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Link auxiliary field method in the extended Hubbard model
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The aim of this work is to generalize the method of Hubbard fields in fermion quantum Monte Carlo
simulations to the case of link fields. The introduced Hubbard link fields play the role of the interaction fields
responsible for the attraction and repulsion of electronic excitations at the nodes. Such improvements lead to
a number of advantages concerning thermalization time, autocorrelations, metastable states, and probability
distributions of the quantities. It is demonstrated that computations using five fields are more stable and reliable
in the case of energy observables.
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I. INTRODUCTION

The Monte Carlo method of modeling quantum systems
has become one of the most important tools in condensed-
matter physics, nuclear physics, and high-energy physics. The
method has been shown to be extremely effective in solving
strong-coupling problems and for studying systems with long
correlations. Nowadays, the Monte Carlo method turns out to
be most popular approach available to study a large quantum
system directly from the fundamental principles of quantum
theory.

The study of electronic properties of graphene, as well as
other semimetals, is an example of such challenges. Graphene
quasiparticles are massless [1,2], so graphene physics be-
comes extremely nonlocal. A large effective coupling constant
(with the electric field) makes it also a strongly interacting
theory. Thus, the physics of electronic excitations of electron
states in graphene is an important area where the Monte Carlo
methods are applied.

A number of important results in graphene physics have
been obtained by the Monte Carlo method: the possibility of
forming an antiferromagnetic condensate [3,4], the influence
of defects [5,6] and magnetic field [7–9], and the Casimir
effect [10]. However, a lot of difficulties remain for applying
the Monte Carlo method to fermion systems. One of the most
important is the sign problem [11], which prevents Monte
Carlo methods from being used in the important case of a
nonzero chemical potential. Despite great efforts, a simple,
universal and effective method to overcome the sign problem
has not yet been found.

Statistical physics describes the change of a system’s states
through the concept of configuration space. In the case of
graphene (as described by the extended Hubbard model’s
Hamiltonian), this configuration space reveals a very complex
landscape, which represents another significant difficulty in
connection with the Monte Carlo method. It is shown [12] that
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the configuration space of the extended Hubbard model on a
hexagonal lattice is a collection of valleys with a relatively low
value of action S. The valleys are separated by high domain
walls. A hybrid Monte Carlo process cannot leave such a
valley during a finite time period after entering it. As a result, a
simulation observes only some of the valleys but not the entire
configuration space. To solve this problem, it is proposed [13]
to introduce additional Hubbard fields in order to increase the
number of degrees of freedom. In addition to the traditional
Hubbard field associated with on-site interaction of charges, it
was proposed to introduce a Hubbard field associated with the
interaction of spins. It has been shown that such an enhance-
ment significantly facilitates Monte Carlo simulations in the
extended Hubbard model.

In the paper, it is shown that the original idea [13] can be
developed further. It is proposed to consider auxiliary fields
attached to links, and not just to nodes. In the context of
Blankenbecler-Scalapino-Sugar quantum Monte Carlo (BSS
QMC) [14], this technique was used, for example, in Ref. [15].
Thus, the net number of Hubbard fields in a model on a
hexagonal lattice can be increased from two to five. What
goals does this complication serve? First of all, this increases
dimensions of the configuration space and makes it easier
for the Monte Carlo process to bypass domain walls [16] in
the expanded space of Hubbard fields. This helps to reduce
temperatures at which the Monte Carlo simulation is efficient
and relatively easy. Second, the study of complex observables
associated with a large number of creation and annihilation
operators becomes more accessible because a degree of diver-
gences in statistical distribution is reduced when additional
field variables are added. In this paper, we deal with energy
of the electron excitations and their energy squared which
contain four, six, or eight operators multiplied.

The paper is organized as follows: In Sec. II the formulas
defining the model analytically are given and the procedure
for introducing link fields is shown. Section III demonstrates
the results of the technical tests of a computer program, which
prove a correctness of simulations and the enhancement in the
performance. In Sec. IV, energy-like observables are calcu-
lated within a wide range of temperatures in order to compare
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FIG. 1. A geometry of the lattice used in computations. Two
primitive vectors of the lattice are shown, periodicity along which
is imposed.

their features in case of two- and five-field approaches. Fi-
nally, Sec. V summarizes the results obtained and outlines the
plans for further research.

II. MODEL DESCRIPTION

Let us consider an extended Hubbard model on a hexagonal
lattice. A plane of 2L2 sites is enclosed with periodic boundary
conditions of Born-von Kármán type as presented in Fig. 1.
The Hamiltonian reads

Ĥ = −κ
∑

〈x,y〉,σ
(â†

x,σ ây,σ + H.c.) + 1

2

∑
x,y

Vxyq̂xq̂y, (1)

where κ is the hopping parameter, 〈x, y〉 indicates adjacent
sites, σ stands for a spin projection (up or down), q̂x =
â†

x,↑âx,↑ + â†
x,↓âx,↓ − 1 defines an electric charge on a site,

with âx,σ being an annihilation operator for a σ -spin particle at
node x. Vxy refers to a matrix of electrostatic interaction with
parameters V00 and V01 depending on the distance between
two electrons (on-site and nearest neighbors are involved).
The dimensions of the matrix are Ns × Ns, where Ns = 2L2.
The coefficients are chosen to be κ = 2.8 (eV), V00 = 3.5κ ,
V01 = 0.8κ . This set corresponds to semimetal—a complex
state with a complicated configuration landscape. The cal-
culation itself is performed by the quantum hybrid Monte
Carlo method. A relevant technical description can be found
in Ref. [17], and the procedure for discretizing the partition
function within a path integral approach is described in detail
in Ref. [13]. The total number of time slices amounts to 2NT ,
because each of NT transitions in Euclidean time is quantized
into two factors, concerning the kinetic and interaction parts
of the Hamiltonian. NT = 60 is used throughout the compu-
tations. Our computer code can work in a mode using two

Hubbard fields, and the computations implement the follow-
ing partition function (β = 1/T, kB = 1):

Z = Tr{e−βĤ }

=
∫

D[ζ , ζ ∗]D[φ, χ ] exp{−SHS − ζ ∗(MM†)−1ζ }, (2)

the action of Hubbard fields is (δ = β/NT )

SHS = δn

2
φṼ −1φ + [χ − (1 − α)V00δ

1−m]2

2(1 − α)V00
δn, (3)

Ṽxy = αV00δxy + (1 − δxy)Vxy, (4)

where the fermionic matrix represents

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 . . . −E ( f )
NT −1

E (k)
0 1 0 0 0 0

0 E ( f )
0 1 0 0 0

0 0 E (k)
1 1 0 0

0 0 0 E ( f )
1 1 0

...
. . .

...

0 0 0 0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

E (k)
t = − exp

⎧⎪⎪⎨
⎪⎪⎩κδ

∑
x,y,
〈a,b〉

(δaxδby + δayδbx )

⎫⎪⎪⎬
⎪⎪⎭, (6)

E ( f )
t = −diag exp {−δm(iϕxt + χxt )}, (7)

where E ( f )
t are diagonal Ns × Ns matrices with space indices

x, y; E (k)
t are dense Ns × Ns matrices, α = 0.95 is a mixing

parameter for Hubbard fields of ϕxt and χxt , and t = 0, NT − 1
serves as a reference number of a time slice (with total number
of 2NT ). To derive (3) one should use the following form
of the Hubbard-Stratonovich transform, with an additional
parameter n which helps to control time-discretization errors
(n and m are tied by 2m − n = 1):

exp

{
−1

2
q̂V q̂δ

}
=

∫
D[ϕ] exp

{
−δn

2
ϕV −1ϕ − iδmϕq̂

}
.

(8)

In the current paper, n = −1 will be fixed. However, a
dependence of Hubbard fields’ amplitudes n is an interesting
question itself. We have launched our program for a set of
n and have derived a conclusion that n should be chosen to
be negative; however, all values from the list −1, −2, −3
are good enough, so the difference in results and stochastic
properties of Monte Carlo time series can be a topic of further
investigation. Of course, n and m are not limited to integers,
so this choice is a matter of taste only.

The principal innovation in our work is an introduction
of the auxiliary link fields that supplement the main ϕxt and
χxt fields defined on the nodes. It is assumed that these addi-
tional degrees of freedom greatly increase the dimension of
a configuration space, which, first, simplifies a generation of
a sequence of system configurations during the Monte Carlo
flow, and, second, reduces the divergences in observables con-
sisting of a large number of creation-annihilation operators.
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The second circumstance turns out to be significant due to
a complicated structure of observables (products of six and
eight operators) involved in our research. The problem is
related to fermion matrix zeros in the configuration space of
the model because a propagator corresponds to elements of
the inverse fermionic matrix. The Monte Carlo flow depends
on the zeros which can disturb a numeric algorithm to walk
around configurations. This can impose limits on the selec-
tion of configurations. A detailed discussion can be found in
Ref. [18].

Let us show how supplementary link fields are proposed
to be introduced into the model. It is suggested that one can
isolate a perfect square for the product of operators at dis-
tinct points (this is possible due to the commutation property
[q̂x, q̂y] = 0):

V00

2

∑
x

q̂2
x + V01

2

∑
x �=y

q̂xq̂y

= V00

2

∑
x

q̂2
x + V01

4

∑
x �=y

(
(q̂x + q̂y)2 − q̂2

x − q̂2
y

)

= V00

2

∑
x

q̂2
x − 3

V01

2

∑
x

q̂2
x + V01

4

∑
x �=y

(q̂x + q̂y)2

= 1

2

∑
x

V ′
00q̂2

x + V01

4

∑
x �=y

(q̂x + q̂y)2,

where V ′
00 = V00 − 3V01 indicates a modification of a site in-

teraction. Within the bounds of Ref. [13] a site field will be
decomposed into two components ϕxt and χxt in the following
manner:

α
V ′

00

2

∑
x

q̂2
x − (1 − α)

V ′
00

2

∑
x

ŝ2
x + (1 − α)V ′

00

∑
x

ŝx,

where ŝx = â†
x,↑âx,↑ − â†

x,↓âx,↓ + 1 defines spin at a site. The
procedure how the expressions of q̂2

x and ŝ2
x can be rewritten is

described in the papers mentioned above, so we pay attention
to the link part only:

exp

{
−δ

V01

4

∑
x

(q̂x + q̂x+μ)2

}

=
∫

D[ξ (μ)] exp

{
−ξ (μ)2

V01
δn − iδm

∑
x

ξ (μ)
x (q̂x + q̂x+μ)

}

=
∫

D[ξ (μ)] exp

{
−ξ (μ)2

V01
δn − iδm

∑
x

(
ξ (μ)

x + ξ
(μ)
x−μ

)
q̂x

}
,

where μ = 1, 2, 3 and ξ (μ) is a vector composed of ξ (μ)
x . In the

second sum of the last expression, a substitution x + μ → x
is made in order to get q̂x+μ in the form of q̂x. A symbol of
x − μ designates a site in the direction opposite to those of μ

(i.e., y = x − μ means that a neighbor of y in the direction μ

is x). One can show that ξ fields are manifested in the fermion
matrix in the following way:

E (1)
t = −diag exp

⎧⎨
⎩−δm

⎡
⎣χxt + i

⎛
⎝ϕxt +

∑
μ

ξ
(μ)
xt +

∑
μ

ξ
(μ)
x−μ,t

⎞
⎠

⎤
⎦

⎫⎬
⎭. (9)

So, we have demonstrated how the dimension of the con-
figuration space of the model can be increased to five (see
Fig. 2). In this work, an attempt is made to compare the
results of such “expended” calculations with standard ones
in cases of order parameters and energetic quantities, so that
an inaccuracy in values obtained can be reduced. One should
expect to observe the difference between results obtained
with two and five fields because additional degrees of free-
dom may make Monte Carlo configurations more chaotic and

φ,χ ξ(1)
ξ(2)

ξ(3)

FIG. 2. Five fields used in our research: two site fields ϕxt and
χxt on each site x together with link fields ξ

(μ)
xt , μ = 1, 3 attached to

links.

independent. Moreover, features of observables’ distributions
[16] in the configuration space are affected. The data pre-
sented below will show that this is the case. The second
opportunity, the selection of n, manages the amplitude of the
fields. The consequences of this will be studied in subsequent
work.

One can note that V ′
00 = V00 − 3V01 has appeared in the

formulas. The fact that a set of points (V00,V00/3) on a phase
diagram of the model represents the boundary of the area
available to this method of calculations is known [19] but in
the case of two fields is “hidden” in the structure of eigen-
values of Ṽ −1. In our case (five fields) it becomes explicit
and obvious. This can be regarded as a beautiful touch of the
five-field formalism.

It is well known that a long-range potential plays some
nontrivial role in graphene [20]. It is worth saying that the
method by which supplementary link fields are introduced
does not preclude including further interaction radii into Vxy

such as V02 or V03 [21].

III. TECHNICAL PROPERTIES

To verify how supplementary link fields influence a con-
figuration space landscape one can observe an evolution of
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FIG. 3. An example of the fields’ evolution obtained in two
program launches for lattice 6 × 6. Mean-square fields are shown.
Labels 1, 2, and 3 refer to ϕxt , χxt , and ξ

(2)
xt for a five-field launch

while labels 1′ and 2′ mean ϕxt and χxt for a two-field mode. Values
are normalized by a value at step 150. It took four times longer for
the two-field launch to reach representative configuration states in
comparison with the five-field case (the marks are shown as dash-dot
and dash-dot-dot, respectively).

ϕxt , χxt , and ξ
(μ)
xt during a thermalization process. After some

program launches were performed, it turned out that signifi-
cantly fewer algorithm steps are needed to reach a region of
well-thermalized configurations (this was tested by analyzing
moving averages of fields, the action S and the autocorrela-
tion times of several observables) when using five fields in
comparison with the two-field case. A moving average of M
successive computations of an observable x during a Monte
Carlo series is defined as follows:

1

M

M∑
i=1

xi.

In the course of the work, the measurement number M re-
quired to stabilize this value was estimated.

An example of a simulation program launch is shown in
Fig. 3. Thus, most likely, the technical gain in thermalization
itself is achieved by reducing the number of steps required
to obtain “typical” field values for given model parameters.
Moreover, a five-field approach does not require to find a
reverse of the interaction matrix Vxy which also simplifies
coding and debugging (the operation occurs four times in the
course of the algorithm). The calculation of additional fields
(involves the molecular dynamics evolution and the action S)
does not increase the work time by more than 4.4%. Taking
into account that the number of algorithm steps is reduced
by 10–20 times (due to the need for fewer configurations: to
obtain a comparable quality of statistics, it became possible to
take 1500 measurements instead of 10 000; moreover, one can
use every generated configuration without skipping a few), it
is possible to obtain a significant benefit when obtaining a

FIG. 4. A distribution of 〈q2〉 (per sublattice). It is suggested that,
in the case of five fields, a Monte Carlo process involves more distinct
values of the observable, so it covers a wider region of a configuration
space. The peak is more smooth and slopes grow more gentle. A
fitting problem of the probability distribution is discussed in Sec. IV.
Computation for 6 × 6 and T = 0.3κ . Sample size is 20 000.

series of statistical data to determine the average values of the
observables.

An important conclusion shall be drawn: a comparison of
the thermalization curves shows that the introduction of five
fields significantly reduces the thermalization time by several
times, which increases the effectiveness and performance of
the Hybrid Monte Carlo.

The fluctuations sharing between link fields (according to
their mathematical definition) seem to be another positive fac-
tor. This can help the Markov chain Monte Carlo simulation
to observe a configuration space in a flexible manner while
generating new configurations. It can be visualized by col-
lecting sequential values of a quantity during a Monte Carlo
simulation in order to build a histogram. If one performs this
concerning mean of charge squared per sublattice:

〈q2〉 = 1

2

⎧⎨
⎩ 1

L4

〈(∑
x∈A

q̂x

)2〉
+ 1

L4

〈(∑
x∈B

q̂x

)2〉⎫⎬
⎭, (10)

the result argues that the distribution falls smoother in case of
five fields and that a larger range of values are presented in the
vicinity of the modal (most probable) value (see Fig. 4). The
curve itself is reduced in height and more resembles a Gaus-
sian when five fields are used. The expectation values remain
unchanged though. A long so-called heavy tail is manifested
in both the cases, but a numerical comparison of a goodness
of the distribution form reveals a difference between two- and
five-field results and is discussed for all the observables under
the study in the next section.

A technical feature that differs the usage of two and five
fields should be mentioned. It turned out that the integration
step �τ of the molecular dynamics (an essential part of hy-
brid Monte Carlo that obtains “new” configurations) varies
with temperature in case of five fields if one wants to keep
acceptance rates as high as 95%–98%. Specifically, in the
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TABLE I. Autocorrelation times as a function of temperature in
the case of two- and five-field approaches.

T/κ Two fields Five fields

0.1 5.6 0.8
0.15 5.2 1.2
0.2 4.6 1.0
0.25 4.0 0.9
0.3 3.6 0.8
0.4 2.1 1.0
0.5 1.8 1.1
0.6 1.5 1.2
0.7 1.7 1.0
0.8 1.6 1.1

range of 0.06 < T/κ < 0.1, �τ = 0.009 was used with both
two and five fields while it required 0.008 at T = 0.3κ and
0.005 at T = 0.6κ with five fields. Actually, this tuning did
not cause a problem at all, but noticeably more independent
configurations are obtained, which becomes an advantage of
the five-field approach. This can be proved by calculating the
so-called autocorrelation times [22] for Monte Carlo time
series. The results of one such investigation are shown in
Table I (for energy-like observables, for 〈q2〉 the times are less,
but still exceed the best values for five fields by 2.1–2.8 times).

An important circumstance is the advantage of the five-
field method in a physically interesting temperature range,
because it is necessary to perform calculations at low tem-
peratures. It can be expected that the advantage will remain at
lower temperatures due to the small temperature dependence
of the data for five fields, evident from the table. Besides,
one can see that, in the two-field approach, the temperature
dependence is significant, so it takes more effort to maintain
acceptable statistics while using two fields in comparison with
the five-field technique.

FIG. 5. 〈Ĥ2〉 (per site) for lattice 6 × 6 as a decreasing function
of temperature. 6 × 6 lattice. This feature arises due to a contribution
of last two terms in (11).

FIG. 6. A “volume effect” test. Mean energy is computed for a
large temperature range for L = 6 and L = 12. An infinite-volume
limit is shown (labeled as “Linf”). One can see that the difference is
negligible within statistical errors.

The times can be reduced by increasing �τ , a step of
the molecular dynamics, but this has a limit because the
acceptance rate lowers. Another approach is to skip several
intermediate configurations between sequential “measure-
ments,” but the strategy is less time efficient. Thus, it is argued
that fields can help to produce Monte Carlo series of a better
quality.

IV. TRIALS OF ENERGY COMPONENTS

Let us present the results of further tests in favor of Monte
Carlo simulations using three additional Hubbard fields ξ

(μ)
xt .

As mentioned above, one of the consequences of expanding

FIG. 7. Comparison of kinetic term thermal behavior for two-
field and five-field approaches. As 〈T̂ 〉 has the simplest structure
possible, everything looks reliable.
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FIG. 8. The histograms help to compare features of kinetic and potential energies from a point of view of values presented in distributions
obtained for 6 × 6. One can see that, while 〈T̂ 〉 is obvious of a Gaussian form, 〈Û 〉 reveals exponential suppression on the right but has a long
tail in the opposite direction. The latter can cause problems with higher distribution function moments, so it is desirable that a contribution of
the tail is reduced. Five fields are helpful in this.

the configuration space is a modification of distributions of
observables. To check how well this works a number of phys-
ical quantities in the form of creation-annihilation operator
combinations were computed and statistics of 20 000 num-
bers was investigated. One of meaningful physical quantities
with a large number of operators multiplied is the square of
the Hamiltonian 〈Ĥ2〉 which contains products of 8, 6, 4,
and 2 operators. The exact expression of 〈Ĥ2〉 is outlined in
Appendix.

To begin with, one should respect an operator character of
the 〈Ĥ〉 and compute the Hamiltonian squared in a proper way.
Indeed,

〈Ĥ2〉 = 〈(T̂ + Û )2〉 = 〈T̂ 2〉 + 〈Û 2〉 + 〈T̂ Û 〉 + 〈Û T̂ 〉
�= 〈T̂ + Û 〉2 = (〈T̂ 〉 + 〈Û 〉)2, (11)

and 〈T̂ Û 〉 + 〈Û T̂ 〉 �= 2〈T̂ 〉〈Û 〉. One consequence of (11) is
a descending behavior of 〈Ĥ2〉 with temperature rising (see
Fig. 5). One can treat 〈T̂ Û 〉 as

∑
m〈T̂ |m〉〈m|Û 〉, where {|m〉} is

a complete set of states. Simulations show that the multipliers
have different signs, so this item reduces the sum composing
〈Ĥ2〉. There is no doubt that the square of the energy 〈Ĥ〉 itself
is an increasing function of temperature, as an energy does
(see Fig. 6).

Second, in numerical computations on the lattice, a “vol-
ume effect” should be checked to be sure of the correctness
of the results. This means that when the size of the problem
increases, the magnitude of the quantities obtained should not
change significantly. Let us demonstrate that this is the case
in our calculations of energy observables. Figure 6 presents
computation results of 〈Ĥ〉 (per site) in case of 6 × 6, 12 × 12
lattices and extrapolations (point-wise) to the infinite-lattice
limit. A negligible volume effect with respect to energy quan-
tities can be assured. Note that such observables as 〈S2

z 〉 (Sz is
the z component of a spin, the expression has a form of (10)

with

Ŝz,x = 1
2 (â†

x,↑âx,↑ − â†
x,↓âx,↓)

substituted) and 〈q2〉 suffer from the severe volume effect (see,
for example, Ref. [13]). Now, one can conclude that it is safe
to perform energy computations with L = 6 which requires
significantly less CPU time.

This is why we continue by presenting results for L = 6
(L = 12 was checked at a few temperatures, of course, the
volume effect proved to be small enough).

FIG. 9. A visualization of the method proposed to compare con-
tributions of a heavy tail to the net probabilities. A red curve and
crossed hatch is the Gaussian fitting of the right side of the data
(black points). The single hatch fills an area under the curve of the
real distribution. Regions to the left of a dashed line are used to find
a fraction of non-Gaussian contributions. An example of two fields
is a 6 × 6 lattice. See description in the main text.
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FIG. 10. A histogram of values of 〈S2
z 〉. In the case of five fields

the tail is obviously lower.

The results for kinetic term of the Hamiltonian are pre-
sented in Fig. 7. The initial expression reads

〈T̂ 〉 = −κ
∑

〈x,y〉,σ
〈â†

x,σ ây,σ + â†
y,σ âx,σ 〉

and contains products of two operators only, so no mathemat-
ical difficulties arise. The graph confirms that everything goes
well.

Next, one turns to a potential term

〈Û 〉 = 〈Û1 + Û2〉 = 1

2

∑
x,y

Vxy〈q̂xq̂y〉,

containing products of four operators. U1 includes on-site
interactions of electrons at the same site (x = y) while U2

designates nearest-neighbor interactions. From this point on,
some problems arise. Figure 8 presents the difference between
statistical distributions of 〈T̂ 〉 and 〈Û 〉 for a launch of 20 000
computations of observables. One can see that configurations

FIG. 12. A comparison of the interaction term thermal behavior
for two-field and five-field approaches. Indications to metastable
states are noticeable in case of two fields at 0.2 � T/κ � 0.3. An
observed noise is permitted due to a complicated physical character
of a semimetal state of the Hubbard model in the vicinity of U = 3.2,
V = 0.8. The five-field approach still yields a more stable result.

with increased interaction energy are depressed exponentially
while there are configurations with moderate and weak values
of 〈Û 〉. Nothing of the kind takes place as to 〈T̂ 〉. Almost a
perfect Gaussian form occurs in the latter case. 〈Û 〉 reveals
a so-called heavy-tailed distribution when one of its slopes
falls slower than an exponent does. As a result an attempt to
compute higher-distribution moments such as a variance can
run into some difficulties [16]. So, let us inspect if the five-
field approach can help to enhance the form of the distribution
of the observables.

It is proposed to compare the contributions of heavy tails
as follows: In Fig. 8 the right-hand side of the 〈Û 〉 distribution
resembles a Gaussian, and a fitting confirms this hypothesis.

FIG. 11. A histogram of values of 〈Û2〉 and 〈Û 2〉. The five-field result is more like a Gaussian and calculations yield that a long tail is
somewhat better in this case.
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FIG. 13. Two components of the potential energy 〈Û 〉 per site in
6 × 6 lattice for low temperatures. While results for two-fields fluctu-
ate substantially, the five-field approach stabilizes the computations
so that a smooth curve can be traced within statistical error bars.

So, one can imagine a perfect symmetrical distribution with
the center at point where real distribution maximum exists but
of a Gaussian width obtained by fitting the right-hand side. For
our example, a relative statistical error of the width evaluation
is around 3% only. Next, one computes numerically the area
A restricted by the heavy-tailed side (in our case it is the
left-hand one) and subtracts the corresponding area of the
Gaussian curve. Finally, divide the value by A to estimate
how much of the distribution exceeds the desired (Gaussian)
curve (see Fig. 9). In the case of 〈Û 〉 the quantity computed
equals 39.48% for two fields and 33.68% for five fields. So,
the tendency is rather encouraging.

Actually, for all the observables from the list—〈S2
z 〉, 〈q2〉,

〈T 〉, 〈U 〉, 〈U1〉, 〈U2〉, 〈Ĥ〉, 〈Ĥ2〉—an area excess of the distri-
bution over the Gaussian (found in the way mentioned above)
is reduced when using five fields in comparison to a two-field
approach. The most prominent example is of 〈q2〉: 40.7%
for two fields and 26.6% for five fields. The examples are
presented in Figs. 4, 10, and 11. The most complex combina-
tions of multiple (up to eight) creation-annihilation operators
considered in the paper (〈ÛÛ 〉) are also improved. The change
for 〈ÛÛ 〉 is from 39.19% to 36.46%.

To demonstrate how the modification affects the simulation
results, let us look closely at the potential energy (Fig. 12)
and its components (Fig. 13) at low temperatures. The val-
ues obtained in the five-field approach seem to be located
smoother so that one can connect them with a continuous
curve without violating the restrictions of statistical error bars.
On the contrary, the results for two fields reveal an indication
of metastable states, so that it requires several independent
runs of a program to estimate the mean and standard devi-
ation reasonably. Although the results do follow the same
behavior, the stability of the numerical results is essential in
connection with a forthcoming calculation of derivatives of
the (numerical) function or differences of large values. This
takes place in the context of a heat capacity (defined both by
a derivative and via energy variance), for example. So, due to
the fact that five fields help walking through a configuration
space in a more flexible and gentle manner, which is supported

FIG. 14. Thermal behavior of 〈Ĥ〉 (per site) for 6 × 6 in launches
with two and five fields. The results are consistent.

by the data presented above, the distributions are modified
with additional contributions from wide regions of a config-
uration space which make them more reliable for sequential
calculations.

If 〈Ĥ〉 = 〈T̂ 〉 + 〈Û 〉 is computed, the overall result can be
outlined as follows (Fig. 14): A regular kinetic part (with high
agreement between two-field and five-field approaches) is
superposed with a fluctuating potential part (with some devi-
ations between the two cases). Actually, this can influence the
heat capacity determined by a derivative (∂E/∂T , E = 〈Ĥ〉)
for example, but appropriate fitting of the E (T ) curve serves
as a good remedy. On the other hand, as stated above, five-field
launches seem to produce more stabilized values, so the fitting
may have better quality.

It is time to check 〈Ĥ2〉. Let us do this by plotting a his-
togram of 〈Ĥ2〉 values for two-field and five-field simulations
(Fig. 15). It is noticeable that, in the latter case, a distribution
is more regular at its top and has smoother side falls. There
are more configurations with values of 〈Ĥ2〉 ≈ 22 000 (eV2).
It should be noted that these features do not vanish when
temperature rises, which is the case for 〈T̂ 〉 and 〈Û 〉, so the
effect remains stable. This shows the difference between four
and eight or six operators multiplied. The distributions were
tested at T = 0.3κ and T = 0.6κ . An effect of a distribution
refinement on the final results of 〈Ĥ2〉 is depicted in Fig. 16.
Points corresponding to a five-field launch fluctuate less inten-
sively and the change of 〈Ĥ2〉(T ) around T = 0.2κ is more
apparent.

It is proposed to put these mathematical observations into
practice by applying them to a heat-capacity computation. We
have run into a number of nontrivial features while investi-
gating C as a function of temperature, which are caused by
complicated rearrangements in electron spatial density. For
example, two phase transitions at T = 0.028κ and 0.075κ are
guessed with V00 = 3.2κ and V01 = 0.8κ . Presumably they are
related to formation and melting of an exciton condensate.
The particular results obtained will be a topic of a separate
paper.
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FIG. 15. A histogram of 〈Ĥ2〉. An analysis showed that an excess
of nonexponential tail above the Gaussian fitting obtained from a
good (left) part is reduced from 30.57% to 28.78% when involving
five fields.

V. CONCLUSION

The aim of our work was to generalize the method of
Hubbard fields in fermion Monte Carlo simulation to the
case of link fields. Such an improvement looks self-consistent
from a physical point of view. The introduced Hubbard link
fields play a role of the interaction fields responsible for the
attraction and repulsion of electronic excitations at the nodes.
In the paper we aim to show that the extension of the config-
uration space also helps hybrid Monte Carlo simulations due
to improving the complex landscape of the extended Hubbard
model that makes it difficult to bypass domain walls.

Collecting the advantage which link Hubbard fields yield,
one can state the following:

FIG. 16. 〈Ĥ 2〉 (per site) for lattice 6 × 6 in the cases of two and
five fields applied. One can see a stable trend of a curve in the latter
case. It improves a quality of fittings and assist processing the results
when using 〈Ĥ 2〉 as a part of a complex mathematical expression.
This is a part of Fig. 5 for low temperatures.

(1) Thermalization time is reduced by several times.
(2) Autocorrelation time is also reduced, especially in

the region of low temperatures, where physical results are
attractive.

(3) Fluctuation properties of observables are refined.
(4) Metastable states are depressed, they occur less

frequently.
(5) An analytical form of action to compute using a com-

puter is simplified; moreover, the existence of the boundary
V01 = U00/3 becomes explicit.

(6) Heavy tails of distributions represent a smaller contri-
bution to the whole probability.

In this work, we calculated the principle ingredients of
the heat capacity of the gas of electron excitations in the
extended Hubbard model on a hexagonal lattice. The results
for C itself and extensive analysis of its behavior in vast range
of temperatures will be presented in the next presentation.

It worth saying that the development proposed does not
solve the problem of domain walls completely, but it helps
Monte Carlo to observe a configuration space in a better way
in comparison to the standard case. The statement can be
proved by histogram examination which provides evidence for
better distribution quality. Autocorrelation times are reduced
and metastable states seem to emerge less often while using
the five-field approach.
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APPENDIX: FORM OF THE ENERGY-SQUARED MEAN

An exact expression of energy squared in terms of the
fermion matrix (5):
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〈Ĥ2〉 = 2�
{

κ2
∑

x,μ,z,ν

(
P(w, y, x, z) + δw,xM−1

yz + M−1
yx M−1∗

wz

)

− κ
∑

x,μ,z,ν ′
Vν ′

(
2P(w, y, z,w, x, z) + δw,xP(y, z,w, z) + 2δw,zP(w, y,w, x) − 2P(y, z, x, z)M−1∗

ww + δx,zP(w, y,w, x)

− δw,xδx,zM
−1
yw + δx,zM

−1
yx M−1∗

ww − 2P(w, y,w, x)M−1∗
zz + δw,xM−1

yw M−1∗
zz + 2M−1

yx P∗(w, z,w, z) − 2δw,zM
−1
yx M−1∗

ww

+ δw,yP(w, z, x, z) + δy,zP(w, y,w, x) − δw,yδw,zM
−1
wx + δy,zM

−1
yx M−1∗

ww + δw,yM−1
zz M−1∗

wx

)
+

∑
x,μ′,z,ν ′

Vμ′Vν ′
(
P(w, x, y, z,w, x, y, z) − δw,xP(w, y, z,w, y, z) − δw,yP(w, x, z,w, x, z) − δw,zP(w, x, y,w, x, y)

+ P(x, y, z, x, y, z)M−1∗
ww − δx,zP(w, x, y,w, x, y) − δw,xδx,zP(w, y,w, y) − δw,yδx,zP(w, x,w, x)

+ δx,zP(x, y, x, y)M−1∗
ww − δy,zP(w, x, y,w, x, y) − δw,xδy,zP(w, y,w, y) − δw,yδy,zP(w, x,w, x)

+ δy,zP(x, y, x, y)M−1∗
ww + P(w, x, y,w, x, y)M−1∗

zz + δw,xP(w, y,w, y)M−1∗
zz + δw,yP(w, x,w, x)M−1∗

zz

+ P(x, y, x, y)P∗(w, z,w, z) − δw,zP(x, y, x, y)M−1∗
ww − δx,yP(w, x, z,w, x, z) − δw,xδx,yP(w, z,w, z)

− δw,zδx,yP(w, x,w, x) + δx,yP(x, z, x, z)M−1∗
ww − δx,yδx,zP(w, x,w, x) + δw,xδx,yδx,zM

−1
ww

− δx,yδx,zM
−1
xx M−1∗

ww + δx,yP(w, x,w, x)M−1∗
zz − δw,xδx,yM−1

wwM−1∗
zz − δx,yM−1

xx P∗(w, z,w, z) + δw,zδx,yM−1
xx M−1∗

ww

+ P(w, x, z,w, x, z)M−1
yy + δw,xP(w, z,w, z)M−1∗

yy + δw,zP(w, x,w, x)M−1
yy + P(x, z, x, z)P∗(w, y,w, y)

− δw,yP(x, z, x, z)M−1∗
ww + δx,zP(w, x,w, x)M−1∗

yy − δw,xδx,zM
−1
wwM−1∗

yy − δx,zM
−1
xx P∗(w, y,w, y) + δw,yδx,zM

−1
xx M−1∗

ww

+ P(w, x,w, x)P∗(y, z, y, z) − δw,xM−1
wwP∗(y, z, y, z) + M−1

xx P∗(w, y, z,w, y, z) + δw,yM−1
xx P∗(w, z,w, z)

+ δw,zM
−1
xx P∗(w, y,w, y) − δy,zP(w, x,w, x)M−1

yy + δw,xδy,zM
−1
wwM−1∗

yy + δy,zM
−1
xx P∗(w, y,w, y) − δw,yδy,zM

−1
xx M−1∗

ww

)}
,

where Vμ equals V00/2 if μ = 0 (so y is x) and V01/2 if μ = 1, 2, 3 (y is a neighbor of x), μ = 1, 3, μ′ = 0, 3, y is found from x
and μ and w is found from z and ν. Pairings are defined as follows:

P(x, y, z,w) = M−1
yz M−1

xw − M−1
xz M−1

yw ,

P(x, y, z,w, u, v) = M−1
xv P(y, z,w, u) − M−1

xu P(y, z,w, v) + M−1
xw P(y, z, u, v),

P(x, y, z,w, u, v, t, s) = M−1
xs P(y, z,w, u, v, t ) − M−1

xt P(y, z,w, u, v, s) + M−1
xv P(y, z,w, u, t, s) − M−1

xu P(y, z,w, v, t, s).
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[21] T. O. Wehling, E. Šaşıoğlu, C. Friedrich, A. I. Lichtenstein,
M. I. Katsnelson, and S. Blügel, Strength of Effective Coulomb
Interactions in Graphene and Graphite, Phys. Rev. Lett. 106,
236805 (2011).

[22] W. Janke, Monte Carlo simulations in statistical physics from
basic principles to advanced applications, Order, Disorder and
Criticality, Advanced Problems of Phase Transition Theory
(World Scientific, Singapore, 2012), pp. 93–166.

[23] V. Sadovnichy, A. Tikhonravov, V. Voevodin, and V.
Opanasenko, Lomonosov: Supercomputing at Moscow State
University (Chapman & Hall/CRC Computational Science,
Boca Raton, 2013), pp. 283–307.

025307-11

https://doi.org/10.1103/PhysRevD.102.054502
https://doi.org/10.1103/PhysRevD.101.014508
https://doi.org/10.1103/PhysRevB.98.235129
https://doi.org/10.1103/PhysRevD.24.2278
https://doi.org/10.1142/S0217984903005202
https://doi.org/10.1103/PhysRevE.106.025318
https://doi.org/10.1103/PhysRevB.89.195429
http://arxiv.org/abs/arXiv:1712.02188
https://doi.org/10.1103/PhysRevB.89.205128
https://doi.org/10.1103/PhysRevB.99.205434
https://doi.org/10.1103/PhysRevLett.106.236805

