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Electromagnetic draping of merging neutron stars
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We first derive a set of equations describing general stationary configurations of relativistic force-free plasma,
without assuming any geometric symmetries. We then demonstrate that electromagnetic interaction of merging
neutron stars is necessarily dissipative due to the effect of electromagnetic draping—creation of dissipative
regions near the star (in the single magnetized case) or at the magnetospheric boundary (in the double magnetized
case). Our results indicate that even in the single magnetized case we expect that relativistic jets (or “tongues”)
are produced, with correspondingly beamed emission pattern.
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I. INTRODUCTION

The detection of gravitational waves associated with a short
GRB [1] identifies merger of neutron stars as the central
engine. It is highly desirable to detect any possible precursor
to the main event. Reference [2] (see also Ref. [3]) argued that
magnetospheric interaction during double neutron star (DNS)
merger can lead to the production of electromagnetic radia-
tion. The underlying mechanism advocated in those works is a
creation of inductive electric field due to the relative motion of
neutron stars. Both singly magnetized (1M-DNS) and double
magnetized case (2M-DNS) are possible [4]. The 1M-DNS
case is similar to the Io-Jupiter interaction [5]. Other relevant
works include Refs. [6–8].

Similarly to the DNS merger, in the case of merging
black holes, or BH-NS mergers, motion of the black hole
through magnetic field (generated ether by the accretion
disk or through neutron star magnetosphere) leads to gener-
ation of inductively-induced outflows, even by a nonrotating
Schwarzschild black hole [9–12].

In the present work we make an important step in extending
the work of Refs. [2,4] to include the ideal plasma constraint
right from the beginning. The approach taken by Refs. [2,4],
heuristically, follows that of Ref. [13], in that a quasivacuum
approximation is used at first. This leads to the generation of
dissipative regions, pair production, and ensuing nearly ideal
plasma dynamics. Resulting charges and currents modify the
magnetospheric structure.

In the classical pulsar problem, one starts with the ideal
plasma constraint right from the beginning: in the axisym-
metric case this then leads to the pulsar equation [14,15].
The pulsar equation, a variant of the Grad-Shafranov equa-
tion [16,17], is a scalar equation for axially-symmetric
relativistic force-free configurations. Axial symmetry allows
introduction of an associated Euler potential which, together
with the div B = 0 and ideal conditions, reduce the force
balance to a single scalar equation.

This is the step accomplished in the present paper for
the case of linear motion of a conducting sphere through
force-free magnetic fields: instead of starting with vacuum-

like configurations and finding the E · B �= 0 regions, the
condition E · B = 0 is imposed from the beginning. This im-
mediately takes the effects of the induced charges and currents
on the global structure of the magnetic field.

In the case of merger double neutron stars systems, there
is no geometrical symmetry that can be used to reduce the
force balance to a single equation. In this paper we first de-
rive equation governing relativistic force-free configurations
without assuming axially symmetry in Sec. II. It is a set of
two nonlinear elliptic equations for two Euler potential, with
initially unknown dependence of the electric potential. It turns
out to be prohibitively complicated.

In Sec. III we take an alternative approach: expansion in
small electric field (small velocity). We demonstrate that the
electromagnetic fields “pile up” near the surface of the neutron
star, creating regions with large electric field. Similar effects
occur in 2M-DNS scenario in Sec. IV.

II. RELATIVISTIC FORCE-FREE CONFIGURATIONS

First we derive a set of equations describing general
stationary configurations of relativistic force-free plasma,
without assuming any geometric symmetries.

A convenient way to represent the magnetic field is in terms
of Euler potentials α − β (e.g., Ref. [18]):

B = ∇α × ∇β. (1)

Two scalar function α and β are conserved along field lines. In
addition, stationary electric field can be represented in terms
of the electrostatic potential � (factors of 4π are absorbed into
definitions of fields):

E = −∇�. (2)

The Ideal condition

E · B = ∇� · (∇α × ∇β ) (3)

then requires �(α) or �(β ). For definiteness let us assume
�(α). This is an initially unknown function that needs to be
found as part of the solution with given boundary conditions.
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Also, we impose orthogonality condition

(∇α · ∇β ) = 0. (4)

Then vectors ∇α, ∇β, and ∇� form an orthogonal triad.
Surfaces of constant α, β, � are mutually orthogonal.

Force balance

��∇� + (∇ × B) × B = 0 (5)

takes the form

∇β(∇α · (−∇α�β + L(α, β ))) + ∇α((∇α · ∇α)�′�′′

+�α(�′)2 − (∇β · (L(α, β ) + �α∇β ))) = 0, (6)

where

L(α, β ) ≡ (∇α · ∇ )∇β − (∇β · ∇ )∇α, (7)

and primes denote �′ = ∂α�(α).
Both terms in Eq. (6) should be zero independently:

∇α · (−∇α�β + L(α, β )) (8)

(∇α)2�′�′′ + �α(�′)2 = (∇β · (L(α, β ) + �α∇β )).

(9)

Equations (8) and (9), together with constraint Eq. (4) repre-
sent two equations for two Euler potentials α and β.

The system of equations [Eqs. (4), (8), and (9)] generalizes
the famous Grad-Shafranov equation [16,17]—in fact, its rel-
ativistic generalization [14,15]—to arbitrary, not necessarily
axially symmetric, configuration. Two steps are required to re-
cover the (relativistic) Grad-Shafranov: (i) one Euler potential
is assumed β = φ, the toroidal coordinate; (ii) the magnetic
field is then chosen as B = (∇α) × (∇φ) + f (α)(∇φ) with
f (α) is some function, to be found together with the solution.

In the case of Grad-Shafranov equation, the divergence-
free condition, ideal condition and assumption of axial
symmetry reduce the force balance to a single scalar equa-
tion. In our case, the axial symmetry is dropped: potential β

needs to be determined independently, hence there are two
equations to be solved.

Similar to the original Grad-Shafranov, where the depen-
dence of the poloidal current [incorporated into function]
needs to be found together with the solution α, in our case
for given boundary conditions, dependence of �(α) should be
found together with solutions for two functions α and β. Gen-
erally, this will involve an elliptic relaxation scheme for two
nonlinearly coupled equations for α and β and dependence
of �(α). It’s a mathematically complicated procedure, but the
problem is well formulated.

Some further modifications can be done. Equation (8) can
be written as

∇α�β = L(α, β ) + g∇β, (10)

where g is an arbitrary function. Scalar product in Eq. (10)
with ∇β gives

(∇β · L(α, β )) = −g(∇β · ∇β ). (11)

Equation (9) then becomes

(∇α)2�′�′′ + �α(�′)2 = (∇β )2(�α − g) = 0 (12)

FIG. 1. Geometry of the system. In the frame of the sphere at
large x → −∞ the magnetic field is along z axis, electric field is
along y axis, so that plasma is moving in positive z direction with
velocity v0.

or

�α((�′)2 − (∇β )2) + (∇α)2�′�′′ + g(∇β )2 = 0. (13)

Equations (10) and (13) can be used instead of Eqs. (8) and
(9). Function g should be chosen to fit the boundary condi-
tions.

The set of Eqs. (8), (9), and (4) or (10), (13), and (4)
describe a general type of relativistic force-free equilibrium. It
is a nonlinear set of equations for two functions α and β with
initially unknown �(α).

III. METAL SPHERE MOVING THROUGH FORCE-FREE
MAGNETIC FIELD

A. Boundary conditions

LIn the frame of a conducting ball the magnetic field at
infinity is along z axis and electric field is along y axis (so
that electromagnetic velocity is along x), see Fig. 1. The
magnetic field is assumed to be nonpenetrating, the ball is
unmagnetized.

A set of equations that needs to be solved is:

ρeE + J × B = 0,

div J = 0,

E · B = 0, (14)

force balance, stationarity and ideality. Boundary conditions
are:

Bz(x = −∞) = B0,

Ey(x = −∞) = v0Bz,

er · B|r=R = 0,

er × E|r=R = 0. (15)

The last two imply no normal magnetic field and no tangential
electric field on the surface.

There is a natural freedom in choosing the vector poten-
tial for the magnetic field. First, for stationary configurations
the Coulomb gauge ∇ · A is preferred. Next, two types of
Coulomb-type gauges are commonly used, the symmetric and
the Landau gauge (e.g., Ref. [19], paragraph 112 and the
accompanying problem). In our case the Landau gauge for
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magnetic field is better at x = ∞). In terms of Euler potentials
we find then:

β(x = −∞) = −x,

α(x = −∞) = B0y,

er · (∇α × ∇β )|r=R = 0,

er × ∇α|r=R = 0. (16)

Thus, in Landau gauge at x = −∞ we have � = −v0B0y =
−v0α.

The resulting system of nonlinear elliptical equations with
unknown �(α) turns out to be prohibitively complicated,
hence we have to resort to approximate methods—expansion
in terms of the velocity v0.

B. Metal ball in static magnetic field, v0 = 0

As a zeroth order, we start with conducting ball in external
magnetic field. In this case magnetic field and vector potential
are a sum of constant vertical field Bv and dipole field Bd

(below we use spherical coordinates {r, θ, φ}).

B0 = Bv + Bd =
{

(1 − R3/r3) cos θ,−
(

1 + R3

2r3

)

× sin θ, 0

}
B0,

A = {0, 0, 1 − R3/r3}r sin θB0/2,

Bv = {cos θ,− sin θ, 0}B0,

Bd =
{
−R3/r3 cos θ,− R3

2r3
sin θ, 0

}
B0. (17)

Euler potentials are

α0 = 1

2
B0 sin2 θ

(
r2 − R3

r

)
,

β0 = φ. (18)

Scalar magnetic potential

�B =
(

1 + R3

2r3

)
r cos θB0, (19)

so that B0 = ∇α0 × ∇β0 = ∇�B.
Importantly,

(∇α0) · (∇�B) = 0. (20)

Thus, Euler potentials α0, β0, and �0 form a mutually
orthogonal triad of surfaces, see Fig. 2,

∇α0 ⊥ ∇β0 ⊥ ∇�B. (21)

We find

∇α0 =
{(

r + R3

2r2

)
sin2 θ,

(r3 − R3) sin θ cos θ

r2
, 0

}
B0,

∇β0 =
{

0, 0,
1

r sin θ

}
,

(∇α0 · ∇β0) = 0

L = B0(−4r3 + 3R3 cos(2θ ) + R3)

2 sin θr4
eφ,

L · ∇α0 = 0

L · ∇β0 = B0(−4r3 + 3R3 cos(2θ ) + R3)

2 sin2 θr5
,

�β0 = 0,

(∇β0)2 = 1

sin2 θr2
,

(∇α0)2 = B2
0 sin2 θ (3R3 cos(2θ )(R3 − 4r3) − 4r3R3 + 8r6 + 5R6)

8r4
,

�α0 = −B0(−4r3 + 3R3 cos(2θ ) + R3)

2r3
. (22)

Equation (10) becomes

L(α, β ) + g0∇β0 = 0,

g0 = B0(4r3 − 3R3 cos(2θ ) − R3)

2r3
. (23)

For � = 0 Eq. (13) becomes

g0 = �α0, (24)

and it is indeed satisfied.
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FIG. 2. Orthogonal surfaces of constant α0, β0 and �B.

C. First order expansion in v0

In Appendix A we demonstrate that in first order expansion
in v0 the surfaces of constant α − β − � remain unchanged.

Let us expand the force balance in Eq. (5) for small velocity
v0 	 1. In the zeroth order

∇ × B0 = 0. (25)

We expect that electric potential is first order in v0

� ∝ v0 ∼ E

B0
,

� ∝ O(ε). (26)

The key point is that the force balance is second order
in v0:

��∇� + (∇ × δB) × B0 = 0,

��∇� ∝ O(ε2),

(∇ × δB) ∝ O(ε2), (27)

while the constraint

E · B ∝ E · B0 ∝ O(ε) (28)

is first order. Thus, if we are limited to terms linear in v0,
we need to consider only the constraint: the force balance is
violated only in v2

0 .
For magnetic field B0 let us use the magnetic potential

[Eq. (19)]. Then we need to find � such that

(∇�) · (∇�B) = 0. (29)

Clearly, any

�(α0) f (φ) (30)

satisfies this condition.
At x = −∞ the electric potential is

� = −yv0B0 = −r sin θ sin φv0B0. (31)

Thus,

�(α0) = −v0B0

√
2α0,

f (φ) = sin φ. (32)
And finally

� = −
√

1 − R3/r3 × r sin θ sin φ v0B0,

E = −∇� =

⎧⎪⎨
⎪⎩

(
1 + R3

2r3

)
√

1 − R3/r3
sin θ sin φ,

√
1 − R3/r3 cos θ sin(φ),

√
1 − R3/r3 cos φ

⎫⎪⎬
⎪⎭v0B0

→
{√

3
√

R sin θ sin φ

2
√

δr
,

√
3 cos θ

√
δr sin φ√

R
,

√
3
√

δr cos φ√
R

}
v0B0.

δr = r − R. (33)

By construction E · B0 = 0. The radial component of the elec-
tric field diverges—this is the electromagnetic draping. Also,
in Appendix B we compare electric field [Eq. (33)] with other
relevant cases.

Given the electric field in Eq. (33), the induced charger
density is

ρe = div E = − 9R6 sin θ sin φ

4r7(1 − R3/r3)3/2 B0v0

→ −
√

3
√

R sin θ sin φ

4δ
3/2
r

B0v0. (34)

The electromagnetic velocity is

vEM = E × B0

B2
0

,

vr = 2r3(2r3 + R3)
√

1 − R3/r3

4(r3 − R3)2 − 3R3(R3 − 4r3) sin2 θ
sin θ cos φ,

vθ = 4r3(r3 − R3)
√

1 − R3/r3

4(r3 − R3)2 − 3R3(R3 − 4r3) sin2 θ
cos θ cos φ,

vφ = − sin φ√
1 − R3/r3

→ − v0 sin φ√
3
√

δr/R
, (35)

see Figs. 3–6.
The condition vEM = 1 is satisfied at approximately

δr

R
= sin2 φ

v2
0

3
. (36)

This is the estimate of the thickness and location of the drap-
ing layer. It is maximal at the plane x = 0 (φ = π/2). In the
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FIG. 3. Electric field [Eq. (33)] in the x = 0, y = 0, and z = 0 planes (for y = 0 the electric field is
√

(x2 + z2)3/2 − 1/(x2 + z2)3/4eyv0B0).
Red lines indicate regions where βEM = 1 (v0 = 0.75 is assumed for plotting).

φ = π/2 plane (x = 0) the condition βEM = 1 is satisfied at

rEM

R
= γ

1/3
0 ,

γ0 = 1√
1 − v2

0

. (37)

Divergence of the electric field [Eq. (33)] on the surface
of the metal sphere moving through force-free field is the key
result of the present paper. In the following, Sec. III D, we
demonstrate that higher-order effects in v0 do not resolve the
divergence. Thus, our assumption of ideal force-free plasma
is violated—the flow must become dissipative.

FIG. 4. 3D view of first order electric field [Eq. (33)]. The central
sphere is the neutron star. Blue surface is the magnetic field flux
surface (magnetic field lines lie on the surface pointing in the z
direction. Arrows are electric field sliced at x = 0, y = 0, z = 0. In
the frame of the neutron star plasma is moving in the +x direction.
Bounded earlike surfaces are regions where βEM becomes larger
than 1.

D. Second order in v0

As we discussed above, the first order perturbations come
not from the dynamics, but from the constraint E · B = 0. We
can then use the ∝ v0 terms to construct the second order
expansion.

The charge density [Eq. (34)] and the electromagnetic ve-
locity [Eq. (35)] lead to the appearance of charge-separated
current

JEM = ρevEM, (38)

[it is of O(ε2) order]. The current JEM is not the total current,
only its transverse charge-separated part, see below. Naturally,

ρeE + JEM × B0 = 0. (39)

The most radially divergent φ component can be easily
found:

J(2)
φ = 9 sin θ sin2 φ

4r(r3 − R3)2 × R6v2
0B0. (40)

Near r → R

JEM ≈
{
− sin(2φ)

4δr
, 0,

(
R

4δ2
r

− 3

4δr

)
× sin θ sin2 φ

}
B0v

2
0 .

(41)
The toroidal current increases the most. Since largest gradi-
ents are in radial direction, that leads to growth of Bθ , see
Eq. (42).

Using Eq. (40), neglecting Br component (small near the
surface, nonpenetrating magnetic field), we find divergent
terms

Bθ =

⎛
⎜⎝− 3R2

4(r3 − R3)
+

ln
(

r2+rR+R2

(r−R)2

)
4r

⎞
⎟⎠ sin θ sin2 φRB0v

2
0 .

(42)
The most dominant divergent term is

δBθ = − R

4δr
B0v

2
0 sin θ sin2 φ. (43)

Equation (43) gives an estimate of the magnetic field
perturbation—hence the justification of the first order ex-
pansion. The condition δBθ � B0 implies that the first order
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FIG. 5. Flow lines in the z = 0 and y = 0 plane. A slight disconnection at x = 0 is an artifact of the plotting procedure. In the plane x = 0
the velocity is βEM = (y2 + z2)3/4/

√
(y2 + z2)3/2 − 1v0ex . Red lines indicate regions where βEM � 1.

expansion is valid for

δr

R
� v2

0, (44)

consistent with Eq. (36).
Thus, both the electric field and the magnetic field diverge

on the surface—this is electromagnetic draping. The electric
field diverges in linear terms in v0, magnetic field in v2

0 . The
ratio of divergent terms in the first order electric field and
second order magnetic field is

Er

δBθ

= −2
√

3

√
δr/R

v0 sin φ
. (45)

Thus, the divergent second order term in magnetic field cannot
generally compensate for the divergent first order term in
electric field.

Next, the longitudinal current

J‖ = G(r, θ,�)B0 (46)

FIG. 6. Velocity plot.

follows from stationary condition

div (JEM + J‖) = 0. (47)

We find

div JEM ≈
(

1

δ2
r

− 3
1

Rδr

)
sin φ cos φv2

0B0. (48)

Function G must be ∝ sin φ cos φ, and we find

div (GB0) ≈ (2δr cos θ∂rG − sin θ∂θG)
3

4
sin(2φ)

B0

R
. (49)

To match θ -independent div JEM [Eq. (48)] function G
should be necessarily divergent either at θ = 0 (the ∂θG term)
or at θ = π/2 (the ∂rG term).

IV. DOUBLE MAGNETIZED (ANTI)ALIGNED CASE

Results of the single magnetized neutron star can be gener-
alized to the double magnetized aligned or anti-aligned case in
the case when the reconnection effects are not important and
the magnetospheres remain topologically disconnected (see
Refs. [7,8] for the case when the magnetospheres are strongly
coupled). Recall that for a metal ball in external magnetic
field, the field is a sum of dipole and external field. For double
magnetized case, then the parameter R is the radius where
the field of the star matches the external field, see Fig. 7.
Equivalently, in expression for Bd , a change R3B0 → μ in
Eq. (17), the magnetic moment of the star. In the anti-aligned
case, when the magnetic moment opposes the external field,
there are no currents; in the opposite aligned case there is a
toroidal surface current at R.

The location of the boundary between the external mag-
netic field and that of the neutron star magnetosphere is not
fixed now (for single-magnetized case it was the surface of
the star). But as we discuss in Appendix A any distortion of
the surfaces is second order in v0. Thus, in the linear regime all
the previous derivations for the 1M-DNS case remains valid.
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FIG. 7. Double magnetized anti-aligned case. Topologically dis-
connected intrinsic dipolar field matches the external field at r = R.
The black circle in the center indicates the neutron star.

V. DISCUSSION

In this paper we argue that effects of electromagnetic
draping—creation of dissipative layer near the merging neu-
tron star—may lead to generation of observable precursor
emission. The draping effect is well known in space and as-
trophysical plasmas [20–22]. In the conventional MHD limit,
when the electric field is not an independent variable, creation
of the magnetized layer (for super-Alfvenic motion) does not
lead to dissipation, only breakdown of the weak-field approx-
imation in the draping layer.

We argue that relativistic plasmas are different. In this
case the s electric field is an independent dynamic variable;
also charge densities are important. As a result, the set of
ideal conditions, B · E = 0 and B � E , is violated. Since the
approach we took—expansion in small velocity—involves
step-by-step approximation, it is feasible that higher order
effects will smooth out the divergencies. We think this is
unlikely: divergent first-order electric field is not compensated
by the second order magnetic field, see Eq. (45). Instead, the
second order magnetic field is divergent on its own. Divergent
electric currents, see Eq. (41), will lead to resistive dissipation.

Thus, we expect electromagnetic dissipation near the neu-
tron star (or magnetospheric boundary). Particle will be
accelerated and eventually collimated to move that particle
along magnetic field lines, see Fig. 8.

The effect of collimation may be important for the detec-
tion of precursors, since the expected powers are not very
high. The expected powers in the 1M-DNS and 2M-DNS
scenarios were discussed by Ref. [4]. If a neutron star is
moving in the field of a primary’s dipolar magnetic field at
orbital separation r, the expected powers is [2,9]

L1 ∼ GB2
NSMNSR8

NS

cr7
= 3 × 1041(−t )−7/4 erg s−1, (50)

where in the last relations the time to merger t is measured in
seconds. (Index 1 indicates here that the interaction is between
single magnetized neutron star and unmagnetized one.) Mag-

FIG. 8. Expected jets from a neutron star moving through force-
free magnetic field. Yellow regions are dissipative regions, E � B.
Quasicylindrical surfaces are magnetic flux surfaces. Dissipation
within the E � B regions would produce double-tongue-like jet
structures.

netospheric interaction of two magnetized neutron stars can
generate larger luminosity than the case of one star moving in
the field of the companion [4]. In this case

L2 ∼ B2
NSGMNSR6

NS

cr5
= c21/4B2

NSR6
NS

(−t )5/4(GMNS )11/4

= 6 × 1042(−t )−5/4 erg s−1. (51)

(Index 2 indicates here that the interaction is between two
magnetized neutron star.) The ratio of luminosities of the
models 1M-DNS and 2M-DNS is

L2

L1
=

(
GM

c2RNS

)3/2
√

(−t )c

RNS
≈ 16

√−t . (52)

Thus L2 dominates L1 prior to merger. This is due to larger
interaction region, of the order of the magnetospheric radius,
instead of the radius of a neutron star.

Qualitatively, for the nonmagnetar magnetic field the
power [Eq. (51)] is fairly small. Even at the time of a merger,
with t ∼ 10−2 seconds, the corresponding power is only L ∼
1045 erg s−1—hardly observable from cosmological distances
by all-sky monitors. The best case is if a fraction of the power
[Eq. (51)] is put into radio. If a fraction of ηR of the power is
put into radio, the expected signal then is

FR ∼ ηR
L2

4πd2ν
≈ 0.1 Jy ηR,−5(−t )−5/4. (53)

This is a fairly strong signal that could be detected by modern
radio telescopes.

Our results indicate that even in the single magnetized
case we expect relativistic jets (or “tongues”) produced due
to electromagnetic interaction of merging neutron stars, with
correspondingly beamed emission pattern. Another way to

025205-7



MAXIM LYUTIKOV PHYSICAL REVIEW E 107, 025205 (2023)

produce higher luminosity is at the moments of topological
spin-orbital resonances [8].

The data underlying this article will be shared on reason-
able request to the corresponding author.
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APPENDIX A: FIRST ORDER VARIATION OF α − β − �

ARE VANISHING

Here we demonstrate that in the first order of v0 the varia-
tion of α − β − � are vanishing.

Let us expand

α = α0 + εα1,

β = β0 + εβ1,

� = �0 + ε�1. (A1)

The orthogonality constraint

(∇α) · (∇β ) = 0 → (∇α0) · (∇β1) + (∇α1) · (∇β0) = 0
(A2)

implies

∇α1 = a1∇α0 + a2∇�0,

∇β1 = b1∇β0 + b2∇�0. (A3)

On the other hand,

(∇α) · (∇�) = 0 → (∇α0) · (∇�1) + (∇α1) · (∇�0) = 0,

(A4)
hence

∇α1 = a1∇α0 + d2∇β0,

∇�1 = c1∇�0 + c2∇β0. (A5)

Thus, to keep all surfaces orthogonal we need

∇α1 = a1∇α0,

∇β1 = b1∇β0,

∇�1 = c1∇�0. (A6)

Thus, first order perturbations are “locked in”.

APPENDIX B: COMPARING ELECTRIC FIELD EQ. (33)
WITH OTHER CASES

The electric field Eq. (33) is not too different from the
vacuum case, where for electric field along y direction at
infinity

�(vac) = E0(1 − (R/r)3)r sin θ sin �,

E (vac)
r = −(1 + 2R3/r3) sin θ sin �E0,

E (vac)
θ = (1 − (R/r)3)r cos θ sin �E0,

E (vac)
φ = (1 − (R/r)3) cos �, (B1)

with surface charge density

σ (vac) = 3

2π
sin � sin θE0. (B2)

Fields Eqs. (33) and (B1) have the same angular dependence,
but different radial dependence. The electric field Eq. (B1) has
a nonzero component along B0:

E(vac) · B0 = 3R3(r3 − R3) sin(2θ ) sin φ

4r6
E0B0. (B3)

Another possible approximation, that of an incompressible
flow around a sphere with kinematically added magnetic field,
with velocity

v(inc) = {−(1 − R3/r3) sin θ cos φ,−(1 + R3/(2r3))

× cos θ cos φ, (1 + R3/r3) sin φ}v0, (B4)

would produce electric field with similar angular dependence,

E(inc) = −v(inc) × B0,

Er = (1 + R3/(2r3))2 sin θ sin φ v0B0,

Eθ = (1 − R3/(2r3) − R6/(2r6)) cos θ sin φ v0B0,

Eφ = (1 − R3/(2r3) − R6/(2r6)) cos φ v0B0. (B5)

A drawback of this approach is that the electric field has
nonzero curl

∇ × E(inc) =
{

0,−9R6 cos φ

4r7
,

9R6 cos θ sin φ

4r7

}
v0B0, (B6)

and hence cannot be stationary.
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