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Interaction between a rising bubble and a stationary droplet immersed in a liquid
pool using a ternary conservative phase-field lattice Boltzmann method

Chunheng Zhao and Taehun Lee *

Department of Mechanical Engineering, City College of New York, New York 10031, USA

(Received 5 September 2022; revised 30 December 2022; accepted 10 February 2023; published 27 February 2023)

When a stationary bubble and a stationary droplet immersed in a liquid pool are brought into contact, they
form a bubble-droplet aggregate. Its equilibrium morphology and stability largely depend on the combination of
different components’ surface tensions, known as the “spreading factor.” In this study, we look at the interaction
between a rising bubble and a stationary droplet to better understand the dynamics of coalescence and rising
and morphological changes for the bubble-droplet aggregate. A systematic study is conducted on the interaction
processes with various bubble sizes and spreading factors in two dimensions. The current simulation framework
consists of the ternary conservative phase-field lattice Boltzmann method (LBM) for interface tracking and
the velocity-pressure LBM for hydrodynamics, which is validated by benchmark cases such as the liquid lens
and parasitic currents around a static droplet with several popular surface tension formulations. We further test
our LBM for the morphology changes of two droplets initially in contact with various spreading factors and
depict the final morphologies in a phase diagram. The separated, partially engulfed, and completely engulfed
morphologies can be replicated by systematically altering the sign of the spreading factors. The rising bubble and
stationary droplet interaction are simulated based on the final morphologies obtained under stationary conditions
by imposing an imaginary buoyancy force on the rising bubble. The results indicate that the bubble-droplet
aggregate with double emulsion morphology can minimize the distortion of the bubble-droplet aggregate and
achieve a greater terminal velocity than the aggregate with partially engulfed morphology.
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I. INTRODUCTION

The rising bubble and droplet interaction is one of the com-
mon phenomena found in gas flotation, water cleanup, and oil
extraction [1–3]. The entire interaction can be divided into the
following three parts: The bubble-rising process, the bubble
droplet interaction process, and the aggregate-rising process.
These processes have been studied to develop an optimal sys-
tem by experiments and simulations for decades [4–6]. When
small bubbles are injected into a liquid pool with immiscible
oil droplets, bubbles with a lower density rapidly rise due to
buoyancy. Numerous rising bubbles touch oil droplets, and
the surface tension between the bubbles and droplets initi-
ates the bubble-droplet interaction. Depending on spreading
factors derived from surface tensions among three differ-
ent components, three distinct bubble-droplet morphologies
are expected: (1) separated bubble-droplet morphology; (2)
partially engulfed morphology; and (3) completely engulfed
morphology [7]. The stability of the bubble-droplet aggregate
depends highly on the surface tension between the aggregate
and the liquid pool. If the surface tension is strong enough,
the aggregate will maintain its shape and continue to rise. On
the contrary, a weak surface tension will induce further defor-
mation as the aggregate rises, and the velocity of the aggregate
will decrease quickly, which may lead to the breakup of the
aggregate.

A simple interaction of bubble and droplet occurs in a
ternary flow that includes a gas bubble, and an oil droplet
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in a liquid pool. The interaction prompts complex interface
deformation and morphological change which is challenging
to be tracked by any simulation methods. Among several in-
terface tracking methods, the diffuse interface method utilizes
the free energy variation, which results in a thermodynami-
cally consistent system [8,9]. Both the Cahn-Hilliard (C-H)
equation and the Allen-Cahn (A-C) equation [10,11] have
been applied to solve the phase transformation as diffuse
interface methods. Compared to the A-C equation, the C-H
equation keeps the mass conserved by a conservative formula-
tion, hence, it has been widely utilized in the multiphase flow
simulation [12–15]. However, the loss of mass and density
shift are still observed when it is used to model a small radius
bubble or droplet due to the implicit curvature-driven veloc-
ity [9,16–18]. Thus, many efforts have been made to modify
the A-C equation to create a formulation that is both efficient
and conservative. Based on the phase-field model conducted
by R. Folch [19] and the sharp interface tracking method
investigated by Sun and Beckermann [16], Chiu proposed
the conservative phase-field method [20]. The essential idea
behind this method is to remain the conservation by remov-
ing the curvature-driven velocity from the A-C equation and
moving the diffusion terms into the divergence operator. This
modification offers a remarkable improvement in mass con-
servation compared to the C-H equation [9]. Furthermore,
compared to the C-H equation, where we have to solve
the fourth-order partial differential equation, the conservative
phase-field equation only solves a second-order partial differ-
ential equation. This feature omits the higher-order deriva-
tive calculation, which makes the numerical computation
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considerably easier. By adding a Lagrange multiplier, the
model is then optimized to solve the multicomponent sys-
tem [21–24].

According to Ref. [6], the equilibrium morphology and the
aggregate stability mostly depend on the surface tension and
the combination of different components’ spreading factors.
Since the surface tensions are explicitly given naturally, how
to model the surface force can then be crucial during the
simulation. As far as we are concerned, three well-known
surface force forms in this article are presented: (1) continuum
surface force (CSF) formulation [12,25]; (2) potential form
formulation [26]; (3) stress form formulation [27]. Unlike the
C-H equation, the free energy of the conservative phase-field
equation is not yet complete due to the subtraction of the
curvature-driven velocity. In this instance, we claim that the
potential formulation, which is mostly derived from an energy
perspective, combined with the conservative phase-field equa-
tion will not be able to reduce parasitic currents’ intensity as
effectively as it did previously [28]. We conduct the simula-
tions based on the lattice Boltzmann method (LBM). LBM has
been widely applied to solve the Navier-Stokes equation for
incompressible flow [14,29,30] and shown as an effective
method to solve the multiphase flow problem by pseudopoten-
tial LBM [31] and phase-field LBM [13,22,32,33]. Previously,
high densities and viscosities were encountered when the
LBM was utilized to model the multiphase flow. To increase
the system’s instability, Lee introduces the multistep colli-
sion and mixed difference method [13]. For incompressible
two-phase flow, Inamuro suggests the free energy LBM [34].
Zu and He propose the velocity-based LBM to solve the
high-density ratio problems [35]. It is noted that the previous
model cannot entirely recover the continuity equation, and to
improve this, a new velocity-pressure based LBM is proposed
to deal with the problem of large ratio parameters [9]. In
this method, the coupled continuity equation and pressure
evolution equation can be recovered through Chapman En-
skog analysis. Besides, this approach greatly decreases the
requirement for a thick interface thickness which makes it
easy to obtain a sharp interface limit [13].

In this study, we combine the conservative phase-field
LBM with the velocity-pressure-based LBM. The following
section goes over the derivation specifics for each LBM. In
terms of the simulation, the benchmark problems, including
parasitic currents and liquid lens are conducted to validate the
conservative character and the accuracy of the recent model.
We further investigate the morphology changing problem and
post the results in a diagram. Then, the dynamics of a single
rising bubble are investigated, and the convergence test is
conducted using the present method. Finally, we present the
simulation of the rising bubble and droplet interaction. The
stability and the terminal velocity of different morphologies
are tested under different Bond numbers.

II. CONSERVATIVE PHASE-FIELD LATTICE
BOLTZMANN EQUATION

A. Conservative phase-field equation

The two-component conservative phase-field equation can
be derived either by the free energy approach from the Allen

Cahn equation [23] or by the velocity-based approach from
the generic interface advection equation [16]. In the following
section, the derivation based on the velocity-based approach
is described [21].

1. Conservative phase-field equation for two-component flows

Consider the following interface advection equation for a
two-phase flow system:

∂φ

∂t
+ u · ∇φ = 0, (1)

where the order parameter φ with the constraint 0 � φ � 1 is
used to denote different fluid’s regions. The flow velocity is
represented by u which can be divided into a normal velocity
un and an external advection velocity ue as follows:

u = un + ue. (2)

The normal velocity un can be further decomposed as

un = −Mκn, (3)

where M is the mobility, which is a pure calculation param-
eter; κ denotes the interface curvature; and n represents the
unit normal vector. n and κ can be expressed as a function of
the order parameter φ:

n = ∇φ

|∇φ| , (4)

κ = ∇ · n = 1

|∇φ|
[
∇2φ − ∇φ · ∇|∇φ|

|∇φ|
]
. (5)

Substituting Eqs. (4) and (5) into Eq. (1), we can reformu-
lated Eq. (1) as

∂φ

∂t
+ ue · ∇φ = Mκ|∇φ| = M

[
∇2φ − ∇φ · ∇|∇φ|

|∇φ|
]

= M[∇2φ − n · ∇|∇φ|]. (6)

It is noteworthy that Eq. (6) is not in a conservative form and
thus will induce a mass conservation error. To overcome this,
Folch et al. [19] proposed to explicitly remove the curvature
driven part from Eq. (6), which leads to

∂φ

∂t
+ ue · ∇φ = M

[∇2φ − n · ∇|∇φ| − |∇φ|∇ · n
]

≈ M[∇2φ − ∇ · (|∇φeq|n)]. (7)

Here φeq is the equilibrium profile of the order parameter for a
planar interface, which is represented by a hyperbolic tangent
function as follows:

φeq = 1

2

[
1 + tanh

(
2z

δ

)]
, (8)

where z is the normal distance between a local point and
the interface with the interface thickness being adjusted by
δ. Eq. (8) results in

|∇φeq| = ∂φeq

∂n
= 4φ(1 − φ)

δ
. (9)

Once Eq. (9) is substituted into Eq. (7) and the continuity
condition ∇ · ue = 0 is imposed, we arrive at the conservative
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phase-field equation for two-phase flow:

∂φ

∂t
+ ∇ · (φue) = ∇ · M

[
∇φ − 4φ(1 − φ)/δ

|∇φ| ∇φ

]
. (10)

2. Conservative phase-field equation for multicomponent flows

The following is how we arrive at the conservative
phase-field equation for multicomponent flows. Based on the
two-phase flow model, we further introduce the Lagrange
multiplier ψi [36] to the original two-component flow model
to satisfy the constraint of the multicomponent systems. The
order parameter of the ith component in the n-component flow
is represented by φi in the following derivation. We start with

∂φi

∂t
+ ∇ · (φiu) = ∇ · M

[
∇φi − 4φi(1 − φi)/δ

|∇φi| ∇φi + ψi

]
.

(11)

To determine the Lagrange multiplier ψi, we first consider
a system at the equilibrium, for which the left-hand side of
Eq. (11) disappears. The summation of the phase-field equa-
tions can be calculated as

n∑
i=1

ψi =
n∑

i=1

4φi(1 − φi )/δ

|∇φi| ∇φi. (12)

Following the method of the derivation of this Lagrange mul-
tiplier proposed by Kim [37], we assume the factor before the
sum calculus as

ψi = φ2
i∑n

j=1 φ2
j

n∑
j=1

4φ j (1 − φ j )/δ

|∇φ j | ∇φ j . (13)

Finally, the conservative phase-field equation for the mul-
ticomponent flow is derived as

∂φi

∂t
+ ∇ · (φiu) = ∇ · M

⎡
⎣∇φi − 4φi(1 − φi )/δ

|∇φi| ∇φi

+ φ2
i∑n

j=1 φ2
j

∑
j

4φ j (1 − φ j )/δ

|∇φ j | ∇φ j

⎤
⎦.

(14)

B. Formulations for surface tension force

The momentum equation can be expressed as follows:
∂u
∂t

+ ∇ · (uu) = − 1

ρ
∇p + 1

ρ
∇ · η[∇u + (∇u)T ]

+ 1

ρ
Fs + 1

ρ
Fb, (15)

where ρ and η represent the density and dynamic viscosity
of a mixture. In Eq. (15), p is the dynamic pressure, Fs is
the surface tension force, and Fb is the body force. We briefly
list and compare the following formulations of surface tension
force for two-phase flow

Fs1 = −3σδ

2
∇ ·

( ∇φ

|∇φ|
)

|∇φ|2 ∇φ

|∇φ| , (16)

Fs2 = μ∇φ, (17)

Fs3 = 3σδ

2
∇ · (|∇φ|2I − ∇φ ⊗ ∇φ). (18)

Here σ represents the surface energy between two fluids. In
Eq. (17), μ denotes the chemical potential that can be ex-
pressed as μ = μ0 − ε∇2φ, and μ0 = ∂E0/∂φ where E0 =
βφ2(φ − 1)2 is the bulk energy. β is a constant that can be
calculated from β = 8ε/δ2 and related to the surface tension
σ = √

2εβ/6.
Among three formulas, Fs1 is proposed by Brackbill [25]

as the continuum surface force (CSF). This model, as shown
in Eq. (16), calculates the curvature by an explicit derivative
of the order parameter, for which the performance highly
depends on the derivative calculation. Fs2 is the potential
form formulation [8,26]. Fs3, the stress form formulation,
is proposed by Lafaurie [27] which is the only formulation
that conserves the momentum by the divergence operator.
The potential form of surface tension force is mostly ap-
plied in LBM coupled with the C-H equation to decrease the
parasitic currents’ intensity by balancing the thermodynamic
pressure [28,38]. It is known that the phase-field equations,
including the C-H equation and the A-C equation, could be
derived from the free energy approach. However, we should
notice that, compared to the original A-C equation, the con-
servative phase-field equation subtracts the curvature-driven
term κ|∇φ| from the chemical potential. In this case, we
argue that it is not consistent to calculate the surface tension
force by the potential form formulation. Whereas, the CSF
formulation provides an explicit curvature term and makes up
the consistency.

C. Lattice Boltzmann equations

Through the above derivations, the governing equations for
the ternary flow can be expressed as the pressure evolution
equation, the velocity equation, and the conservative phase-
field equations:

∂ p̄

∂t
+ u · ∇ p̄ + c2

s ∇ · u = 0, (19)

∂u
∂t

+ ∇ · (uu) = − 1

ρ
∇P + 1

ρ
∇ · η[∇u + (∇u)T ]

+ 1

ρ
Fs + 1

ρ
Fb, (20)

∂φi

∂t
+ ∇ · (φiu) = ∇ · M

⎡
⎣∇φi − 4

δ

∇φi

|∇φi|φi(1 − φi )

+ φ2
i∑3

j=1 φ2
j

3∑
j=1

4

δ

∇φ j

|∇φ j |φ j (1 − φ j )

⎤
⎦.

(21)

In ternary flow, we normally solve two equations to calculate
φ1, φ2 and obtain the third-order parameter φ3 from the rela-
tion equation:

∑
i φi = 1.

1. Lattice Boltzmann equation for conservative
phase-field equation

The comprehensive derivation of LBM for the conser-
vative phase-field equation is offered in this section. The
discrete Boltzmann equation (DBE) for ternary flow can be
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represented as(
∂

∂t
+ eα · ∇

)
hi

α = − 1

λφ

(
hi

α − hi,eq
α

) + �α (eα − u) · Si,

(22)

where i = 1, 2, 3, hi
α , and hi,eq

α represent the particle distri-
bution function and equilibrium distribution function for ith
component order parameter. eα denotes the lattice velocity in
D2Q9 lattice given as

eα =

⎧⎪⎪⎨
⎪⎪⎩

(0, 0)c, α = 0,

(cos θα, sin θα )c, θα = (α − 1)π/2, α = 1, 2, 3, 4,
√

2(cos θα, sin θα )c, θα = (α − 5)π/2 + π/4, α = 5, 6, 7, 8,

where c represents the lattice velocity unit. λφ is the relaxation
time relevant to the mobility M = λφc2

s , cs = 1√
3
c is the speed

of sound. The equilibrium distribution function hi,eq
α takes the

form

hi,eq
α = tαφi

{
1 +

[
eα · u

c2
s

+ (eα · u)2

2c4
s

− u · u
2c2

s

]}
. (23)

tα is the weight with the value: t0 = 4/9, t1 = t3 = t5 = t7 =
1/9, and t2 = t4 = t6 = t8 = 1/36. �α can be calculated as
�α = hi,eq

α /φi. Si is the source term from the governing
equation. The macroscopic equation recovered by Chapman-
Enskog expansion is then

∂φi

∂t
+ ∇ · (φiu) = ∇ · M

⎡
⎣∇φi − 4

δ

∇φi

|∇φi|φi(1 − φi)

+ φ2
i∑3

j=1 φ2
j

3∑
j=1

4

δ

∇φ j

|∇φ j |φ j (1 − φ j )

⎤
⎦,

(24)

where the source term Si for component i can be expressed as

Si = 4

δ

∇φi

|∇φi|φi(1 − φi ) − φ2
i∑3

j=1 φ2
j

3∑
j=1

4

δ

∇φ j

|∇φ j |φ j (1 − φ j ).

(25)
The recovered phase-field equation is identical to the proposed
phase-field equation Eq. (21). Then, we start to solve Eq. (22)
for i component by the time integration in [t, t + δt]:

hi
α (x + δteα, t + δt ) − hi

α (x, t )

= −
∫ t+δt

t

hi
α − hi,eq

α

λφ

dt +
∫ t+δt

t
�α (u)(eα − u) · Sidt .

(26)

Using the trapezoidal rule, the time-discretized equation be-
comes

hi
α (x + δteα, t + δt ) − hi

α (x, t )

= −hi
α − hi,eq

α

2τφ

∣∣∣∣∣t − hi
α − hi,eq

α

2τφ

∣∣∣∣∣
t+δt

+ δt

2
{�α[u(eα − u) · Si]|t + �α (u)(eα − u) · Si|t+δt }.

(27)

Here τφ = λφ/δt is dimensionless relaxation time. We intro-
duce the modified distribution function h̄i(x, t ):

h̄i
α (x, t ) = hi

α (x, t ) + 1

2τφ

(
hi

α − hi,eq
α

)∣∣∣∣
t

− δt

2
�α (u)(eα − u) · Si

∣∣∣∣
t

. (28)

The LBM with the modified distribution function for the
phase-field equation can be written as

h̄i
α (x + eαδt, t + δt ) − h̄i

α (x, t )

= − 1

τφ + 0.5

[
h̄i

α (x, t ) − h̄i,eq
α

] + δt�α (u)(eα − u) · Si.

(29)

The equilibrium modified distribution function can be calcu-
lated by

h̄i,eq
α = hi,eq

α − δt

2
�α (u)(eα − u) · Si. (30)

2. velocity-pressure-based lattice Boltzmann equation

The velocity-based lattice Boltzmann equation for high
density and viscosity contrasts is proposed in Ref. [35]. It is
then applied to the conservative phase-field method [39,40].
In our simulation, we use a velocity-pressure-based LBM,
in which the distribution function is modified to recover the
pressure [9].

The DBE for the velocity-pressure formulation is given as(
∂

∂t
+ eα · ∇

)
gα = −1

λ

(
gα − geq

α

) + Fα. (31)

The Chapman-Enskog expansion based on this DBE is given
in Appendix A. The governing equations, Eqs. (19) and (20),
can be recovered from the DBE Eq. (31). Following the
same procedure of phase-field LBM derivation, the velocity-
pressure-based LBM is then given as

ḡα (x + eαδt, t + δt ) − ḡα (x, t )

= − 1

τρ + 0.5

(
ḡα (x, t ) − ḡeq

α

) + δtFα, (32)

where τρ is the dimensionless relaxation time, and ḡeq
α is the

modified distribution function:

ḡeq
α = geq

α − 1
2 Fα, (33)

geq
α = tα p̄ + �αc2

s − tαc2
s , (34)
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where P represents the dynamic pressure and ρ represents the
local density. p̄ can be calculated as p̄ = P

ρ
. The source term

of Eq. (30) is composed of a collection of forcing terms:

Fα = −�α (eα − u) ·
(

1

ρ
∇P

)
+ �(0)(eα − u) · (∇ p̄)

+ �α (eα − u) ·
[

ν

ρ
(∇u + ∇uT )∇ρ + 1

ρ
Fs + 1

ρ
Fb

]
.

(35)

Fs and Fb represent the surface tension force and the body
force. The CSF formulation, Eq. (16), is applied in our ap-
proach. Here we only consider the gravitational force as the
body force which

Fb = (ρ − ρl )g, (36)

where g is the gravitation acceleration. ρ, ρl represents the
local fluid density and the background liquid density. The
derivatives of macroscopic value which appear in Eq. (35)
can be calculated by second order isotropic finite difference
method [14]:

∂φ

∂xi
=

∑
α �=0

tαeα · î[φ(x + eαδt ) − φ(x − eαδt )]

2c2
s δt

. (37)

Then ∇ρ can be calculated from ∇φ which

∇ρ =
3∑

i=1

ρi∇φi. (38)

After the collision and the propagation, we need to update the
macroscopic value and parameters in the distribution function.
We first update different order parameters by the particle
distribution function of the order parameter h̄i

α:

φi =
8∑

α=0

h̄i
α. (39)

The density is then updated from a linear interpolation func-
tion of the order parameters:

ρ =
3∑

i=1

ρiφi. (40)

As the same manner, the local viscosity and the relaxation
time for distribution function gα can be updated as

ν =
3∑

i=1

νiφi, (41)

τρ = ν

c2
s δt

. (42)

The macroscopic values such as pressure and velocity can
then be calculated from the zero and the first moment of the
particle distribution function ḡα:

p̄ =
∑

α

ḡα + δt

2

∑
α

Fα, (43)

u =
∑

α

ḡα

c2
s

eα + δt

2c2
s

∑
α

Fαeα. (44)

III. NUMERICAL TESTS

The primary parameters that appear in simulations are the
diameter of a bubble or a droplet, D, the dynamic viscosity
of the ith component, ηi, and the surface tension between the
ith and jth components, σi j . They are used to calculate the
dimensionless groups, which are summarized as follows:

Cn = δ

D
, Lai j = σi jρiD

η2
i

, Boi j = |ρi − ρ j |gD2

σi j
,

Ari = ρi

√
gD3

ηi
, Ohi j = ηi√

ρiσi jD
,

where δ is the interface thickness between two fluids, Cn,
the Cahn number, which is defined as the ratio of the non-
physical interface thickness and the diameter. It is mostly
used to evaluate if the phase-field method achieves a sharp
interface limit by convergence test. La denotes the Laplace
number which estimates the surface tension and momentum
effect. Bo and Ar are referred to as the Bond number (also
known as Eötvös number) and the Archimedes number, re-
spectively. These two parameters are introduced to monitor
the dynamics of a rising bubble under the gravity field [41,42].
The Ohnesorge number, Oh, is a measure of the strength of
the interaction between the bubble and droplet. For an inertia
regime, we have Oh � 1, when the fluids are brought into
contact, there will be a significant fluid-fluid interaction at
the interface region. When Oh � 1, the interaction will be
smoothed by the fluids’ viscosity. The spreading factor for the
kth component can be calculated from the surface tensions, for
example, Sk = σi j − (σik + σ jk ). Partially engulfed, double
emulsion and separate terminal morphology can be expected
when we have a relative combination of spreading factors.

A. Parasitic currents

The first test case we considered is a stationary droplet
inside a liquid pool. A stationary droplet is placed in the
middle of a quiescent fluid without a gravity field, and ideally,
the velocity magnitude is expected to remain zero. However,
due to the numerical error and the unbalanced pressure that
occurs when the surface force comes into the system, the
nonphysical parasitic currents appear at the interface region
in the simulation [43]. As a result, knowing how to apply
this surface force is critical to simulating multiphase flow.
For this test, we aim to distinguish different types of surface
tension formulations that have been proposed previously and
examine their performance under different system parameters.
Initially, the droplet with D/�x = 50 is centered in a square
domain L/D = 2 with a fixed density and viscosity ratio
ρ∗ = ρ1/ρ2 = 1, η∗ = η1/η2 = 1, where subscript 1 repre-
sents the droplet and subscript 2 represents the background
fluid. Four separate boundaries are subjected to the symmetric
boundary condition. The relaxation times for the momentum
equation and the phase-field equation are set as constant: τρ =
0.5 and τφ = 0.3, and the surface tension between two fluids is
given as σ12 = 1 × 10−4 in lattice unit. A convergence test is
carried out for different Cn for which we expect a lower inten-
sity of parasitic currents when we gradually increase Cn. To
make the system achieves an equilibrium state, the simulation
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(a) (b) (c)

FIG. 1. Parasitic currents’ vectors in the single droplet simulation at T = 200t0 by using (a) the continuous surface formulation, (b) the
potential formulation, and (c) the stress formulation for Cn = 0.08. The interface is represented by a contour level φ = 0.5. The reference
vector with magnitude 1 × 10−7 is indicated by a red arrow in panel (a).

results are reported after T/t0 = 200, where t0 = η1D/2σ12

denotes the viscous timescale.
To group different cases, the interface thicknesses are set as

δ/�x = [2, 3, 4], correspondingly Cn = [0.04, 0.06, 0.08].
Figure 1 shows the flow field velocity vector when applying
different formulations with Cn = 0.08. We provide the inten-
sity of parasitic currents defined as u2

max in Table I. According
to Table I, the CSF formulation obtains a lower parasitic cur-
rents’ intensity than the potential form formulation when we
have a smaller interface thickness. All three formulations are
able to reduce the parasitic currents’ intensity as Cn increases.

We then simulate parasitic currents with fixed Cn = 0.06
and changing La12 = [0.25–16]. The results are posted in
Table II. According to the simulation results, the parasitic
currents’ intensity for all three different formulations has a
decreasing trend when La12 is decreasing. When La12 = 16,
the CSF formulation obtains a smaller parasitic currents’ in-
tensity than the other two formulations.

When coupled with the conservative phase-field equation,
the effect of the combination of momentum and phase-field
equations is presented. As well, we keep a fixed Cn = 0.06
and conduct the convergence test with changing La12 =
[0.25–16]. Here, the density and viscosity ratio join ρ∗ =
ρl/ρg = 10, η∗ = ηl/ηg = 10. According to Table III, the
CSF and potential form formulations gain smaller parasitic
currents’ intensity than the stress form formulation when there
is a large surface tension effect. If the surface tension between
two fluids is small enough, then the difference between the
three formations can be neglected.

TABLE I. Convergence test of the parasitic currents’ intensity
with different Cn.

u2
max

δ Cn CSF Potential form Stress form

2 0.04 2.6 × 10−14 2.0 × 10−11 5.9 × 10−13

3 0.06 2.3 × 10−15 4.8 × 10−14 1.4 × 10−13

4 0.08 4.4 × 10−16 1.6 × 10−15 3.2 × 10−14

Through the results of only solving the momentum equa-
tion, we notice that if the shape of the droplet stays fixed
and the system is under a large surface tension effect, the
CSF formulation gains a small parasitic currents’ intensity.
When the momentum equation and the conservative phase-
field equation are coupled, the parasitic currents’ intensity of
all three formulations increases. The reason is that the shape of
the equilibrium droplet differs from the initial profile, and par-
asitic currents will evolve until there is a balance. Instead of
the conservative phase-field equation, if the C-H equation and
the potential form formulation are employed to simulate the
interface interaction, they can decrease the parasitic currents’
intensity by evolving the droplet to obtain minimum free en-
ergy. However, when the conservative phase-field equation is
applied to the interface information, the curvature-driven term
is subtracted from the chemical potential, which induces a
different mechanism from the C-H equation. Among the three
formations, the CSF formation is the only formulation that
explicitly computes the curvature term and curvature-driven
velocity which makes it consistent when coupling the conser-
vative phase-field method.

B. Liquid lens

The liquid lens problem is widely applied as a validation
case for ternary flow simulation, and we present this test to
show our model’s capability to deal with ternary flows. The
initial state is shown as Fig. 2, where the droplet is placed into

TABLE II. Convergence test of the parasitic currents’ intensity
with different La.

u2
max

La12 CSF Potential form Stress form

16 8.5 × 10−14 1.1 × 10−12 3.8 × 10−12

4 2.2 × 10−14 3.2 × 10−13 1.1 × 10−12

1 5.3 × 10−15 1.1 × 10−13 4.3 × 10−13

0.25 2.4 × 10−15 5.1 × 10−14 1.8 × 10−13
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TABLE III. Convergence test of the parasitic currents’ intensity
based on coupled momentum equation and conservative phase-field
equation with different La.

u2
max

La12 CSF Potential form Stress form

16 5.0 × 10−12 8.0 × 10−12 1.2 × 10−10

4 4.5 × 10−12 5.4 × 10−12 3.1 × 10−11

1 3.9 × 10−12 4.1 × 10−12 8.7 × 10−12

0.25 2.9 × 10−12 2.7 × 10−12 3.5 × 10−12

two fluids. The center of the droplet is settled in the middle
of the square domain. This droplet keeps deforming due to
the surface force and is resisted by viscous dissipation until it
reaches equilibrium. By controlling the surface tension ratios,
we could achieve different contact angles at triple contact
points when the system reaches equilibrium. The initial order
parameter profiles are set as the functions [22]

φ2(x, 0) = 1

2
+ 1

2
tanh

[
2

δ
min(|x − xc| − R, y − yc)

]
,

φ3(x, 0) = 1

2
− 1

2
tanh

[
2

δ
max(−|x − xc| + R, y − yc)

]
,

φ1(x, 0) = 1 − φ1(x, 0) − φ2(x, 0) (45)

where xc is the center of the liquid lens. Here, φ1 represents
the order parameter for the droplet, φ2 and φ3 represent the
order parameters of the background Fluids 1 and 2. The basic
theory of liquid lens can be expressed as Neumann’s trian-
gle. According to Neumann’s theory, when the whole system
reaches an equilibrium state, the relation between contact
angles θi, θ j , θk and surface tensions of three phases σi j , σik ,

FIG. 2. Initial profile of the liquid lens simulation. A circle-
shaped droplet is placed between two other fluids. The interface
between different fluids is shown by φ = 0.5.

(a)

(b)

FIG. 3. Equilibrium morphology of the liquid lens simulations
for various surface tensions between droplet and fluids with Cn =
0.01875: (a) (left panel) σ ∗ = 0.8; (right panel) σ ∗ = 1.0; (b) (left
panel) σ ∗ = 1.2; (right panel) σ ∗ = 1.4.

σ jk are given as

sin θi

σ jk
= sin θ j

σik
= sin θk

σi j
. (46)

The analytic contact angle can be calculated by

θi = cos−1

(
−σ 2

i j + σ 2
ik + σ 2

jk

2σi jσik

)
. (47)

The method of the contact angle calculation from the
simulation can be found in Appendix B, by which we
can compare our results with analytic solutions. We start
with the given surface tension ratios (σ12, σ13, σ23) × 103 =
(1, 1, 0.8), (1, 1, 1), (1, 1, 1.2), (1, 1, 1.4) and the equilib-
rium profiles of the liquid lens are shown in Fig. 3, where
σ ∗ = σ23/σ12.

The liquid lens length d which is the distance between
two triple contact points for the equilibrium state is used to
evaluate the accuracy of simulation methods. The analytic
solution of d is

1

d2
= 1

8A

{
2(π − θ1) − sin[2(π − θ1)]

sin2(π − θ1)

+2(π − θ3) − sin[2(π − θ3)]

sin2(π − θ3)

}
, (48)

TABLE IV. The analytic solutions versus the simulation results
for liquid lens length.

D/�x 40 80 120 160 Analytic solution

σ ∗ = 0.8 0.57493 0.59372 0.59954 0.60387 0.6128
σ ∗ = 1.0 0.53994 0.54804 0.55047 0.55192 0.5540
σ ∗ = 1.2 0.51734 0.52111 0.52185 0.52149 0.5220
σ ∗ = 1.4 0.50192 0.50289 0.50273 0.50220 0.5014
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FIG. 4. Convergence test for contact lines with (left panel) σ ∗ =
0.8 and (right panel) σ ∗ = 1.4, Cn = [0.01875–0.075]. The contours
of φi = 0.5 for same Cn are indicated in a same color.

where A = πR2 is the area of the initial droplet. Table IV
shows the ratio of the liquid lens length to the domain
length d/L with different diameters. We consider the viscosity
and the density ratios ratio as η1/η2 = η1/η3 = 1, ρ1/ρ2 =
ρ1/ρ3 = 1. The relaxation times are set as τρ = 0.5, τφ = 3.

Figure 4 presents the convergence result for σ ∗ = 0.8 and
σ ∗ = 1.4. The detailed results are provided in Table IV. In this
case, we fix the interface thickness δ/�x = 4 and gradually
increase the resolution. The simulation results converge to a
better value toward the analytic solution as we decrease Cn =
0.1–0.025.

C. Droplet morphology

In this simulation, as Fig. 5, we place two equal-sized
droplets where D/�x = 40 into square domain L/D = 2.5.
Due to the difference in surface forces between those two
droplets, we arrive at different results in terms of final mor-
phology. When defining various fluid spreading phenomena,
we use the spreading factor S. According to Pannacci [6], for
late-time morphology of two contact droplets, the complete

FIG. 5. Setup of the double emulsion simulation. Two equal-
sized droplets are initially placed inside the background fluid. The
center distance between two droplets is Cd = D + δ.

FIG. 6. Morphology diagram of the terminal shapes for double
emulsion simulation. (I-A), (I-B) present the double emulsion region,
(II) shows the separate morphology region, (III) represents the par-
tially engulfed region.

engulfing (double emulsion) morphology appears while Sb >

0, Sg < 0, Sr < 0 or Sg > 0, Sb < 0, Sr < 0 corresponding to
(I-A) region and (I-B) region. In (II) region, Sr > 0, Sb <

0, Sg < 0, the two droplets will break up into two parts. In (III)
region, Sr < 0, Sb < 0, Sg < 0, the two droplets are partially
engulfed by each other. Especially when we have a large
surface tension ratio, Janus droplets will appear. In this case,
the subscript g represents the green droplet, b denotes the blue
droplet, and r is the red background fluid.

In this series of simulations, we keep the surface ten-
sion between two droplets constant σgb = 0.05. The density
and viscosity of different components are given as ρr/ρg =
ρr/ρb = 1, μr/μg = μr/μb = 1. The relaxation times are
τρ = 0.1 and τφ = 0.3. Morphology diagram Fig. 6 and Ta-
ble V show our simulation results of a wide range of surface
tension ratios. In Fig. 6, region (I) is composed of double

TABLE V. Parameters diagram of double emulsion simulations.
Region (I-A) and region (I-B) indicate complete engulfment mor-
phology, region (II) represents separated morphology, and region
(III) represents partially engulfed morphology.

Case Number σgb σbr/σgb σgr/σgb Sb Sg Sr

I-A(1) 0.05 0.5 1.55 >0 <0 <0
I-A(2) 0.05 1 2.05 >0 <0 <0
I-B(1) 0.05 1.55 0.5 <0 >0 <0
I-B(2) 0.05 2.05 1 <0 >0 <0
II 0.05 0.35 0.35 <0 <0 >0
III(1) 0.05 1 1 <0 <0 <0
III(2) 0.05 0.5 1 <0 <0 <0
III(3) 0.05 1 0.5 <0 <0 <0
III(4) 0.05 1 1.5 <0 <0 <0
III(5) 0.05 1.5 1 <0 <0 <0
III(6) 0.0001 100 100 <0 <0 <0
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(a) (b)

FIG. 7. (a) Evolution of rising bubble shapes for T/t0 = [0–3],
where time is scaled by t0 = √

2D/g, with Bobl = 10, Arb =
35. (b) Convergence test of the bubble shape with Cn =
[0.05, 0.025, 0.0125] at T/t0 = 3.

emulsion final morphology. (I-A) and (I-B) separately shows
the double emulsion with different outer components due to
the spreading factors’ difference. Region (II) presents a sep-
arate morphology, for which even with a contacting profile
initially, two droplets will move in contrary directions. Re-
gion (III) is composed of partially engulfed morphology. The
liquid lens or Janus aggregate will appear for the equilibrium
system. These results are consistent with previous simulation
work [44].

D. Single rising bubble example

The single rising bubble process involves the rising
bubble dynamics and bubble deformation which are basic

problems of many industrial applications such as bubble
column reactors and bitumen extraction. Several researchers
have investigated the two-phase rising bubble problem be-
fore [4,5,45]. For this problem, we aim to compare our scheme
with previous research by the benchmark problem that was
studied in Ref. [45]. We initialize a bubble at the bottom of
the domain and consider the density ratio ρl/ρb = 10, where
the subscript l denotes the background fluid and b repre-
sents the bubble, the viscosity ratio ηl/ηb = 10, Bobl = 10
and Arb = 35. We place the bubble with diameters D/�x =
40, 80, 160, and Cn can be calculated respectively as Cn =
[0.05, 0.025, 0.0125]. The rectangular domain is given as
L × 2L, where L/D = 2. Initially, the center of the droplet is
placed at (D, D).

Figure 7(a) shows the evolution of the rising bubble shapes
for T/t0 = [0–3] where Cn = 0.0125. Figure 7(b) presents
the convergence test of the rising bubbles’ morphology with
different Cn. The bubble shapes of different cases converge
as we decrease Cn or increase the number of grid points. We
can then find the temporal development of the mass center of
the bubble, Cm = ∑

4φby/πD2, where φb denotes the order
parameter for the bubble, and y is the vertical displacement of
the bubble according to the axis, and also the scaled average
velocity V from Figs. 8(a) and 8(b). Both results are compared
with FeatFlow with a grid spacing of 1/320 [45]. The compar-
ison shows that our simulation results converge nicely and are
in good agreement with the FeatFlow solution.

IV. INTERACTION OF A RISING BUBBLE
AND A STATIONARY DROPLET

Based on the single bubble rising test, we set up a ternary
flow system to simulate the dynamics of the rising bubble
and droplet interaction. The major application of this problem
in the industry can be found in froth flotation [1,3]. The
froth flotation extracts the minerals from the slurry with the
assistance of water foam or air bubbles. We model the coa-
lescence and deformation of an air bubble and an oil droplet

(a) (b)

FIG. 8. Convergence test of the temporal development of the (a)mass center of the bubble Cm and (b) average rising velocity V which is
scaled by v0 = √

2gD with Cn = [0.0125, 0.025, 0.05]. When Cn < 0.0375, the rising velocity and the mass center nearly converge to the
same value.
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TABLE VI. Parameters diagram of ternary flow rising bubble
simulation.

Bo Ar Oh (Double emulsion) Oh (Partially engulfed)

1 8 0.06 0.13
2 8 0.09 0.18
3 8 0.11 0.22
4 8 0.13 0.25
5 8 0.14 0.28
6 8 0.15 0.31
7 8 0.17 0.33
8 8 0.18 0.35

by imposing a gravitational force. To understand this process,
the rising dynamics and morphology change of different size
bubbles and oil droplets are needed to be considered. The
previous works based on froth flotation concentrate more on
the bubble-droplet aggregate forming and ideal cases which
include only slow speed and small-size bubbles. We here in-
vestigate a larger-size bubble and droplet interaction for which
we increase Bobl = [1–8] and test different spreading factors
that provide different perspectives on this process.

In a ternary flow, the rising bubble with a lower density will
progressively climb to the top and collide with the oil droplet,
which has a density similar to the background fluid. Refer to
Fig. 6, when two droplets contact each other under distinct
spreading factors, we can expect different final morphology.
Besides, the surface tension and the viscosity of different
components will also affect the interaction dynamics. In this
case, Bobl and Arb are used to characterize the rising pro-
cess, and we employ Ohdl = ηd√

ρd σdl D0
to evaluate the intensity

of the interaction. Here, ρd is the droplet density, σdl de-
notes the surface tension between the droplet and background
liquid, D0 is the diameter of the droplet, and ηd represents the
viscosity of the droplet. During the simulation, we keep track
of the entire dynamic process by the average rising velocity
Vd = v/

√
gD0 and the center of the mass Cm. The timescale

now is modified to t0 = √
D0/g. We would like to divide the

whole rising process into three stages: (1) the bubble rises first
in a gravitational field; (2) the bubble makes contact with the

FIG. 9. Evolution of the aggregate for T/t0 = [5.6–20], when
the surface tension or spreading factors satisfy the condition of the
double emulsion morphology under Bobl = 1. The red oil droplet
will be fully engulfed by the rising blue bubble at T/t0 ≈ 7.

FIG. 10. Evolution of the aggregate for T/t0 = [6.1–20], when
the surface tension or spreading factors satisfy the condition of the
partially engulfed morphology under Bobl = 1. After the blue bubble
contacts the red oil droplet, they will maintain this partially engulfed
morphology steady, and gradually move to the top.

top droplet, initiating the interaction; and (3) the aggregate
rises to the top with a terminal velocity in the final stage.

For the simulation, the diameter of two equal-sized
droplets is D/�x = 48, and the centers are placed at
(20/3, 1) × D, (20/3, 3) × D. The density ratio and viscosity
ratio are set as ρd/ρb = 100, ρd/ρl = 1, ηd/ηb = 100, and
ηd/ηl = 1. The interface thickness is given as δ/�x = 4. The
full-way bounce-back no-slip boundary condition is applied to
the top and bottom boundaries, while the symmetric boundary
condition is applied to the left and right boundaries [13].

Table VI lists Bobl , Arb and Ohdl for testing cases. We keep
Arb = 8, and gradually increase Bobl . Both partially engulfed
morphology and double emulsion morphology are tested. It is
noted that we neglect the case of the second double emulsion
morphology where Sd > 0. When Sd > 0, a stable terminal
morphology only exists when Bobl � 1, which makes the en-
tire rising process inefficient. The time evolution of the rising
bubble for different morphological situations with Bobl = 1 is
shown in Figs. 9 and 10, with Bobl = 8 in Fig. 11. Figures
12 and 13 present the rising velocity and the center position
of the oil droplet and rising bubble for partially engulfed
morphology. In Figs. 14 and 15, we show the rising velocity

FIG. 11. Evolution of the aggregate for T/t0 = [9–20], when
the surface tension or spreading factors satisfy the condition of the
partially engulfed morphology under Bobl = 8. After the blue bubble
contacts the red oil droplet, they first form this partially engulfed
morphology. Due to the large rising speed of the aggregate, the oil
droplet will break but stick to the rising bubble.
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(a) (b)

FIG. 12. Dynamics of the rising bubble and droplet interaction with partially engulfed morphology. (a) Mass center of the oil droplet Cm

development with Bobl = [1–8]. (b) Scaled average rising velocity Vd of the droplet.

and the center position of the oil droplet and rising bubble for
double emulsion morphology.

We first discuss the case in which the rising bubble will try
to partially engulf the oil droplet under this surface tension
ratio. As shown in Figs. 12 and 13 the cases with small Bobl

and Ohdl approach the contact point faster than the cases with
large Bobl and Ohdl . For the inertia regime, Ohdl � 1, the
surface tension force induces a quick contacting or engulfing
process for which the viscous resistance hardly affects the dy-
namics. Under this situation, there is a severe interaction and
a short period of engulfment once the rising bubble touches
the oil droplet. However, following the interaction, the droplet
under a smaller Bobl obtains a bigger terminal velocity for
the aggregate and continues to rise. It is the morphology that
affects the system. Situations with large Bobl show a velocity
decline due to the droplet’s distortion. Since, compared to
gravity, the surface force is still too weak to maintain the shape
of this aggregate or partially engulfed morphology, the top

droplet splits into two parts for Bobl = 8, as seen in Fig. 11.
Figures 12 and 13 indicate that when Bobl = 8, the rising
bubble will continue to rise and keep the droplet aside. In
conclusion, the center of the droplet exhibits a clear trend, as
is the case when a small Bobl rises faster during the process.

For double emulsion cases, the initial acceleration and the
terminal velocity are quite similar under different Bobl . From
Table VI, we notice that Ohdl for double emulsion is smaller
compared to partially engulfed cases. That accounts for why
the rising aggregate with double emulsion morphology can
maintain this shape unchanged. The surface tension is able
to keep the morphology from deforming further, resulting in
a comparable drag force. While the cases with small Oh de-
celerate during the interaction stage, the aggregate of bubble
and droplet will keep an even smaller deformation during the
rising process compared to large Bobl cases.

According to our simulation results of Bobl = [1–8], the
bubble with a small Bobl which implies a relatively smaller

(a) (b)

FIG. 13. Dynamics of the rising bubble and droplet interaction with partially engulfed morphology. (a) Mass center of the bubble Cm

development with Bobl = [1–8]. (b) Scaled average rising velocity Vd of the bubble.
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(a) (b)

FIG. 14. Dynamics of the rising bubble and droplet interaction with double emulsion morphology. (a) Mass center of the oil droplet Cm

development with Bobl = [1–8]. (b) Scaled average rising velocity Vd of the droplet.

diameter in reality, maintains its shape and rises fast in both
double emulsion and partially engulfed morphology. The ris-
ing velocity, dominated by gravity, is affected by surface force
until the completion of the interaction process. However, the
intensity of the interaction does not affect the rising process
too much, the aggregate stability does. Although we expect
a quicker rising velocity when Bobl are small, the stable
double emulsion morphology keeps different-sized bubbles
at the same terminal velocity. Among the partially engulfed
morphology cases, the drag force breaks up the aggregate and
highly influences the rising speed.

In this simulation, we aim to learn an entire ideal rising
process which includes the process of the bubble rising, the
interaction between the static droplet and the rising bubble,
as well as the rising of the aggregate, for the larger size oil,
R ∼ 1 mm in two dimensions (2D). The difference between
the droplet dynamics in 2D and 3D simulations has been in-
vestigated previously [46–48]. For this problem, we admit that

2D simulations might differ from 3D simulations regarding
the terminal velocity value and the interaction process. How-
ever, As shown in Fig. 6, the equilibrium morphology of the
contacting of two droplets only depends on the spreading fac-
tor. It is also proved by 3D simulations and experiments [49].
Thus, the final morphology in 2D and 3D simulations should
be highly consistent. In addition, We agree that the 2D and
3D simulations are different for modeling contact line dynam-
ics. Nevertheless, the aggregate’s terminal velocity is greatly
influenced by the final morphology, but not the intensity of
the interactions. In this case, the difference in interaction
process or contact line dynamics will not affect the final rising
velocity.

V. CONCLUDING REMARKS

In this article, we presented the simulation work on a rising
bubble and a droplet interaction. The conservative phase-field

(a) (b)

FIG. 15. Dynamics of the rising bubble and droplet interaction with double emulsion morphology. (a) Mass center of the bubble Cm

development with Bobl = [1–8]. (b) Scaled average rising velocity Vd of the bubble.
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equation was applied as the interface capturing method, and
the order parameters were calculated by lattice Boltzmann
equations. In addition, the hydrodynamic properties were
calculated by the velocity-pressure-based lattice Boltzmann
equation, which recovers the pressure evolution equation and
the momentum equation. As for surface force formulation,
rather than using the potential form formulation, we utilize the
CSF formulation to keep consistency. Based on convergence
tests for both solving the single momentum equation and the
coupled momentum phase-field equation, we argue the CSF
formulation can simulate relatively small parasitic currents’
intensity when curvature is fixed in the simulation. The liq-
uid lens simulation assessed the conservative character and
tested the accuracy of the recent method to solve ternary flow
systems. We verify the current surface tension force applied
in this system by the droplet morphology simulation, which
provides the reference morphology under different spreading
factors.

Based on the single rising bubble simulation, the bubble-
droplet interaction in a ternary flow is presented. We learned
that the final rising velocity of the bubble-droplet aggregate
highly depends on the morphology stability when Bobl =
[1–8]. We compared the interaction time and the final velocity
for various morphology cases. A smaller Bobl and Ohdl re-
sulted in a faster interaction process with a higher interaction
intensity. We also detected a higher terminal velocity with a
smaller Bobl for the partially engulfed morphology. Due to
slight distortion, the cases of double emulsion morphology
achieved a similar terminal velocity among different Bobl .
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APPENDIX A: CHAPMAN ENSKOG ANALYSIS

In this Appendix, we present a Chapman-Enskog analysis
based on the discrete Boltzmann equation. We start with the
discrete Boltzmann equation given as Eq. (29):

∂gα

∂t
+ eα · ∇gα = −gα − geq

λ
+ Fα. (A1)

When we consider δt to be the small parameter, the fundamen-
tal expansions based on δt for the distribution function and the
time derivative are expressed as follows:

gα (x, t ) = geq
α (x, t ) + δtg(1)

α (x, t ) + δt2g(2)
α (x, t ), (A2)

∂t = ∂t0 + δt∂t1. (A3)

The leading order equation of δt is then calculated as

∂geq
α

∂t0
= g(1)

α

τ
+ Fα, (A4)

and the δt2 order equation can be expressed as

∂geq
α

∂t1
+ (∂t0 + eα · ∇)g(1)

α = g(2)
α

τ
. (A5)

We add those two equations together and cut off the high-
order terms. We will obtain

∂geq
α

∂t
+ eα · ∇geq

α + δt (∂t0 + eα · ∇)g(1)
α

= −1

λ

(
gα − geq

α

) + Fα. (A6)

To design the target governing equations given as Eqs. (19)
and (20), the following moments of the equilibrium distribu-
tion have to be restricted:∑

α

geq
α = p̄, (A7)

∑
α

geq
α eα = uc2

s , (A8)

∑
α

geq
α eαeα = uuc2

s + p̄c2
s . (A9)

Besides, the moments of the forcing term can be also derived
from the momentum equation, Eq. (20):∑

α

Fα = −u · ∇ p̄, (A10)

∑
α

Fαeα = c2
s

ρ
(−∇P + ρ∇ p̄ + ν(∇u + ∇uT )∇ρ

+ Fs + Fb), (A11)∑
α

Fαeαeα = c2
s u · ∇ p̄. (A12)

Within the aforementioned preclusion, the following equa-
tions can be deduced from the zeroth and the first moments
of Eq. (A6):

∂ p̄

∂t
+ ∇ · uc2

s + u · ∇ p̄ = 0, (A13)

∂u
∂t

+ ∇ · uu + δt

c2
s

∇ · �(1) = − 1

ρ
∇P + ν

ρ
(∇u + ∇uT )∇ρ

+ Fs

ρ
+ Fb

ρ
. (A14)

We notice that Eq. (13) is composed of the pressure evolution
equation and the continuity equation, which can be shown as

∂P

∂t
− ρc2

s ∇ · u+ u · ∇P = p̄

(
Dρ

Dt
+ ρ∇ · u

)
+ P∇ · u ≈ 0.

(A15)

In Eq. (14), �(1) = τ∇ · ∑α geq
α eαeαeα, when we consider the

kinematic viscosity ν = τc2
s δt , Eq. (A14) becomes

∂u
∂t

+ ∇ · uu = − 1

ρ
∇P + 1

ρ
∇ · η(∇u + ∇uT ) + Fs

ρ
+ Fb

ρ
,

(A16)

where η = νρ is the dynamic viscosity. In the final, the gov-
erning equations, Eqs. (A13) and (A16) are retrieved from the
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FIG. 16. The schematic of spreading of a liquid lens.

discrete Boltzmann Eq. (A1). It is noticed that, by trapezoidal
rule, the discrete Boltzmann equation Eq. (A1) can be further
discretized into LBE Eq. (32). Through the Taylor-series ex-
pansion of Eq. (32), it can recover Eq. (1) up to second order
of δt [29].

APPENDIX B: CONTACT ANGLE CALCULATION

In this Appendix, we show the method for obtaining the
contact angle from the liquid lens simulation. A stationary
liquid lens schematic is shown in Fig. 16, where the droplet
achieves equilibrium between two background fluids. In this
figure, b0 is the length between two three-phase contact
points. a1 and a2 are the distances between the droplet top
and bottom and the two-phase contact line. b0, a1, a2 can be
obtained by the order parameter φ = 0.5. the upper contact
angle and lower contact angle θ1 and θ2 can then be calculated
as: θ

eq
i = 180◦ − 2 arctan( b0

2ai
). Finally, we can calculate the

contact angle as θ = θ1 + θ2.
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