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In plasmas, electronic states can be well-localized bound states or itinerant free states, or something in
between. In self-consistent treatments of plasma electronic structure such as the average-atom model, all states
must be accurately resolved in order to achieve a converged numerical solution. This is a challenging numerical
and algorithmic problem in large part due to the continuum of free states which is relatively expensive and
difficult to resolve accurately. Siegert states are an appealing alternative. They form a complete eigenbasis with
a purely discrete spectrum while still being equivalent to a representation in terms of the usual bound states and
free states. However, many of their properties are unintuitive, and it is not obvious that they are suitable for
self-consistent plasma electronic structure calculations. Here it is demonstrated that Siegert states can be used
to accurately solve an average-atom model and offer advantages over the traditional finite-difference approach,
including a concrete physical picture of pressure ionization and continuum resonances.
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I. INTRODUCTION

Average-atom models use finite-temperature density func-
tional theory [1] to calculate the average electronic structure
of one atom in a material in local thermodynamic equilibrium.
The aim is to have a fast but reasonably accurate physical
model of the electronic structure and to yield information like
the equation of state and average ionization. There has been a
longstanding effort to make the numerical implementation of
these models robust yet inexpensive [2–8].

The essential step in evaluating an average-atom model is
the self-consistent solution of the one-electron Schrödinger
(Kohn-Sham) equation in which the effective potential is a
functional of the total electron density. The electron density
contains contributions from both the bound and the free states.
One needs to quickly and accurately search for all the bound
states, no matter how weakly bound [9]. One also needs to
solve for a large number of continuum states, especially un-
der conditions where sharp resonances appear in the density
of states. These resonances are difficult to track, since they
can appear and disappear over the course of a self-consistent
iteration [5].

Methods of solving the Kohn-Sham equations [10] in
average atoms typically involve numerical finite-difference
integration schemes like Adams-Bashforth or Runge-Kutta.
A largely unexplored alternative is to use basis functions via
spectral methods, where one solves a matrix problem for the
coefficients. The primary problem is that the boundary con-
dition for the average atom requires that the wave functions
match the free-electron solutions at the cell boundaries (or
beyond, depending on the model). This condition admits a
discrete bound-state spectrum and a continuous free-electron
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spectrum. Thus, to use basis function methods one would need
to discretize the continuum, introducing a physical approxi-
mation in doing so [11].

In general, average-atom eigenfunctions are found by
matching to the physical free-electron solutions, which are
combinations of incoming and outgoing waves; i.e., these
are the physical scattering solutions that are familiar to us.
An interesting alternative set of eigenstates is found if one
retains the free-electron boundary condition but restricts the
eigenfunction to have outgoing character only. These states
were introduced in 1939 by Siegert, motivated by the search
for a formal derivation of the Breit-Wigner formula [12].
These Siegert states, as they are now known, encompass the
usual discrete bound states, but in place of the real-energy
continuum of free states, a discrete set of complex-energy
eigenstates is found. These Siegert States influence physical
quantities, but are themselves not directly observable. How-
ever, the observable physical states are uniquely related to the
Siegert states via simple summations.

In the decades after Siegert’s paper, it was difficult to find
an efficient method for solving for the Siegert states, until
a basis function method was ultimately derived [13]. This
method assumes a finite-ranged potential [V (r) = 0 for r >

a], and because of this and the finite number of basis terms,
the authors referred to their solutions as Siegert pseudo-states.
The original papers [13,14] were restricted to s waves only.
However, the general solution for all orbital angular momenta
was later found [15]. The method was demonstrated to work
well for obtaining the bound states and scattering properties
of a given potential.

In this work, we show that Siegert states are indeed well
suited to the solution of average-atom models using the nu-
merical scheme laid out in Refs. [13–15]. We demonstrate that
the method works over a wide range of density and tempera-
ture, and a range of materials, and is numerically efficient. We
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start by reviewing the main equations and results of the Siegert
state formalism and how they can be used in average-atom
models. Then interesting examples of how pressure ionization
gives rise to antibound states and resonances in the contin-
uum are presented. We compare pressures from the model
to another state-of-the-art average-atom implementation and
finally demonstrate convergence with respect to the number
of basis functions.

While we restrict ourselves here to an application to aver-
age atoms, Siegert states could be much more widely used in
the plasma community. Some applications of interest include
evaluation of the electronic structure in calculating the optical
or transport properties of plasmas [16–26].

II. SIEGERT STATES FOR AN AVERAGE-ATOM MODEL

A. Siegert states

We start with the radial Schrödinger equation in Hartree
atomic units:

d2Pl

dr2
+ 2

(
ε − V eff (r) − l (l + 1)

2r2

)
Pl = 0, (1)

where the radial solution Pl (r; ε) depends on the orbital angu-
lar momentum l , the electron energy ε, and the radial distance
from the nucleus r. V eff (r) is the effective one-electron poten-
tial, and

V eff (r) = 0 for r � R. (2)

For the average-atom model, R is the ion-sphere radius.
The physical states are regular at the origin and behave

asymptotically as1

lim
r→∞ P̄l (r; ε) = e−ikr − (−ı)l Sl (k)eikr, (3)

where k = √
(2ε) is the complex momentum, and Sl (k) is the

S matrix. Poles of the S matrix on the positive imaginary k
axis correspond the the bound states. There are other poles,
however, lying in the negative imaginary k plane. These, as
we shall see, correspond to unphysical “states” known as
antibound, resonant, and antiresonant [27–29]. To find the
poles we search for solutions that behave as outgoing waves
only:

lim
r→∞ Pl (r; ε) = eikr . (4)

This is the Siegert boundary condition [12], alternatively writ-
ten as (

d

dr
− ık

)
Pl (r; ε)

∣∣∣∣
r→∞

= 0. (5)

The eigenstates which satisfy this boundary condition, and are
regular at the origin, are known as Siegert (or Gamow-Siegert
[30,31]) states [12].

To solve for these states in a robust and efficient way
proved difficult in the decades after Siegert’s paper [12]. Quite
recently, however, an efficient and robust method has been

1We use an overbar to distinguish the physical states from the
Siegert states.

found [13–15]. The basic idea is that for a limited-range
effective potential V eff (r), satisfying the restriction (2), the so-
lutions can be expanded in a finite basis, reducing the problem
to an algebraic form that includes the boundary conditions.
The resulting matrix equation is nonlinear in k and is difficult
to solve directly. This is linearized by increasing the dimen-
sion of the Hilbert space so that it can be solved by standard
methods. Instead of the original N-dimensional space (for N
basis functions), the dimension increases to 2N + l , meaning
that for a basis of size N there are 2N + l eigenstates Pn,l (r)
with eigenvalues kn.

The Siegert states Pn,l (r) (we drop the explicit ε depen-
dence for notational simplicity) are normalized according to∫ R

0
Pn,l (r)Pm,l (r)dr + ı

Pn,l (R)Pm,l (R)

kn + km

×
⎡
⎣1 +

l∑
p=1

zl p

(ıknR + zl p)(ıkmR + zl p)

⎤
⎦ = δnm, (6)

where zl p are the zeros of the reverse Bessel polynomial [15].
If Pm,l and Pn,l are bound states of an isolated atom, then this
recovers the usual bound-state normalization condition [4]∫ ∞

0
Pn,l (r)Pm,l (r)dr = δnm. (7)

It is worth noting that Eqs. (6) and (7) are not missing a com-
plex conjugate on one of the Siegert states; this is a hallmark
of Siegert states.

Some general properties of the Siegert states can be stated.
If kn is an eigenvalue, so is −k∗

n . If Rekn �= 0, the com-
plex conjugate pair corresponds to a resonant (Rekn > 0) and
antiresonant (Rekn < 0) pair. In this case the resonant and an-
tiresonant eigenfunctions are complex conjugate. If Rekn = 0,
then for Imkn > 0, the state is a physical bound state, and oth-
erwise (ImKn < 0) it is an antibound state. The corresponding
eigenfunctions are either purely real or purely imaginary.

Crucially, the physical scattering states P̄l (r, ε) can be ex-
pressed as a sum of Siegert states:

P̄l (r) = −ık
Gl (r, R; k)

el (kr)
, (8)

where el is a special function closely related to the Hankel
function (see Eq. (A8) of Ref. [15]), and the partial-wave
Green’s function is

Gl (r, r′; k) =
2N+l∑
n=1

Pn,l (r)Pn,l (r′)
kn(k − kn)

. (9)

The ability to represent the entire continuum of scattering
states from a discrete set of Siegert states is surprising and
very powerful. It is this property of Siegert states that makes
them appealing to use in an average-atom model.

B. Average-atom model

Here we give a brief summary of the average-atom model
and show how the Siegert states are relevant to it. We con-
sider a nucleus of charge Z at the center of a sphere whose
volume is the average volume per atom in the material, V ,
with radius R. The sphere is charge neutral, and the electron
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density inside the sphere is given by the Mermin-Kohn-Sham
finite-temperature density functional theory [1,10,32]:

ne(r) =
∑

n,l∈Bound

f (εn, μ)
2(2l + 1)

4π

P̄l (r; εn)2

r2

+
∫ ∞

0
dε f (ε, μ)

∞∑
l=0

2(2l + 1)

4π

P̄l (r; ε)2

r2
, (10)

where f (ε, μ) is the Fermi-Dirac occupation factor and
μ is the chemical potential determined by enforcing Z =
4π

∫ R
0 r2ne(r)dr. This expression is arrived at by using the

spherical symmetry of the average atom. For the calcula-
tions presented here, the continuum partial-wave summation
is truncated at lmax = 10 with higher-orbital angular momenta
treated as free electrons (see Sec. 3.3 of Ref. [7]). By solving
the Poisson equation and taking into account the exchange and
correlation contributions, the effective potential is

V eff (r) = − Z

r
+ 4π

r

∫ r

0
dr′ r′2ne(r′)

+ 4π

∫ R

r
dr′ r′ne(r′)

+ V xc[ne(r)] − V xc[ne(R)]. (11)

Equations (1), (10), and (11) are solved self-consistently until
converged.

However, the electron density can also be found from the
Green’s function:

ne(r) = − 1

π
Im

∫ ∞

−∞
dε f (ε, μ)

∞∑
l=0

2(2l + 1)

4π

Gl (r, r; k)

r2
.

(12)

Using Eq. (9), it is clear that the electron density can be
evaluated directly from the Siegert states without ever calcu-
lating the physical scattering states, Eq. (8). As pointed out in
Ref. [33], it is numerically convenient to use Cauchy’s integral
theorem to rewrite this as

ne(r) = 1

π
Im

∫
C

dε f (ε, μ)
∞∑

l=0

2(2l + 1)

4π

Gl (r, r; k)

r2

+ 2T Re
Nmat∑
j=1

∑
l

2(2l + 1)

4π

Gl (r, r; k̃ j )

r2
, (13)

where C is a convenient contour, and Nmat is the number of
Matsubara poles inside the contour. The Matsubara energies
are

ε̃ j = μ + ıπ (2 j − 1)T, (14)

where T is the temperature.
It is interesting to note that if the contour is chosen to be

an infinite semicircle in the upper-half energy plane, then the
density is simply

ne(r) = 2T Re
∞∑

i=1

∑
l

2(2l + 1)

4π

Gl (r, r; ki )

r2 (15)

and no numerical integration is required. This is usually not
a practical formula due to the difficulty in evaluating the

FIG. 1. Siegert eigenvalues and density of states (DOS) for alu-
minum at solid density and temperatures for 10, 20, and 30 eV (l = 0
only). Note that the resonant and antiresonant eigenvalues are nearly
on top of each other for the three temperatures.

Green’s function for the large imaginary arguments that are
required for convergence [34]. However, the simple depen-
dence of the Green’s function on energy [Eq. (9)] solves
this problem. Nevertheless, for our calculations we have used
the formula (13) with a contour similar to that described in
Ref. [33].

For later use, we note that the density of states (DOS) is
given in terms of the Green’s function by

χ (k) = − 1

π
Im

∫ R

0
dr

∞∑
l=0

2(2l + 1)Gl (r, r; k) (16)

and the partial DOS we define as

χl (k) = − 1

π
Im

∫ R

0
dr2(2l + 1)Gl (r, r; k), (17)

evaluated using Eq. (9).
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III. RESULTS

Figure 1 shows an example of Siegert eigenvalues for an
aluminum plasma at 2.7 g/cm3 and the corresponding DOS
for temperatures of 10, 20, and 30 eV. We show the eigen-
values in a restricted range of momentum space to highlight
certain features, and we show the l = 0 eigenvalues only.
For all three temperatures the 2s bound state is apparent on
the positive imaginary axis. Further, in the lower half-plane
we see resonant and antiresonant pairs that are only weakly
affected by temperature.

As temperature is increased, the average energy of the elec-
trons increases and the electrons therefore screen the nucleus
more weakly, leading to a deepening of the bound eigenvalues.
This is most clearly seen in the 2s bound state increasing
in Imk with increasing temperature. Likewise, we see that at
30 eV, the 3s state is bound, but that at lower temperatures it is
antibound. In this case, the nuclear potential is more strongly
screened at lower temperatures, and the shorter-ranged poten-
tial no longer supports a bound 3s state.

An antibound state is distinct from the more commonly
recognized resonance state, which occurs for l � 0 (see later).
Figure 1 shows the effect the antibound state has on the DOS.
Going from 10 to 20 eV, we see that the appearance of the
antibound state near the real k axis causes a large peak in the
DOS, which quickly reduces as the 3s antibound state moves
further into the negative-k plane.

We can understand the behavior of the DOS due to an
antibound state by defining the DOS due to one Siegert state
as

χn,l (k) = −2(2l + 1)

π
Im

1

kn(k − kn)

∫ R

0
drPn,l (r)2. (18)

For bound (B) or antibound (AB) states the integral term is
real, and the eigenvalue is purely imaginary. Let kn = ıyn,
where yn is real, then

χ
B/AB
n,l (k) = 2(2l + 1)

π

∫ R

0
drPn,l (r)2 k

yn
(
y2

n + k2
) . (19)

We can see that the maximum of the DOS due to an antibound
state occurs at k = yn, with the maximum value being propor-
tional to 1/(2y2

n ). Therefore, for small yn, the DOS becomes
strongly peaked at k = yn.

In Fig. 2 the eigenvalues for iron at 8 g/cm3 and 1 eV
temperature are shown for l = 2. For the range of k shown
there are no bound states. There is one antibound state, and the
rest are resonant or antiresonant states. Of particular interest
is the resonant state that lies near the positive real axis; this
state is the 3d resonance state. We can see this by looking at
the DOS in the bottom panel Fig. 2. There we show the total
DOS and that due to only the l = 2 states. The large peak
observed is known as a shape resonance and physically is due
to a potential well created by the effective potential V eff (r)
and the centrifugal term l (l + 1)/2r2.

Figure 3 shows the resonance state with the real part
of energy ε = Rekn,l

2/2 is trapped in a potential well cre-
ated by the sum of V eff (r), which is purely attractive, and
the centrifugal term l (l + 1)/2r2, which is repulsive. Because
the barrier of the potential well is finite ranged, the lifetime
of the resonance state is finite (in contrast to bound states),

FIG. 2. Siegert states and density of states (DOS) for iron at 1 eV
temperature and 8 g/cm3. We show only the eigenvalues for l = 2
states, where a resonant state lies close to the real energy axis, leading
to a resonance in the DOS.

FIG. 3. Effective potential V eff (r), centripetal term
−l (l+1)/2r2, and total potential for l = 2, for iron at 8 g/cm3

and 1 eV temperature. The energy of the 3d resonance state
(ε = Rekn,l

2/2) is marked on the plot showing how, through
quantum tunneling, the resonance state can decay.
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FIG. 4. Real and imaginary parts of the Siegert eigenvalue kn,l

for carbon at a temperature of 10 eV as a function of mass density.
The top panel shows the evolution of the 1s eigenvalue, the middle
panel shows the 2s eigenvalue, and the bottom panel shows the 3s
eigenvalue.

and an electron in that state can tunnel out. This quasibound
character of the resonance state is what gives rise to the
characteristic shape resonance feature in the DOS. In contrast,
antibound states are not trapped in a potential well, so only
those that are close in energy to being trapped lead to such
features in the DOS.

One conceptual advantage of Siegert states is that one can
directly study the evolution of bound states as a function of
density or temperature, even after they ionize. This is be-
cause, upon ionization, bound states simply transform into
either antibound or resonant states. Figures 4 and 5 show the
evolution of selected bound states for a 10-eV carbon plasma
over 6 orders of magnitude in density. For low densities, the
eigenvalue kn,l lies on the imaginary axis. The more deeply
bound the state is at the lowest density, the greater increase
in density is needed to pressure ionize it. Pressure ionization
occurs when the imaginary part of kn,l crosses the real axis
and becomes negative. For p states (Fig. 5) this crossing is
immediately accompanied by the real part of kn,l becom-
ing nonzero and positive (we show only the resonant state

FIG. 5. Real and imaginary parts of the Siegert eigenvalue kn,l for
carbon at a temperature of 10 eV as a function of mass density. The
top panel shows the evolution of the 2p eigenvalue, the middle panel
shows the evolution of the 3p eigenvalue, and the bottom panels
shows the evolution of the 4p eigenvalue.

eigenvalue, the antiresonant state eigenvalue is just its com-
plex conjugate). For s states (Fig. 4), the crossing of the real
axis is not accompanied by an immediate increase in the real
part. There is a delay in which the real part remains zero—the
bound state becomes an antibound state before splitting into a
resonant and antiresonant pair.

The physical reason for this difference in behaviors be-
tween s states and all other orbital angular momenta states
is the centrifugal barrier. The mathematical reason is explored
in Ref. [15]. The authors show that for l � 1 there is a for-
bidden region of k-space (a “dead zone” in their language)
where eigenvalues cannot occur. This dead zone touches the
origin and lies in the lower half-plane. As a result, when a
bound state with l � 1 ionizes, it cannot continue down the
imaginary k axis and must instead split into a resonant and
antiresonant pair.

As a demonstration of the usefulness of the method for
equation of state calculations, in Fig. 6 we show the excess
pressure of carbon plasma over a wide range of temperatures
and densities. The excess pressure is defined as the total
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FIG. 6. Excess pressure of carbon plasmas at 10, 100, and
1000 eV temperature. We compare calculations with the Siegert
method to results from the TARTARUS average-atom code. The results
of the two methods are on top of each other in the plot, indicating
agreement of the methods.

pressure minus an ideal ion contribution kBT/V . In the fig-
ure we compare to results from the TARTARUS average-atom
code, which implements the same model using a more conven-
tional finite-difference scheme [7]. No appreciable difference
is observed between the two methods, and the computational
cost is similar for each, typically 1–2 min per density and
temperature. It is difficult to fairly make a more precise com-
parison, as wall times depend on convergence parameters,
such as the radial grid size, the number of quadrature points
for the energy integral, etc., that we have not systematically
optimized in either case. Nevertheless, an advantage that the
finite-basis Siegert approach has over finite-difference inte-
gration schemes is that a sparser radial grid can be used
to achieve comparable accuracy, which lowers the memory
footprint of the code. For reference, we use 300 radial grid
points for the spectral Siegert method versus 3000 for the
finite-difference scheme in TARTARUS.

A further advantage of the Siegert method is that only
one type of solver is needed for all states. For the traditional
approach, one might use an inward and outward integration
scheme combined with a search technique for finding the
bound state solutions, an outward integration method and res-
onance tracking scheme for the continuum electron, or, as in
TARTARUS, a different method again to find the Green’s func-
tion. This range of techniques leads to algorithmic complexity.
In the Siegert method, one matrix diagonalization, for which
standard libraries exist, gives the entire eigenspectrum.

In Figs. 7 and 8 we show pressures from carbon and copper
plasmas as a function of the size of the basis N . In each case
we show the ratio of the pressure to the converged result.
Increasing the size of the basis has two distinct effects. On
the one hand it allows more complicated radial functions to
be accurately represented. On the other hand, it increases
the maximum |kn,l | that is accurately represented. It is re-
markable that for carbon as few as 50 basis functions give
errors less than 1% for a wide range of mass densities and
temperatures, and errors very much less than 1% are found for

FIG. 7. Convergence of the excess pressure with respect to the
size of the basis N for a carbon plasma at 10 eV temperature. Errors
in the excess pressure are calculated relative to N = 150.

N = 125. For reference we used N = 150 for all the results
presented up to this point. For copper (Fig. 8), a larger basis
is needed to maintain a similar accuracy. This is expected, as
more highly charged nuclei require accurate representation of
higher-energy states. This is also why the figure shows that a
larger basis is needed at lower densities. Lower densities for
the same temperature correspond to a less degenerate system,
meaning that the tail of the Fermi-Dirac distribution will be
longer. Presumably this does not show up for carbon due to
the error being dominated by inadequate representation of the
radial functions for N = 25.

IV. CONCLUSIONS

Siegert states have been shown to be a viable and advan-
tageous method for use in average-atom models. It has been
demonstrated that the Siegert states can be used to accurately
construct the Green’s function and in turn the electron den-
sity needed to perform self-consistent field calculations. We
investigated two pressure ionization scenarios: that in which

FIG. 8. Same as for Fig. 7 but for copper plasmas at 10 eV
temperature, and errors have been calculated relative to N = 200.
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an s-wave state is ionized to become an antibound state and
subsequently a resonant and antiresonant pair, and that for
nonzero orbital angular momenta, in which pressure-ionized
bound states directly turn into resonant and antiresonant
states. We show how both scenarios lead to spikes in the den-
sity of states. It was also demonstrated that the method leads
to accurate pressures when compared to other state-of-the-art
average-atom methods.

The Siegert state approach results in a completely discrete
set of eigenstates that can be used to represent the Green’s
function and the scattering states without approximation. The
advantage of a discrete set of states could be further exploited
through their use in perturbation theory [3] or expanding
time-dependent wave packets [35], among other applications

requiring a complete set of states where it would be impracti-
cal to use the usual continuum wave functions.

ACKNOWLEDGMENTS

We thank D. Saumon for useful discussions on the early
part of this work. This work was support by LANL’s ASC
PEM Atomic Physics Project. LANL is operated by Triad
National Security, LLC, for the National Nuclear Security Ad-
ministration of the U.S. Department of Energy under Contract
No. 89233218NCA000001. N.R.S. acknowledges support by
the Department of Energy, National Nuclear Security Ad-
ministration, under Award No. DE-NA0003856, and the New
York State Energy Research and Development Authority.

[1] N. D. Mermin, Thermal properties of the inhomogeneous elec-
tron gas, Phys. Rev. 137, A1441 (1965).

[2] D. A. Liberman, Self-consistent field model for condensed mat-
ter, Phys. Rev. B 20, 4981 (1979).

[3] R. M. More, Pressure ionization, resonances, and the continuity
of bound and free states, in Advances in Atomic and Molecular
Physics (Elsevier, Academic Press, San Diego, 1985), Vol. 21,
pp. 305–356.

[4] T. Blenski and K. Ishikawa, Pressure ionization in the spher-
ical ion-cell model of dense plasmas and a pressure formula
in the relativistic Pauli approximation, Phys. Rev. E 51, 4869
(1995).

[5] B. Wilson, V. Sonnad, P. Sterne, and W. Isaacs, Purgatorio–
a new implementation of the inferno algorithm, J. Quant.
Spectrosc. Radiat. Transfer 99, 658 (2006).

[6] R. Piron and T. Blenski, Variational-average-atom-in-quantum-
plasmas (VAAQP) code and virial theorem: Equation-of-state
and shock-Hugoniot calculations for warm dense Al, Fe, Cu,
and Pb, Phys. Rev. E 83, 026403 (2011).

[7] C. E. Starrett, N. M. Gill, T. Sjostrom, and C. W. Greeff, Wide
ranging equation of state with tartarus: A hybrid Green’s func-
tion/orbital based average atom code, Comput. Phys. Commun.
235, 50 (2019).

[8] G. Faussurier, C. Blancard, P. Cossé, and P. Renaudin, Equation
of state, transport coefficients, and stopping power of dense
plasmas from the average-atom model self-consistent approach
for astrophysical and laboratory plasmas, Phys. Plasmas 17,
052707 (2010).
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