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We present a data-driven approach to learning surrogate models for amplitude equations and illustrate its
application to interfacial dynamics of phase field systems. In particular, we demonstrate learning effective partial
differential equations describing the evolution of phase field interfaces from full phase field data. We illustrate
this on a model phase field system, where analytical approximate equations for the dynamics of the phase field
interface (a higher-order eikonal equation and its approximation, the Kardar-Parisi-Zhang equation) are known.
For this system, we discuss data-driven approaches for the identification of equations that accurately describe the
front interface dynamics. When the analytical approximate models mentioned above become inaccurate, as we
move beyond the region of validity of the underlying assumptions, the data-driven equations outperform them.
In these regimes, going beyond black box identification, we explore different approaches to learning data-driven
corrections to the analytically approximate models, leading to effective gray box partial differential equations.
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I. INTRODUCTION

Phase field models provide an effective mathematical
framework to investigate the dynamics of interfacial bound-
aries [1]. They have been successfully used in fields such as
material science, to describe phase separation [2] and melting
processes in alloys [3–5], the formation of microstructures
[6], solidification [7], solute precipitation [8], and crack prop-
agation [9] or to model grain growth [10,11], as well as in
biomechanics, for example, to model the development of frac-
tures [12], cell migration [13–18], tumor growth [19], dendrite
growth [20], and mechanotransduction [21], to name a few.
See Ref. [22] for a recent review. Such phase field models
typically rely on a phase φ, ranging from −1 to 1 (or 0 to
1). One then classifies a part of the domain where φ ≈ −1
as one state, whereas the part where φ ≈ 1 corresponds to a
different state, both phases being separated by an interface,
where the phase φ transitions sharply from one state to the
other.

Enormous effort has been invested into deriving evolution
equations for the position of such interfaces; a prominent ex-
ample involves the reduction of the dynamics of binary alloys
[23]. The same is true for the derivation of equations like
the Kuramoto-Sivashinsky equation, describing the height of
a thin water film flowing down an inclined surface [24,25],
thereby reducing the dynamics of a free boundary problem
to an amplitude equation. Envelope equations approximating
the long-wavelength motions of fluids or of Fermi-Pasta-
Ulam-Tsingou solutions [26,27] also fall under the class of
systems, where the techniques described here are applicable.
Having access to effective interface (or amplitude or modu-
lation envelope) equations not only significantly reduces the
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computational cost by reducing the problem dimension, but
also facilitates a more detailed investigation of parametric
bifurcations of the interface.

The derivations of effective interface equations are typi-
cally tedious and impose restrictions on the parameter regime
for which they are valid [23,28–31]. In this article we present a
data-driven alternative for the identification of interface equa-
tions. We illustrate our approach on an Allen-Cahn phase field
model [3–5], where an analytic derivation of approximate
front partial differential equations (PDEs) describing the inter-
face dynamics exists [30]. One such interface equation is the
Kardar-Parisi-Zhang (KPZ) equation, a low-order approxima-
tion describing the interface dynamics in a relatively narrow
parameter regime [32]. By learning the PDE in a data-driven
way [33–36], we demonstrate the data-driven identification of
an interface evolution equation that surpasses the accuracy of
analytical interface models.

Note that there is a myriad of different approaches on how
to identify the right-hand side of a PDE from data, such as
sparse identification of nonlinear dynamical systems using
dictionaries [37,38], PDE-net [39], DeepONet [40], Fourier
neural operators [41], and physics-informed neural networks
[42], among others. It is worth noting that learning operators
through neural networks were proposed and implemented by
Kevrekidis and co-workers [33–36]. In the context of phase
field systems, the authors of Ref. [43] learn the governing
PDE law for various types of phase field systems using a set
of different neural network approaches. Our approach differs
in that, for a phase field system example, we first reduce the
dynamics to the interface and then learn the effective PDE
for this lower-dimensional problem only. Here we choose to
represent the right-hand side of the PDE operator (the law of
the PDE) describing the interface dynamics through a feedfor-
ward neural network [33–36].
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FIG. 1. (a) Initial profile of the phase field on a square domain
of length L = 90 with a resolution of 400 × 400 pixels. (b) Profile
after integrating the snapshot in (a) for T = 25 dimensionless time
units using the phase field system (1) with a = −0.1 and D = 0.1.
The color corresponds to the phase φ.

Finally, we exploit the analytically available closed-form
equations (such as the KPZ mentioned above) beyond their
region of validity and showcase the data-driven learning of
corrections that rectify their (now inaccurate) predictions.
Making use of (and correcting) the already derived physics
is important in enhancing the interpretability of the models
resulting from data-driven system identification.

II. INTERFACE MODELS FOR PHASE FIELD SYSTEMS

We illustrate our approach on the phase field system de-
scribed by

∂φ

∂t
= D∇2φ − (φ − a)(φ2 − 1), (1)

with the phase φ ∈ [−1, 1] and the parameters a = −0.1 and
D = 0.1. This equation is integrated numerically on a two-
dimensional square domain of length L = 90 with 400 pixels
in each direction (see Sec. VI). A representative initial snap-
shot is shown in Fig. 1(a) where the color encodes the
phase field variable φ. As boundary conditions, we use zero-
flux boundaries ∂φ/∂y = 0 at y = 0 and y = L and periodic
boundaries φ(x = 0) = φ(x = L) at the left and right bound-
aries.
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FIG. 2. (a) Initial front position obtained from the snapshot
shown in Fig. 1(a) by fitting the function (2) to the data, as explained
in the text. (b) Space-time dynamics of the front position, obtained
from simulations of the phase field system (1). (c) Front position after
integrating for T = 25 dimensionless time units using the phase field
system and extracting the front (black solid curve), using the eikonal
equation (5) (orange dashed curve) and using the KPZ equation (6)
(green dashed curve).

The snapshot resulting from numerically integrating
Eq. (1) for T = 25 dimensionless time units is shown in
Fig. 1(b). There one can visually observe how the governing
phase field system leads to a smoothening of the interface
between the two phases at φ = 1 and −1. This is better vi-
sualized by tracking the y position of the phase front. In order
to achieve sharp interface contrast, we obtain the y positions,
or height h, of the fronts from the simulation data by fitting

f (y) = tanh(cy − d ) (2)

to the data at each time step and at each of the 400 discrete
x positions. The front position is then defined as h = d/c,
which is where the f (y) function crosses φ = 0. The height
h of the front obtained this way for the initial snapshot shown
in Fig. 1(a) is plotted in Fig. 2(a), whereas the front position
of the snapshot at T = 25 shown in Fig. 1(b) is depicted
in Fig. 2(c) as a black solid curve. In Fig. 2(b) the space-
time profile of the front position, obtained from the phase
field solution, is shown, where the color encodes the front
height h.

For the phase field example considered here, one can ac-
tually analytically derive effective equations for the dynamics
of the front position h [30]. First, assuming that the variations
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in the direction transverse to the motion are slower than in
the longitudinal direction, at the sharp interface limit [30] one
can obtain the eikonal equation for the normal velocity of the
interface

vn = −
√

2Da + Dκ, (3)

with κ and vn given by

κ = 1[
1 + (

∂h
∂x

)2]3/2

∂2h

∂x2
, vn = 1√

1 + (
∂h
∂x

)2

∂h

∂t
(4)

when written in Cartesian coordinates (x, h(x)). This in turn
means that the dynamics of the height h of the front in the
phase field model (1) discussed above can be described by the
equation

∂h

∂t
= D

1 + (
∂h
∂x

)2

∂2h

∂x2
−

√
2Da

√
1 + 1

2

(
∂h

∂x

)2

= feik

(
h,

∂h

∂x
,
∂2h

∂x2

)
.

(5)

If, in addition, |∂h/∂x| � 1, then the dynamics can further
be approximated by Taylor expanding the right-hand side
of Eq. (5), which, after disregarding cubic and higher-order
terms, leads to the deterministic KPZ equation

∂ h̃

∂t
= D

∂2h̃

∂x2
− a

√
D

2

(
∂ h̃

∂x

)2

= fKPZ

(
h̃,

∂ h̃

∂x
,
∂2h̃

∂x2

)
, (6)

with h̃ = h + √
2Dat .

We can now compare the dynamics of the front obtained
from the phase field model (1) to the dynamics of the front
predicted by the eikonal and KPZ equations. The predictions
of the evolution of the initial front profile shown in Fig. 2(a)
using the two interface models and periodic boundary con-
ditions are plotted in Fig. 2(c) as an orange dashed curve and
green dashed curve, respectively. In addition, the ground-truth
front position obtained by integrating the two-dimensional
phase field system and subsequently extracting the front po-
sition is shown as a black solid curve. Note that there is
a very close correspondence between the front position at
T = 25 obtained from the phase field model and obtained by
integrating the eikonal model (5). The predictions of the KPZ
deviate slightly in places where the curvature of the interface
is large.

III. BLACK BOX FRONT DYNAMICS

For many applications and in broad parameter regimes, an
analytic reduction to a reduced model of the front dynamics
might not be possible. In such cases, we can learn the dynam-
ics of the front in a data-driven way, for example, by learning
a partial differential equation represented by a neural network
[33–36]. We do this here by integrating Ntrain = 20 differ-
ent initial conditions in the two-dimensional space domain
and subsequently extracting the front position as described
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FIG. 3. Front position at T = 25 obtained by integrating the ini-
tial condition shown in Fig. 1(a) using the phase field system and
extracting the front (black solid curve), integrating the corresponding
front as shown in Fig. 2(a) using the eikonal equation (5) (orange
dashed curve), using the KPZ equation (6) (green dashed curve), and
using the learned PDE model (7) (red dotted curve). The inset shows
an enlargement of parts of the front position, with the absolute errors
shown in Fig. 4. The parameters are a = −0.1 and D = 0.1.

above. This gives 20 space-time trajectories of h on a one-
dimensional spatial domain. We subsequently calculate the
time derivative of the front ∂h/∂t and the space derivatives
∂h/∂x and ∂2h/∂x2 at each point in space and time for each
trajectory using finite differences. We then use a fully con-
nected neural network NN� with weights � to represent the
function

∂̂h

∂t
= NN�

(
h,

∂h

∂x
,
∂2h

∂x2

)
. (7)

The weights are optimized by minimizing the mean-square
error between the output of the neural network ̂∂h/∂t and the
actual time derivatives of the h field (see Sec. VI for details
on the training). Here we choose spatial derivatives up to
second order as input to the model. How to determine the
actual number of derivatives needed is beyond the scope of
this work; however, approaches exist that tackle this problem,
for example, by using automatic relevance determination [44].
After training this neural network, one obtains a partial dif-
ferential equation, which, given proper initial conditions and
boundary conditions, one can employ for simulation. The pre-
dictions of this one-dimensional front neural network model
using periodic boundary conditions, as well as the predictions
of the analytical PDEs, by integrating the initial front given in
Fig. 2(a), are shown in Fig. 3. Note that there is good agree-
ment between the ground-truth front dynamics (black solid
curve) and the data-driven PDE (red dotted curve); however,
due to the analytical approximations and the finite values of
a and D, the closed-form eikonal and KPZ PDE predictions
deviate slightly.

This becomes more obvious when visualizing the absolute
difference between the ground-truth front position obtained
from the phase field and the predictions of the surrogate
models over space and time. For the eikonal equation (5),
the absolute difference is shown in Fig. 4(a), with the abso-
lute prediction error of the KPZ equation (6), presented in
Fig. 4(b), where yellow indicates large deviations. In contrast,
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FIG. 4. Absolute error at each point in space and time between the actual front position obtained from the phase field model (the test data;
see Sec. VI) and the predictions obtained by integrating the initial front snapshot from the test data using the different modeling approaches.
(a) Absolute error when integrating using the analytical eikonal equation (5). (b) Absolute error when integrating using the analytical KPZ
equation (6). (c) Absolute error when integrating using the data-driven black box PDE model (7). (d) Absolute error when integrating using
the additive gray-box PDE model (8). (e) Absolute error when integrating using the functional gray-box PDE model (9). (f) Spatially averaged
absolute error over time of the different modeling approaches. For integration, SCIPY’s implementation of a Runge-Kutta 4(5) stepper [45,46]
was used.

the error of the predictions obtained from the learned black
box neural network PDE remains small over the time interval
considered [see Fig. 4(c)].

We also investigate if the learned neural network PDE
model generalizes to regions not covered by the training data.
In order to do so, we predict, starting from an initial front pro-
file at t = 0, for longer time intervals contained in the training
data (in the training data, trajectories range until T = 25; see
Sec. VI). In particular, we integrate the initial front profile
using the original phase field system, and the learned PDE
model, until t = 50. The resulting front profiles are depicted
in Fig. 5, together with the initial front and the true front at
t = 25 for comparison. Although the PDE model was not
trained for snapshots after t = 25, one can observe a good

correspondence between the true dynamics and the predicted
dynamics of the front even for longer times.

IV. GRAY BOX FRONT DYNAMICS

In the preceding section we learned a neural network PDE
description that, given the interface height h as well as the
spatial partial derivatives of h, predicts the time derivative
∂h/∂t using a large set of learned weights and nonlinear acti-
vation functions. This makes such a PDE useful for prediction,
yet barely accessible for interpretation, meaning that physical
processes responsible for the dynamics, such as advection
and diffusion, cannot be easily observed or disentangled from
the resulting PDE model. In contrast, having an approximate
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FIG. 5. Front position at t = 0 (black solid curve), t = 25 (gray
solid curve), and t = 50 (green solid curve), the latter two ob-
tained by integrating the initial condition at t = 0 [as also shown
in Fig. 1(a)] using the phase field system and extracting the front. In
addition, the predicted front, obtained by integrating the initial front
using the learned PDE model (7), is shown (red dotted curve). The
parameters are the same as in Fig. 3.

model at hand allows one to include interpretable parts in
the nonlinear system identification. In particular, instead of
learning a black box PDE model using a neural network as
in the preceding section, one may use a neural network to
learn the correction to the approximate model. We therefore
phrase our first “physics-infused” modification of the system
identification task as finding a neural network that, when
added to the approximate white box model, gives the correct
time derivative of h at each point in space and time [47]. That
is, given the KPZ equation (6), we learn a neural network
such that

∂̂h

∂t
= fKPZ

(
h,

∂h

∂x
,
∂2h

∂x2

)
+ NN�

(
h,

∂h

∂x
,
∂2h

∂x2

)
= fadd

(
h,

∂h

∂x
,
∂2h

∂x2

)
. (8)

As in the previous examples, we use a set of 20 training trajec-
tories and optimize the model by minimizing the mean-square

error between its output and ∂̂h
∂t − fKPZ(h, ∂h/∂x, ∂2h/∂x2).

We then evaluate the efficacy of this model on the initial
condition shown in Fig. 2(a). The absolute error over space
and time between the integration results of the learned gray
box model and the front position obtained from the original
phase field system is shown in Fig. 4(d). Note that the error
remains very small over the time window considered, with
comparable magnitude to the black box predictions shown in
Fig. 4(c).

We now propose an alternative, second physics-infused
modification by exploiting our knowledge of the (now inac-
curate) analytical closed-form equation models. We consider
a (functional) correction of the form

∂̂h

∂t
= NN�

(
fKPZ,

∂ fKPZ

∂x
,
∂2 fKPZ

∂x2

)
= ffun

(
fKPZ,

∂ fKPZ

∂x
,
∂2 fKPZ

∂x2

)
. (9)

This means that we learn the dynamics based on the local val-
ues and spatial derivatives of the KPZ closure only. Including
higher derivatives of the analytical closure in the model (an
alternative possibility would be to include values of the ana-
lytical closure at nearby points) can be thought of as a spatial
analog of the Takens embedding for dynamical systems attrac-
tor reconstruction [48,49]. In the Takens embedding, the effect
of important missing variables is modeled through inclusion
of short temporal histories (time delays) of the variables we
can measure. In our work here the effect of important infor-
mation missed by the analytical closure is modeled through
the inclusion of short spatial histories, neighboring spatial
profiles, or “space delays” of the analytical closure values: We
are, in a particular sense, guided by the analytical approximate
closure, making the equation “higher order in space.” The
prediction results of this functional gray box model are shown
in Fig. 4(e), which indicates a slightly inferior performance
than using a simple additive correction to the KPZ.

V. DISCUSSION

We discussed and demonstrated the possibility to learn
effective partial differential equations for the interface dynam-
ics of phase field systems. This allows the reduction of the
dimension of the problem at hand, facilitating tasks such as
prediction or bifurcation analysis.

Our illustrative example was a model phase field system,
where analytic reductions to the phase field dynamics exist.
In particular, an eikonal equation (5) and an approximation
thereof, the KPZ equation (6), were derived. Here we show
that learning an interface PDE for the front dynamics based on
simulation data and parametrized by a fully connected neural
network can lead to enhanced prediction accuracy. Having
access to approximate models, we furthermore highlighted the
ability to find data-driven corrections to such equations, as
we demonstrated for the example of the KPZ equation. We
discussed two different ways to correct the operator of the
approximate model: Either one can learn an additive term that
rectifies the output of the KPZ equation or one can learn a
correction based on the output of the KPZ equation sampled
in a small spatial neighborhood of the current point of interest.
Exploiting this partial physical knowledge renders the nonlin-
ear system identification task a gray box one (to be contrasted
with the physics-uninformed black box version we started
with). This enhances our understanding or interpretation [50]
of the predictions of the learned dynamical system: The white
part of the gray box models corresponds to the KPZ equation,
while only the higher-order corrections are being learned by
the black box neural network, eventually making the model
more easily accessible to human interpretation.

The performance of the different models discussed here
was summarized in the mean prediction error over time as
shown in Fig. 4(f). The KPZ shows, as expected, a per-
formance inferior to the eikonal equation, from which it is
derived via supplementary approximations. In contrast, black
and gray box neural network models show superior or compa-
rable prediction accuracy to the eikonal equation.

Different aspects, however, can influence the performance
of the learned interface PDEs.
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(i) The generation of the training data involves fitting the
front position as well as estimating time and space derivatives
(e.g., using finite differences or spectral interpolation). These
steps impose numerical inaccuracies which may deteriorate
the performance of the neural network PDEs.

(ii) The performance of neural networks in general depends
on the choice of hyperparameters such as learning rate during
training, the number of hidden layers, the optimizer, and, as
in our case, the number of partial derivatives used as input to
the models. A thorough investigation of these different factors
might further increase the accuracy of the proposed models.

In the model phase field example considered, obtaining the
phase field interface was comparatively simple (here we fitted
a tanh function at each x point in space). For other examples,
estimating the front position (and its movement) is a more
involved, nontrivial task. Examples include the movement of
cells, where the tracking of the cell boundary is a problem
that attracts increasing research efforts [51]. Finding surrogate
interface PDE models (and stochastic PDE models [52]) for
such problems, in particular with respect to biological applica-
tions, such as cell deformation and migration processes during
morphogenesis, wound healing, and cancer metastasis, is left
for future work.

VI. METHODS

Neural network training

All neural networks presented in this article are composed
of four layers with 96 neurons in each layer. Each hidden
layer is followed by a Swish nonlinear activation function
[53]. The neural networks take as input h as well as the
first two spatial derivatives ∂h/∂x and ∂2h/∂x2. The spatial
derivatives are calculated using a finite-difference stencil of
length l = 5 and the respective finite-difference kernel for
each spatial derivative of the highest accuracy order that fits
into l = 5. As the weight initializer and the other hyperpa-
rameters we take the default settings from PYTORCH [54]. The
weights are optimized using the mean-square error between

the network output and the objective using the Adam opti-
mizer [55]. As training data, we sample 20 different initial
conditions, each initial condition composed of a superposition
of four sinus modes with random amplitudes, taken uniformly
from the interval [0, 1] and discrete frequencies, taken ran-
domly from 2π/L{0, 1, . . . , 31, 32}. This enforces profiles
that are periodic in x and offer a large variety. Finally, an
offset drawn from the interval [10, 20] is added to the created
profiles.

To generate training data, the initial profiles h created this
way are mapped to two-dimensional phase field profiles φ.
This is done by defining the phase as

φ = tanh[(h − y)/
√

2D]. (10)

Finally, these 20 phase profiles are integrated forward using
the phase field model for T = 25 dimensionless time units
using SCIPY’s implementation of a Runge-Kutta 4(5) stepper
[45,46]. At 500 equidistant time steps between 0 and T , we
calculate the front position as described previously in the text.
Finally, we calculate the space and time derivatives at each
point in space and time of these 20 trajectories, resulting in
the training data for the PDE models. In addition, we test our
models on the additional trajectory shown in Fig. 1 which
is not contained in the training data, leading to a total of 20
training trajectories and one test trajectory.

The code to reproduce all results is available at [56].
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