain is 1024×1024, and a solid circle of
radius 256 and center (512, 384)T is placed in the domain. As
for the three-dimensional LB simulation, the computational
domain is 256×256×320, and a solid sphere of radius 80
and center (128, 128, 112)T is placed in the domain. The
solid surface inside the computational domain is handled by
the wetting condition treatment in Sec. III B, and the sur-
rounding boundaries of the computational domain are set
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FIG. 7. Density contours of the static droplet on curved surface obtained by the two-dimensional LB simulations with (a) γ = −0.9,
(b) γ = −0.7, (c) γ = −0.5, (d) γ = −0.2, (e) γ = 0, (f) γ = 0.2, (g) γ = 0.5, (h) γ = 0.7, and (i) γ = 0.9. The reduced temperature is
Tr = 0.8, and the liquid-vapor surface tension and interface thickness are σlv = 0.01 and Wlv = 10, respectively.

as periodic. Initially, a droplet is deposited on the curved
surface as

ρ(x, 0) = ρl + ρv

2
− ρl − ρv

2
tanh

|x − xc| − r0

Wlv/ ln(19)
, (39a)

u(x, 0) = 0, (39b)

where xc is set to (512, 640)T and (128, 128, 192)T for the
two- and three-dimensional simulations, respectively, and r0

is set to 192 and 64 for the two- and three-dimensional simu-
lations, respectively. Then, the wetting process of the initial
droplet on the curved surface is run to a converged state,
where the dimensionless relaxation time τ = 1.5 in the LB
simulations.

Figures 7 and 8 show the final droplets on the circular and
spherical solid surfaces for the two- and three-dimensional LB
simulations, respectively, where the parameter γ in the EOS-
dependent surface free-energy density is set to ±0.9, ±0.7,
±0.5, ±0.2, and 0. The satisfying results shown in Figs. 7 and
8 demonstrate the capability of the present wetting condition

treatment for the two- and three-dimensional curved surfaces.
Note that the droplet detaches from the spherical solid sur-
face when the analytical contact angel θ = arccos(−0.9) ≈
154.158◦ [see Fig. 8(a)], which is caused by the intersection
between the diffusive phase interface with the solid surface as
illustrated in Fig. 9(a). Since the liquid-vapor phase interface
is diffusive rather than sharp and the radii of both the droplet
and solid sphere are relatively small, the highest point of the
solid surface [i.e., point A in Fig. 9(a)] lies within the diffusive
phase interface, and such point of the phase interface could
also lie within the unstable region implied by the multiphase
EOS (i.e., the region with negative isothermal compressibility
bounded by the spinodal curve). Based on the above analysis,
this detaching phenomenon could be avoided by decreasing
the liquid-vapor interface thickness or increasing the radii of
the droplet and solid sphere. Therefore, we repeat the three-
dimensional LB simulation with γ = −0.9 by decreasing Wlv

from 10 to 5 and keeping the other parameters unchanged.
The numerical results are shown in Figs. 9(b) and 9(c). As
expected, the droplet stays on the spherical solid surface with
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 8. Interface positions of the static droplet on curved surface
obtained by the three-dimensional LB simulations with (a) γ =
−0.9, (b) γ = −0.7, (c) γ = −0.5, (d) γ = −0.2, (e) γ = 0, (f)
γ = 0.2, (g) γ = 0.5, (h) γ = 0.7, and (i) γ = 0.9. The reduced
temperature is Tr = 0.8, and the liquid-vapor surface tension and
interface thickness are σlv = 0.01 and Wlv = 10, respectively.

a very large contact angle, which confirms the above analysis
on the detaching phenomenon.

For quantitative comparison, the contact angle is numeri-
cally measured by fitting the liquid-vapor phase interface with
a circular/spherical profile. The comparison of the numerical
results by the two- and three-dimensional LB simulations with
the analytical result from thermodynamic theory is shown in
Fig. 10. Note that all the numerical results in the figure are
simulated with the liquid-vapor interface thickness Wlv = 10,
except the three-dimensional one for γ = −0.9, which is sim-
ulated with Wlv = 5 as mentioned above. As can be seen from
Fig. 10, the contact angles by the two- and three-dimensional
simulations agree well with the analytical result, which fur-
ther validates the applicabilities of the EOS-dependent surface
free-energy density for wettability and the wetting condition
treatment for curved surfaces. Similar to Fig. 6 for the flat
surface, a slight deviation between the numerical and analyt-
ical results can be observed in Fig. 10 when the parameter
γ tends to ±1 (the contact angle θ tends to 0◦ and 180◦).
Compared with the deviation when θ → 0◦, the deviation
when θ → 180◦ is relatively large, which could be caused by
the aforementioned intersection between the diffusive phase
interface with the solid surface (see Fig. 9).

FIG. 9. Static droplet on a curved surface with the analytical
contact angle θ = arccos(−0.9) ≈ 154.158◦. (a) Schematic of the
cross-sectional view of the intersection between the diffusive phase
interface with the solid surface, where the solid line denotes the
interface position defined at ρ = 0.5ρv + 0.5ρl . (b) Cross-sectional
density contours and (c) interface position of the droplet obtained by
the three-dimensional LB simulation with γ = −0.9. The reduced
temperature is Tr = 0.8, and the liquid-vapor surface tension and
interface thickness are σlv = 0.01 and Wlv = 5, respectively.

C. Moving droplet on inclined wall

At last, a moving droplet on an inclined wall, which is
vertically and sinusoidally oscillated, is simulated to show
the capabilities of the EOS-dependent surface free-energy
density, the multiphase LB model with self-tuning EOS, and
the wetting condition treatment. In the three-dimensional

FIG. 10. Comparison of the contact angle obtained by the LB
simulation of a static droplet on a curved surface with the analytical
result derived from thermodynamic theory. The reduced temperature
is Tr = 0.8 and the liquid-vapor surface tension is σlv = 0.01. The
liquid-vapor interface thickness is Wlv = 5 for the three-dimensional
numerical result for γ = −0.9 and Wlv = 10 for the other numerical
results.
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FIG. 11. Schematic of a moving droplet on an inclined wall
with X+ and X− the lowest and highest points of the three-phase
contact line, L the droplet length defined as L = X+ − X−, α the
angle between the wall and horizontal plane, and g the gravitational
acceleration. The coordinate system (x, y, z)T is attached to the wall
and an external acceleration a sin(ωt ) is applied to mimic the vertical
and sinusoidal oscillation of the wall.

simulation, the coordinate system (x, y, z)T is attached to the
inclined wall and an external acceleration a sin(ωt ) is applied
to mimic the vertical and sinusoidal oscillation of the wall, as
illustrated by Fig. 11. The reduced temperature is set to Tr =
0.7, and the liquid-vapor surface tension and interface thick-
ness are fixed at σlv = 0.01 and Wlv = 10, respectively. The
computational domain is chosen as 896×256×128, where the
solid surface is put on the lower side of the computational do-
main (i.e., the x-y plane with z = 0). The symmetric boundary
condition is applied on the upper side of the computational do-
main (i.e., the x-y plane with z = 128), and periodic boundary
conditions are applied in both the x and y directions, implying
that the inclined wall is infinite in the x and y directions. The
parameter γ in the EOS-dependent surface free-energy den-
sity is fixed at γ = cos(π/4) to make the static contact angle
θ0 = 45◦, and the wall inclination angle is set to α = 30◦. The
dimensionless relaxation time τ is chosen as 0.6 to achieve a
relatively low viscous dissipation.

To achieve an appropriate initialization of the moving
droplet on the inclined wall, an auxiliary simulation of the
droplet wetting process is first carried out with a hemispheri-
cal droplet deposited on the wall as follows:

ρ(x, 0) = ρl + ρv

2
− ρl − ρv

2
tanh

|x − xc| − r0

Wlv/ ln(19)
, (40a)

u(x, 0) = 0, (40b)

where xc = (0, 0, 0)T and r0 = 97.328. Note that the coor-
dinate origin is placed at the center of the lower side of the
computational domain, and the radius r0 is properly adjusted
to make the droplet length after the wetting process precisely
L0 = 128. Here, the droplet length is defined as the distance
between the lowest and highest points of the three-phase con-
tact line as shown in Fig. 11. In the auxiliary simulation, the
external force, including gravity and the one mimicking wall

FIG. 12. Variations of the cubes of the dynamic contact angles
(in radians) with the capillary number Ca, where θa and θr are the
dynamic contact angles measured at the advancing and receding
three-phase contact points in the symmetric midplane of the sliding
droplet on the inclined wall, and θ0 is the static contact angle mea-
sured when Ca = 0.

oscillation, is turned off, and thus a final static droplet on the
inclined wall can be obtained, which is used as an appropriate
initialization of the oscillating process. The external force is
abruptly turned on at time t = 0 in the oscillating process,
and then the droplet starts moving on the inclined wall. To
characterize this droplet-oscillating problem, and following
the analytical work by Bradshaw and Billingham [52], three
dimensionless parameters are introduced: the dimensionless
oscillation strength ε, the dimensionless oscillation frequency
ω̂, and the dimensionless gravitational acceleration ĝ, which
are defined as [27,52]

ε = ρl |a|L2
0 sin α

σlvθ0
, ω̂ = ω

√
ρlL

3
0

σlvθ0
, ĝ = ρl |g|L2

0 sin α

σlvθ0
,

(41)

where the static contact angle θ0 should be in radians. Before
proceeding further, the droplet sliding on a stationary wall is
simulated to study the dynamic performance of the present
multiphase LB model and its wetting condition treatment. The
wall oscillation is not considered by setting the dimensionless
oscillation strength ε = 0. The droplet sliding is driven by
gravity with the dimensionless gravitational acceleration ĝ
being set to 0.04, 0.4, 2, 4, and 6. When the quasi-steady state
of the sliding droplet is reached, the dynamic contact angles
at the advancing and receding three-phase contact points in
the symmetric midplane of the droplet, denoted by θa and θr ,
respectively, are measured and the capillary number, defined
as Ca = μlUcl/σlv , is calculated. Here, μl is the dynamic
viscosity of the liquid phase and Ucl is the moving velocity
of the three-phase contact line. The numerical results are
shown in Fig. 12, where the Cox-Voinov law θ3

a,r − θ3
0 ∝ Ca

is adopted for quantitative validation. Note that the static
contact angle θ0 here is measured when Ca = 0 to avoid the
numerical error of the wetting condition treatment. A good
agreement between the numerical results and the Cox-Voinov
law can be observed, which demonstrates the present model
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FIG. 13. Snapshots of the moving droplet on the inclined wall during the nth oscillation period for (a) ε = 0, (b) ε = 4, (c) ε = 8,
(d) ε = 16, and (e) ε = 32. The normalized times are t/Tosi = n, n + 1/4, n + 1/2, n + 3/4, and n + 1 from the left to right panels, and
the red solid line in the rightmost panel is the three-phase contact line in the leftmost panel.

and treatment can handle the dynamic contact line problems
reasonably well.

In the following, the droplet moving on the oscillated
wall is focused. The dimensionless oscillation frequency and
gravitational acceleration are fixed at ω̂ = 1.6 and ĝ = 0.4,
respectively. Figure 13 shows the snapshots of the moving
droplet on the inclined wall during the nth oscillation pe-
riod, where the dimensionless oscillation strength ε is set to
0, 4, 8, 16, and 32 (corresponding to |a| = 0, 1.071×10−5,
2.142×10−5, 4.283×10−5, and 8.567×10−5, respectively, un-
der the present configurations), and the time t is normalized
by the oscillation period Tosi = 2π/ω. Here, n = 10 is chosen
to avoid the effect of the abrupt turn-on of the external force
at time t = 0. For ε = 0 which corresponds to a stationary
wall, the droplet continuously slides down along the inclined
wall due to gravity, as shown by Fig. 13(a). For ε = 4, 8, 16,
and 32 that correspond to an oscillated wall, the droplet slides
down during the first half-period (i.e., t/Tosi ∈ [n, n + 1/2])
but climbs up during the second half-period (i.e., t/Tosi ∈ [n +
1/2, n + 1]), as shown by Figs. 13(b)–13(e). This is because
the external acceleration a sin(ωt ) is in the same direction as
the gravitational acceleration g during the first half-period,
but a sin(ωt ) is in the opposite direction of g during the

second half-period and the magnitude of a is much larger
than that of g as |a|/|g| = ε/ĝ � 1. For ε = 4 corresponding
to a very weak oscillation, the deformation of the droplet
during one oscillation period is almost indistinguishable, and
the net movement of the droplet within one oscillation period
is sliding-down, as shown by Fig. 13(b). As ε increases to 8
and 16, the wall oscillation becomes relatively strong, and the
droplet deformation during one oscillation period is visually
distinguishable. For ε = 32 corresponding to a very strong
oscillation, the droplet is significantly stretched during the
entire oscillation period. It can be seen from Figs. 13(c)–13(e)
that the net movement of the droplet changes to climbing-
up for ε = 8, 16, and 32, and the net climbing-up distance
increases as ε increases. Figure 14 shows the movements of
the lowest and highest points of the three-phase contact line
during the time 0 � t/Tosi � 10, where the coordinates of the
lowest and highest points X± are normalized by the initial
droplet length L0. For ε = 0, the curves for X±/L0 are linear
and parallel to each other. For ε = 4, 8, 16, and 32, the curves
for X± periodically oscillate with the same frequency as the
wall oscillation, and their amplitudes increase as ε increases.
The results shown in Fig. 14 reconfirm that the net movement
of the droplet is sliding-down for ε = 0 and 4, but changes to
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FIG. 14. Variations of the lowest and highest points of the three-
phase contact line with the normalized time t/Tosi for ε = 0, 4, 8, 16,
and 32, where the coordinates of the lowest and highest points X± are
normalized by the initial droplet length L0.

climbing-up for ε = 8, 16, and 32. These droplet movement
regimes captured by the present three-dimensional LB simu-
lations are consistent with the experiments by Brunet et al.
[53] and the two-dimensional LB simulations by Huang et al.
[27].

Before closing this section, the overall velocity of the
droplet, defined as U = S/Tosi and then normalized as U ∗ =
UTosi/L0, is measured after 10 oscillation periods. Here, S
is the net climbing-up distance within one oscillation period,
and S < 0 (U ∗ < 0) and S > 0 (U ∗ > 0) correspond to the
climbing-up and sliding-down regimes, respectively. For the
sliding-down regime, ε = 0, 2, 4, and 6 are considered. As
for the climbing-up regime, ε = 8, 12, 16, 20, 24, 28, and 32
are considered. According to our LB simulations, the critical
dimensionless oscillation strength when the droplet remains
static after one oscillation period (i.e., the droplet overall
velocity U ∗ = 0) is εcr = 7.056 for the situation with ω̂ = 1.6
and ĝ = 0.4. Figure 15 shows the variation of the droplet

FIG. 15. Variation of the droplet overall velocity U ∗ with the
dimensionless oscillation strength ε, where the critical dimensionless
oscillation strength when U ∗ = 0 is εcr = 7.056 based on the LB
simulations.

overall velocity with the dimensionless oscillation strength. It
is interesting to note from the figure that U ∗ linearly varies
with ε in the climbing-up regime with a relatively small
ε (8 � ε � 20), while U ∗ nonlinearly varies with ε in the
sliding-down regime although ε is much smaller (0 � ε � 6)
for this regime. In the climbing-up regime with a relatively
large ε (20 � ε � 32), the increment of |U ∗| gradually slows
down as ε increases, which can be explained by the larger
deformation of the droplet and the stronger energy dissipation
inside the droplet.

V. CONCLUSION

In this work, the wettability of the liquid-vapor fluids on
a solid surface is thermodynamically analyzed for a gen-
eral multiphase EOS, and then an EOS-dependent surface
free-energy density is proposed. With the present surface free-
energy density, the fluid density on the solid surface is equal
to the density in the bulk phase, and a simple closed-form
analytical expression for the contact angle is derived. It is
also found that the equilibrium condition thermodynamically
derived with the present surface free-energy density is equiv-
alent to the geometric formulation of the contact angle. The
multiphase LB model with self-tuning EOS, strictly consistent
with thermodynamic theory, is employed for the numerical
validations, and the two-dimensional wetting condition treat-
ment is extended to the three-dimensional situation with flat
and curved surfaces. The contact angles obtained by the two-
and three-dimensional LB simulations of static droplets on flat
and curved surfaces agree well with the closed-form analytical
expression, which validates the EOS-dependent surface free-
energy density for wettability and the numerical method for
multiphase flows (including the multiphase LB model with
self-tuning EOS and its wetting condition treatment). Then,
the three-dimensional LB simulation of a moving droplet
on an inclined wall, which is vertically and sinusoidally os-
cillated, is carried out. The droplet slides down along the
wall when the oscillation is relatively weak but climbs up
against gravity when the oscillation is sufficiently strong.
In the climbing-up regime, the droplet overall velocity U ∗
linearly varies with the dimensionless oscillation strength ε

when ε is relatively small, but the increment of |U ∗| gradually
slows down as ε increases when ε is relatively large. In the
sliding-down regime, U ∗ nonlinearly varies with ε although ε

is much smaller for this regime.
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APPENDIX: OTHER EQUATIONS OF STATE

The van der Waals equation of state is given as [54]

pEOS = ρRT

1 − bρ
− aρ2, (A1a)

of which the indefinite integral can be calculated as

Θ =
∫

pEOSdv = −RT ln

(
ρ

1 − bρ

)
+ aρ. (A1b)
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The coefficients a and b are related to the critical properties as
follows:

a = 9RTcr

8ρcr

, b = 1

3ρcr

. (A1c)

The Redlich-Kwong equation of state is given as [55]

pEOS = ρRT

1 − bρ
− aρ2

√
T (1 + bρ)

, (A2a)

of which the indefinite integral can be calculated as

Θ =
∫

pEOSdv = −RT ln

(
ρ

1 − bρ

)
+ a

b
√

T
ln(1 + bρ).

(A2b)

The coefficients a and b are related to the critical properties as
follows:

a = (1 + 21/3 + 22/3)RT 3/2
cr

3ρcr

, b = 21/3 − 1

ρcr

. (A2c)

The Redlich-Kwong-Soave equation of state is given as
[56]

pEOS = ρRT

1 − bρ
− αaρ2

1 + bρ
, (A3a)

of which the indefinite integral can be calculated as

Θ =
∫

pEOSdv = −RT ln

(
ρ

1 − bρ

)
+ αa

b
ln(1 + bρ).

(A3b)

Here, α is a function of the reduced temperature α(Tr ) = [1 +
(0.480 + 1.574ω − 0.176ω2)(1 − √

Tr )]2 with ω the acentric
factor. The coefficients a and b are related to the critical
properties as follows:

a = (1 + 21/3 + 22/3)RTcr

3ρcr

, b = 21/3 − 1

ρcr

. (A3c)

The Peng-Robinson equation of state is given as [57]

pEOS = ρRT

1 − bρ
− αaρ2

1 + 2bρ − (bρ)2
, (A4a)

of which the indefinite integral can be calculated as

Θ =
∫

pEOSdv = −RT ln

(
ρ

1 − bρ

)

+ αa√
2b

arctanh

(
−1 − bρ√

2

)
. (A4b)

Here, α is a function of the reduced temperature α(Tr ) =
[1 + (0.37464 + 1.54226ω − 0.26992ω2)(1 − √

Tr )]2 with ω

the acentric factor, and arctanhx = 1
2 ln( 1+x

1−x ) denotes the in-
verse hyperbolic tangent function. The coefficients a and b
are related to the critical properties as follows:

a = 22/3(4 + 3
√

2)1/3(20 + 45
√

2) + 21/3(190 + 120
√

2) − 34(4 + 3
√

2)2/3

96(4 + 3
√

2)2/3

RTcr

ρcr

,

b = 21/3(4 + 3
√

2)2/3 − (4 + 3
√

2)1/3 − 22/3

3(4 + 3
√

2)1/3

1

ρcr

. (A4c)

At last, it is worth pointing out that the scaling factor KEOS should also be introduced into the above EOSs when they are
incorporated into the multiphase LB model with self-tuning EOS [see Eq. (29)]. The way to incorporate these EOSs (i.e., the
corresponding interaction strength G and lattice sound speed cs) can be found in Ref. [58].
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