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k-space theory and convective gains of stimulated Raman side scattering
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We have developed a k-space theory for stimulated Raman scattering. The theory is used to calculate the
convective gain of stimulated Raman side scattering (SRSS) in order to clarify the discrepancies found between
previous gain formulas proposed in the literature. The gains are dramatically modified by the eigenvalue of
SRSS, and the maximum gain occurs not at the perfect wave-number matching condition but instead at a wave
number having a small deviation that is associated with the eigenvalue. Numerical solutions of the k-space theory
equations are compared with, and used to verify, analytically derived gains. We demonstrate connections to the
existing path integral theories, and we derive a similar path integral formula in k space.
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I. INTRODUCTION

Stimulated Raman side scattering (SRSS) is a particularly
interesting scattering geometry of stimulated Raman scatter-
ing (SRS), which has been observed in recent experiments
[1–4] and particle-in-cell numerical simulations [5]. As we
define it here, it is a scattering geometry where the scattered
light grows in a direction that is nearly perpendicular to the
local direction of the density gradient. It therefore occurs near
the wave caustic/turning point for the scattered light, and the
light exits plasma with angles that are modified significantly
by refraction. Although the absolute threshold of SRSS [6,7]
is rather low, according to theoretical predictions, very few
experiments have reported the observation of SRSS previ-
ously [8–10]. Recently, the observations of vigorous SRSS in
ignition-related experiments have revived the interest of the
plasma community in this instability.

There could be several reasons for the lack of previous
observations: To capture side scatter, a particular light col-
lecting system is required since the ray trajectory of side
scatter light back to detectors is not unique [11] and is strongly
affected by refraction. Side scattered light can also be difficult
to distinguish from other noise sources scattered or reflected
by the plasma. It is only when the SRSS signals are suf-
ficiently strong that it can be unambiguously observed [8].
Other effects such as collisional and Landau damping could
also mitigate such scattering easily [12,13]. Its observation
would then depend sensitively on the plasma conditions. Fur-
thermore, as we show here, the inherent complexity of SRSS
is much greater than for backward scattering. This is a fact that
does not seem to have been fully appreciated, and one that we
attempt to resolve.

*xiaocz@hnu.edu.cn
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Take, for example, the analytic formulas for convective
gains. When the instability is below the absolute threshold,
convective gain is used to assess the severity of SRSS. Such a
situation can be expected to occur when the pump intensity is
not strong enough, the decay waves are strongly damped, the
transverse beam size is not sufficiently wide, or the density
gradient is too steep. However, there are several different
forms of analytically derived gains that have been obtained
from different theories [3,14,15]. These formulas appear quite
different from one another, and it is not obviously apparent
how they should be used under certain conditions in a given
experiment. Additionally, they have yet to be verified.

We start by summarizing the previously obtained results
for convective SRSS gain. There are two types of theories
aimed at calculating the convective gain: x-space theory and
a path integral method. In the very first theory of convective
SRSS, which was made by Mostrom, Nicholson, and Kauf-
man [15], steady-state solutions of the first-order envelope
equations were solved in real space. The formula they ob-
tained for convective gain is equivalent to that recently derived
by Michel et al. [3] from a standard path integral method,
where an integral over the coupling coefficient is performed
along the ray trajectory. The reduced analytic formula is given
by

G = GRos(0)

√
ω2

s − ω2
pr

ω2
pr

√
ωpr

ν
, (1)

where GRos(0) is the well-known Rosenbluth gain expressed
by Eq. (24) (derived below) for backscatter and normal inci-
dence (incidence angle θ0 = 0), ωpr is the plasma frequency at
the resonant point, ωs is the frequency of scattered light, and
ν is the damping rate of the Langmuir wave. Since thermal
effects are not included in Eq. (1), Michel et al. [3] also found
that, in the limit of negligible Langmuir wave damping, the
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path integral method reduces to

G = GRos(0)
ksc2

3v2
e k0x

, (2)

where ve is the electron thermal velocity, c is the speed of
light, ks is the wave number of side-scattered light, and k0x

is the wave number of the pump wave in the direction of
the density gradient (assumed to be the x axis), i.e., it takes
into account the effect of an obliquely incident pump wave.
It is seen that the values for the gain diverge in these formu-
las as the respective damping/electron temperature vanishes.
Mostrom and Kaufman developed a more sophisticated model
by considering the x-space Schrödinger equation to describe
SRSS [14] (we refer to this model here as the x-space theory
of SRSS), and they obtained a different scaling for convective
gains. The gain is given by

�s = 1.1

(
ωs

ω0

)1/3(
ωs

ωpr

)1/12 k3/2
br a3/2

0 c1/2L

ω
1/2
pr

, (3)

where ω0 is the pump frequency, kbr is the wave number of
the Langmuir wave at the resonant point, a0 is the normalized
pump amplitude, and L is the density scale length. Note that
the coefficient differs from the original one since the definition
of the laser amplitude differs from ours (by a factor of 2 in a0).
However, the x-space theory is limited since both the thermal
and damping terms are neglected. The a3/2

0 -scaling for the gain
in Eq. (3) seems to be hard to reconcile with the a2

0-scaling
seen in both Eq. (1) and (2), and to date no one has shown the
connection.

To settle this problem, and to better understand the behav-
ior of SRSS in the convective regime, we have developed
a k-space theory of SRSS. The real-space coupling equa-
tions for the decay waves are Fourier-transformed into k-ω
space equations, which we call the k-space equations. A k-
space Schrödinger equation is obtained by combining the two
k-space equations characterizing the linear behavior of SRS.
A Schrödinger equation with a quartic potential (in k-space)
is seen to describe SRSS, while that with a quadratic potential
describes backscattering. The Schrödinger equation can be
solved through the use of the WKB approximation, and the
convective gain is defined as the imaginary part of the phase
integral, integrated from incident wave number to exit wave
number [16]. It can be seen that side scatter is intrinsically
different from back scatter since an eigenvalue exists in the
Schrödinger equation with a quartic potential while it is ab-
sent in the quadratic potential (back scatter) case. We have
shown that this eigenvalue in the wave number dramatically
modifies the gain, with the maximum gain occurring not at the
perfect matching condition but at a wave number with a small
deviation that is associated with the eigenvalue. It appears that
this phenomenon was first noticed by Short [17], but the intro-
duction of a small mismatch in resonance was given without
explanation. The origin of the mismatch is actually due to the
eigenvalue effect, as proven here. Finally, all of the previously
proposed formulas are compared and verified by numerical
solutions of k-space equations. The k-space method has a
long history, but it has been associated with the calculation of
absolute instability thresholds [7,17–19]. We have shown here
that the k-space theory is more generally useful than that.

The paper is organized as follows: Section II presents
our k-space theory of SRSS and explains the nature of the
Schrödinger equation that results. Section III describes the
gain calculation, where previous results are reproduced un-
ambiguously. In Sec. IV, we show that near the eigenvalues
of SRSS the gain changes dramatically, and we derive the
small wave-number deviation from the perfect resonance. We
compare all these results with numerical solutions in Sec. V.
Finally, the conclusions are demonstrated in Sec. VI.

II. THE k-SPACE THEORY OF SRS

We start with the linearized equations for SRS:[
∂2

∂t2
+ 2νs

∂

∂t
− c2∇2 + ω2

pr

(
1 + x

L

)]
as = −ω2

prapa0,

[
∂2

∂t2
+ 2νp

∂

∂t
− 3v2

e ∇2 + ω2
pr

(
1 + x

L

)]
ap = c2∇2(as · a0),

(4)

where a linearly varying density profile ne = ner (1 + x/L) is
assumed, and ωpr =

√
4πnere2/m is the plasma frequency

at resonant point (chosen to be x = 0). The quantity a0 =
eA0/mc2 = 1

2 a0ê0ei(k0·x−ω0t ) + c.c. is the normalized ampli-
tude of the plane pump laser with a fixed a0, while as =
eAs/mc2 and ap = δne/ner are the normalized amplitudes of
scattered light and a Langmuir wave, respectively. As before,
c and ve are the speed of light and electron thermal velocity.
νs and νp are the temporal dampings of scattered light and a
Langmuir wave, respectively.

To analyze these coupling equations, especially for side
scattering, a Fourier transform in space and time is used,

âs(ks, ωs) = ês

∫
as(x, t )e−i(ks·x−ωst )dxdt,

âp(kb, ωb) =
∫

ap(x, t )e−i(kb·x−ωbt )dxdt . (5)

In our discussion, ês = ê0, indicating that the polarization cou-
pling is maximized, and without loss of generation we assume
the pump laser is incident in the x-y plane and polarized
along the z axis. The discussed Fourier modes, âs and âp,
satisfy the three-wave matching conditions, ω0 = ωs + ωb and
k0 = ks + kb. Fourier transforming Eq. (4) by using Eq. (5)
and keeping the lowest-order coupling, we have the corre-
sponding Fourier space or k-space coupling equations,

dâs

dksx
= i

L

ω2
pr

Dl âs + i
La0

2
â∗

p,

dâ∗
p

dkbx
= −i

L

ω2
pr

Dpâ∗
p − i

k2
bc2a0L

2ω2
pr

âs. (6)

The derivatives come from the explicit linear dependence on
x, where ksx and kbx are x components of ks and kb. It is
convenient to regard the resonant point as a reference point,
therefore, according to the matching condition, ksx and kbx

can be related to a new variable, k = ksx − ksrx = kbrx − kbx,
where ksrx and kbrx are wave numbers at resonance. k = 0
denotes the resonant point as shown in Fig. 1(a). With this
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FIG. 1. (a) Interaction of waves in k-space. k = 0 represents the
resonant point at x = 0. (b) Wave-number matching condition of
back scatter at k = 0. (c) Wave-number matching condition of side
scatter at k = 0. Obliquely incident pump (black arrow), scattered
light (red arrow), and Langmuir wave (green arrow) are shown at
the resonant point (subscript r). The scattered light wave number is
decomposed into two directions, and in the perpendicular direction,
a wave number deviation, 	ky, from a perfect resonant condition is
added to ky.

definition, the k-space coupling equations reduce to

dâs

dk
= i

L

ω2
pr

Dl âs + i
La0

2
â∗

p,

dâ∗
p

dk
= i

L

ω2
pr

Dpâ∗
p + i

k2
bc2a0L

2ω2
pr

âs. (7)

The fluid-type wave dispersion functions are given by

Dl (k) = −ω2
s − 2iνsωs + c2k2

s + ω2
pr,

Dp(k) = −ω2
b + 2iνpωb + 3v2

e k2
b + ω2

pr, (8)

which are functions of k since k2
s = (ksrx + k)2 + k2

sy and k2
b =

(kbrx − k)2 + k2
by. Other quantities are regarded as constants.

Since we are dealing with the convective regime of SRS and
the density is stationary in time, frequencies are assumed to
be real constants throughout.

Equations (7) are two first-order ODEs due to the linear
density inhomogeneity. Neglecting the coupling terms on the
right-hand side, the solution for each wave is the k-space
representation of the Airy function. The coupling terms are
significant only in the resonant region where Dl ≈ 0 and Dp ≈
0 as shown in Fig. 1(a). On combining these two first-order
ODEs by eliminating â∗

p, we obtain a homogeneous second-
order ODE. A standard procedure to obtain the Schrödinger
equation is by using the transform

âs = W (k) exp

[
iL

2ω2
pr

∫ k

[Dl (k
′) + Dp(k′)]dk′

]
. (9)

Then the coupling equations become a Schrödinger-type
equation,

d2W

dk2
+ [F0(k) − F1(k)]W = 0, (10)

where the potentials sorted by descending order of L are,

F0(k) = L2

4ω2
pr

[
(Dl − Dp)2 + k2

brv
2
0ω

2
pr

]
, (11)

F1(k) = iL

2ω2
pr

d (Dl − Dp)

dk
, (12)

where v0 = a0c is the quiver velocity and kb is approximated
by kbr , the Langmuir wave number at resonance.

The complexity of potential comes from the function Dl −
Dp, whose form varies according to the scattering geome-
try. Figures 1(b) and 1(c) show the wave-number matching
conditions for back scatter and side scatter at the resonant
point (whose quantities are denoted by the subscript r). Since
ksx = ksrx + k and kbx = kbrx − k, Dl − Dp is given by

Dl − Dp = − ω2
s + c2[(ksrx + k)2 + (ky + 	ky)2] + ω2

b

− 3v2
e

[
(kbrx − k)2 + k2

bry

] − 2i(νsωs + νpωb).
(13)

Here, we introduce a free variable 	ky which represents a
wave number deviation in ky. That aside, the dispersion re-
lations Re[Dl ] = 0 and Re[Dp] = 0 are satisfied,

ω2
s = ω2

pr + c2
(
k2

srx + k2
y

)
,

ω2
b = ω2

pr + 3v2
e

[
k2

brx + (ky + k0ry)2
]
. (14)

As we will see later, 	ky can be treated as an eigenvalue to
the Schrödinger equation. If 	ky = 0, there will be perfect
wave-number matching at the resonant point (for side scatter
we will always have a nonzero and complex eigenvalue, which
will be discussed later). Substituting Eqs. (14) into Eq. (13),
Dl − Dp reduces to

Dl − Dp ≈ c2k2 + (
2c2ksrx + 6v2

e kbrx
)
k + 2c2ky	ky

− 2i(νsωs + νpωb). (15)

For backward scattering [Fig. 1(b)], ksrx is large compared
with k in the resonant region and ksrx ∼ kbrx. The quadratic
and thermal terms are negligible, and Eq. (15) takes a more
simplified form

Dl − Dp ≈ 2c2ksrxk + 2c2ky	ky − 2i(νsωs + νpωb), (16)

which is a linear function of k. In contrast, for side scatter,
which is 90◦ or near 90◦ to the density gradient [Fig. 1(c)],
we have ksrx ∼ 0. Equation (15) remains unchanged, being a
quadratic function of k.

On substituting Eq. (16) into Eq. (10), we have a normal-
ized Schrödinger equation for backward SRS,

d2W

dK2
0

+ [(K0 + g0 − iν0)2 + G0 − i]W = 0, (17)

where the normalized parameters are

K0 = klb,

g0 = 	kylb
ky

ksrx
,
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ν0 = (νsωs + νpωb)lb
c2ksrx

,

G0 = k2
bra2

0L

4ksrx
. (18)

A characteristic length for back scatter, lb = c
√

ksrxL
ωpr

, has also
been defined. For side scattering, the normalized Schrödinger
equation is given by

d2W

dK2
1

+
[

1

4

(
K2

1 + g1 − iν1
)2 + G1 − iK1

]
W = 0, (19)

with a different normalization,

K1 =
(

k + ksrx + 3v2
e

c2
kbrx

)
ls,

g1 =
[

2ky	ky −
(

ksrx + 3v2
e

c2
kbrx

)2
]

l2
s ,

ν1 = 2(νsωs + νpωb)l2
s

c2
,

G1 = k2
bra2

0

4

(
L2c

ωpr

)2/3

. (20)

The characteristic length for side scatter, ls = ( c2L
ω2

pr
)1/3, differs

from that for back scatter. It is seen that ls 	 lb while G1 

G0 for the conditions with large density scale length L.

The two Schrödinger equations, Eqs. (17) and (19), in
the variable k characterize the properties of a range of SRS
geometries. The potential is essentially a quadratic function
of k for backward scattering or a quartic function of k for
side scattering. Physically speaking, these potentials, both
having a positive coefficient of second or fourth order, belong
to the physics of underdense barriers. At the core of such
scattering problems is the scattering rate of an outgoing wave
interacting with these potentials. The ratio of the amplitudes,
integrated from kin to kout, determines the scattering rate, and
its exponential index denotes the gain. Here, we define stable
scattering as the case with a scattering rate (or gain) that
changes little with the deviation from perfect matching, 	ky

(or g), while an unstable scattering is one where the scattering
rate (or gain) changes dramatically with 	ky (or g). As will
be discussed later, backward scattering (with the quadratic
potential) is stable scattering, and side scattering (with the
quartic potential) belongs to an unstable scattering type. This
is a fundamental property of the scattering type of solutions to
Schrödinger equations. The determination of this nature and
its consequence in k-space for SRS is one of the noteworthy
results of this work.

Dating back to the very beginning of the studies on laser
plasma instabilities, we find that these two types of potential
were first discovered by Rosenbluth [20] from an x-space
theory of the coupling envelope equations. Absolute insta-
bility, characterized by a temporal growth rate, only exists
in the quartic potential. However, the x-space Schrödinger
equation with a quartic potential is not able to describe SRSS,
since the envelope equation fails for SRSS, and the potential
function in x-space is much more complicated than a quartic
function [14].

III. GAIN CALCULATION BY THE WKB METHOD

The solution of the Schrödinger equations with initial
conditions is the key to understanding the initial behavior
of SRS. Equation (17) reduces to the well-known parabolic
cylinder equation whose exact solutions are fully understood
[21]. However, for Eq. (19), which describes side scatter,
no exact solutions have been found. Therefore, the Wentzel-
Kramers-Brillouin (WKB) approximation is used to construct
approximate solutions for the Schrödinger equations.

Such solutions can be written by W (K ) =
A+

F (K )1/4 ei
∫ K √

F (K ′ )dK ′ + A−
F (K )1/4 e−i

∫ K √
F (K ′ )dK ′

when turning
points of F (K ) are not encountered, i.e., F (K ) = 0. Here,
F (K ) denotes the potential in Eqs. (17) and (19), and A+,
A− are arbitrary constants determined by initial conditions.
The WKB solutions are used to describe incoming and
outgoing waves, and the imaginary part of the phase integral∫ K √

F (K ′)dK ′ characterizes the spatial growth of the wave.
Therefore, the convective gain is defined by

G =
∣∣∣∣Im

[∫ ∞

−∞

√
F (K )dK

]∣∣∣∣. (21)

Note that the upper and lower limits of the integral should be
finite in reality due to the effect of finite inhomogeneity or
finite beam width. Here, we assume that kin and kout are much
larger than the characteristic length of the resonant region,
as shown in Fig. 1(a), so that the limits can be extended
to infinity. The effect of finite beam width or plasma length
will be discussed elsewhere. To evaluate the integral, a Stokes
diagram for the integrand is a useful tool [16].

First, let us begin with the well-understood case of back-
ward scattering from our new k-space perspective. Assuming
G0 
 1, we neglect the constant i in the potential, and then
the integral becomes

G =
∣∣∣∣Im

[∫ ∞

−∞

√
(K0 + g0 − iν0)2 + G0dK0

]∣∣∣∣. (22)

Its Stokes diagram is shown in Fig. 2(a). As long as the imag-
inary part of g0 − iν0 is not too large, we can easily obtain the
convective gain for backward scattering by integrating along
the red arrows. Since along an anti-Stokes line [solid curve
in Fig. 2(a)] the imaginary part vanishes, the integral is just
performed between two turning points,

G = 2G0

∫ π/2

arcsin(|ν0−Im[g0]|/√G0 )
cos2 θdθ. (23)

When ν0 = g0 = 0, it recovers the familiar Rosenbluth gain,

G = πG0/2 = πk2
bra2

0L

8ksrx
≡ GRos. (24)

The integral is slowly affected by the lower limit as long
as |ν0 − Im[g0]| 	 √

G0. It shows that the convective gain
of backward scattering is weakly dependent on the deviation
(mismatch) g0, implying that backward scattering is stablein
the sense that we have previously defined.

For side scattering, the phase integral becomes much more
complicated. To begin with, we discuss the case of g1 = 0,
i.e., perfect resonance at the turning point. The integral can be
evaluated in two limits. First, in the limit of weak damping,
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FIG. 2. Stokes diagrams for the potential F (K ) in four lim-
iting cases: (a) Back scatter: F (K0) = (K0 + 0.1 − 0.1i)2 + 4;
(b) side scatter: F (K1) = K4

1 /4 + 4; (c) side scatter: F (K1) = (K2
1 −

i)2/4 + 4; (d) side scatter at an eigenvalue: F (K1) = (K2
1 − 0.5 −

3.5i)2/4 + 4. The solid line is the anti-Stokes line defined as
Im[

∫ K √
F (K ′)dK ′ = 0], and the dashed line is the Stokes line de-

fined as Re[
∫ K √

F (K ′)dK ′ = 0].

ν1 	 1,

G =
∣∣∣∣Im

[∫ ∞

−∞

√
K4

1 /4 + G1dK1

]∣∣∣∣. (25)

The Stokes diagram is shown in Fig. 2(b), and the deformed
contour is shown by the red arrows. Along the contour we
have

Im
∫ ∞

−∞

√
K4

1 /4 + G1dK1 = 2 Im
∫ 0

Kt1

√
K4

1 /4 + G1dK1

= 1.748G3/4
1 .

The convective gain is thus given by

G = 1.748 G3/4
1 = 0.618

k3/2
br a3/2

0 c1/2L

ω
1/2
pr

. (26)

Comparing this with Eq. (3) (the convective gain proposed
by Mostrom and Kauffman), we see that it has the same
scaling (and in particular ∼a3/2

0 ) but the coefficient is slightly
different.

As the damping increases, the turning points become asym-
metric. Two diagonal turning points shrink inward, while the
other two stretch out as shown in Fig. 2(c). The integral can
be simplified in the limit of strong damping, ν1 
 1, by using
the Taylor expansion,

Im
∫ ∞

−∞

√
1

4

(
K2

1 − iν1
)2 + G1dK1

≈ Im
∫ ∞

−∞

1

2

(
K2

1 − iν1
)
dK1 + Im

∫ ∞

−∞

G1

K2
1 − iν1

dK1.

The first term is connected with damping mitigation, while the
second term represents a type of path integral in the k-space [a
general form of this path integral formula is given by Eq. (A3)

in Appendix]. We evaluate this term

Im
∫ ∞

−∞

G1

K2
1 − iν1

dK1 =
∫ ∞

−∞

G1ν1

K4
1 + ν2

1

dK1 = πG1√
2ν1

.

This result is actually the same as the gain derived by Michel
et al. from a path integral method [3], but now generalized to
include damping of the scattered light wave,

G = πG1√
2ν1

= GRos(0)
ksrc√

νsωs + νpωb
. (27)

The above is exactly Eq. (1) when νs = 0. Equation (2) of
Michel et al. [3] is also attainable under some conditions (see
Appendix). A proof of the equivalence between the k-space
theory and this path integral method is also presented in Ap-
pendix, which is a new result as no proof was given by Michel
et al. [3].

IV. THE k-SPACE EIGENVALUES OF SRSS AND THE
CONSEQUENCES FOR GAIN MODIFICATION

When g1 is included in Eq. (19) for the Schrödinger
equation with a quartic potential, the physical results change
qualitatively. Figure 2(d) shows the Stokes diagram for a
specific value of g1. Two turning points are very close to the
real axis, and an anti-Stokes line (along which the amplitude
|W | is constant, i.e., a purely oscillatory solution) connects
them. This makes the system look like a quantum harmonic
oscillator where an eigenvalue inherently emerges. Moreover,
since the turning points are near the contour of integration, the
WKB approximation is no longer valid, and the gain must be
calculated numerically.

Therefore, the physics of side scattering is essentially an
eigenvalue problem, even when one is dealing with the con-
vective regime. The quantity g1 acts as an eigenvalue that
determines the eigenstate for side scatter. As is well known,
if g1 is an undetermined quantity in frequency, the solution of
the Schrödinger equation with vanishing boundary condition
requires a complex eigenvalue. When Im[g1] > 0, an absolute
instability emerges [7,17]. But here, g1 is an eigenvalue in
wave number, and not temporal frequency. This eigenvalue
will affect the convective growth of SRSS.

Similar to what has been done in Rosenbluth’s seminal pa-
per [20], the eigenvalue in wave number is derived as follows:
Assume G1 is large enough so that we neglect the effect of iK1

in the integral. The four complex turning points of the quartic
potential are Kt =

√
±2i

√
G1 + iν1 − g1. We assume

g1 = −2i
√

G1(1 − δ) + iν1, (28)

where δ 	 1, such that turning points close to the real axis of
K1 exist. Then the quartic potential reduces to

F (K1) ≈ 1
4

(
K2

1 + 2iδ
√

G1
)(

K2
1 − 4i

√
G1

)
. (29)

For an eigenvalue problem, the eigenvalue should
satisfy the Bohr-Sommerfeld quantization condition,∫ Kt3

Kt1

√
F (K1)dK1 = (n + 1

2 )π , where n = 0, 1, 2, . . . .
Substituting Eq. (29) into the quantization condition and
noting that K2

1 	 4i
√

G1, the integral on the left-hand side is
readily obtained,

∫ Kt3

Kt1

√
F (K1)dK1 = √−iπG3/4

1 δ. Then we

025203-5



C. Z. XIAO, Q. WANG, AND J. F. MYATT PHYSICAL REVIEW E 107, 025203 (2023)

have

δ =
(

n + 1

2

)
G−3/4

1 eiπ/4. (30)

The eigenvalue in wave number is thus obtained,

gn = −
√

2
(
n + 1

2

)
G1/4

1

+ 2i
√

G1

(
n + 1

2√
2G3/4

1

− 1

)
+ iν1. (31)

The subscript n means the nth eigenvalue of g1. This is a nor-
malized eigenvalue, expressed by a function of 	ky. It can also
be transformed into an eigenvalue in frequency if we express
the frequency in Eq. (8) as ωs → ωs + 	ω, ωb → ωb − 	ω,
and neglect 	ky. The equivalency shows that −2ω0	ω/c2 =
2ky	ky. After normalization, the growth rate, defined by γ =
Im[	ω], is γ = −Im[gn]c2/2ω0l2

s , which is consistent with
that derived by Afeyan and Williams [7] (except for a small
correction). It shows that Im[gn] = 0 corresponds to the abso-
lute threshold of SRSS.

To understand how the wave-number deviation affects the
convective gain of SRSS, we numerically solve the coupling
equations in k-space [Eq. (7)] and use an outgoing wave
boundary condition, âs(kout) = 1 and â∗

p(kout) = 0, where kout

is the x-component of the scattered wave number at vacuum.
As shown in Fig. 1(a), the integration along the real k axis,
inbound from the vacuum to the resonant point and back to
the vacuum, gives us the required metric in order to calculate
the convective gain, G = ln(|âs(kout)|/|âs(kin)|) [17].

Figure 3(a) shows the typical solutions of |âs| in k-space.
Interaction occurs only in the resonant region k ∼ 0 (damping
of scattered light is ignored for simplicity). The black curve
represents the solution of backward scattering, and the red
curve shows the side scattering with a real and negative wave-
number deviation. The localized oscillatory structure of side
scattering is actually the eigenstate structure, and the number
of periods indicates the order of the eigenstate. As we change
g1 continuously (g1 must be a real number because of its
physical meaning), the period is changed accordingly, leading
to a dramatic bouncing of the output amplitude level, however
there are no oscillations for the backward scattering as g0

changes.
With the numerical convective gain is defined by G =

ln(|âs(kout)|/|âs(kin )|), we plot the dependence of gain on the
wave-number deviation in Fig. 3(b). As shown, the gain for
backward scattering is almost independent of 	ky (or g0),
which means backward scattering is a stable scattering. How-
ever, the gain for side scattering oscillates dramatically due to
the eigenvalue effect. This illustrates how the wave-number
deviation can affect the convective gain of SRSS, and it is
undoubtedly an unstable scattering.

Since the real-space behavior is a summation over all
modes in k space, the one with the maximum gain will also
dominate in the real space. We observe that the maximum
gain of SRSS is located on the lowest order eigenmode, and
not the perfect resonant mode (	ky = 0), and the real part
of the eigenvalue determines the wave-number deviation from
the perfect resonance,

	ky = 1

2ky

(
ksrx + 3v2

e

c2
kbrx

)2

− ω3/2
pr

2kyk1/2
br a1/2

0 c3/2L
. (32)

FIG. 3. (a) Typical numerical solutions of the k-space coupling
equation [Eq. (7)] for back scattering (black curve) and side scatter-
ing (red curve). (b) Convective gain as a function of wave-number
deviation 	ky for back scattering (black curve) and side scattering
(red curve). The gain is evaluated by G = ln(|âs(kout )|/|âs(kin )|).

For the numerical case shown in Fig. 3(b), we find that with
ksrx = 0 the real deviated wave number is 	ky = −7.9 ×
10−4ω0/c, which is close to our theoretical prediction, 	ky =
−9.4 × 10−4ω0/c. We can also expect a perfect match (	ky =
0) as long as the longitudinal wave number can compensate
for the deviation,

ksrx = −3v2
e

c2
kbrx + ω3/4

pr

k1/4
br a1/4

0 c3/4L1/2
. (33)

We note that in a recent paper, Short [17] has also observed
the phenomenon of gain modification, but he did not give an
explanation for this phenomenon—as we now do here. The
inherent shift of the phase matching condition is innate in an
eigenvalue problem such as SRSS and it can affect the gain
dramatically. However, no analytic formula can predict the
maximum gain modified by the eigenvalue, hence it must be
calculated numerically.

V. NUMERICAL VERIFICATION: COMPARISONS
BETWEEN NUMERICAL AND THEORETICAL GAINS

In this section, we compare all the formulas that have
been proposed with numerical solutions to the k-space equa-
tions for side scattering. In doing so, we determine which
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FIG. 4. Gain comparison without damping. Numerical parame-
ters are λ0 = 0.351 µm, L = 500 µm, θ0 = 50◦, ner = 0.175nc, and
Te = 0 keV. The shaded area is dominated by absolute instabil-
ity (positive eigenvalue in frequency), and convective gains are no
longer valid here.

formulas are better able to predict the severity of SRSS, and
which are of practical utility (e.g., for implementation in ICF
ray-tracing codes, for example).

First, let us assume that damping is negligible, i.e., νs =
0 and νp = 0. Therefore, the formulas from the path integral
method [Eqs. (1), (2), or (27)] are not appropriate. Only the
formula derived by Mostrom [Eq. (3)] and by us [Eq. (26)] by
the WKB method are valid. Recall that the two only differ by
the coefficient.

Figure 4 shows the gains for the case of (backward) side
scatter for an obliquely incident pump [see Fig. 1(c)] as a
function of laser intensity. (Note that “backward” here refers
to the projection of the side scattered light wave vector
onto that of the obliquely incident pump.) The numerical
parameters are λ0 = 0.351 µm, L = 500 µm, θ0 = 50◦, ner =
0.175nc, and Te = 0 keV. The solid lines are numerical results
where the gain without wave-number deviation is shown in
black and the maximum gain of the lowest eigenstate is shown
in red. As seen in Fig. 3, when g1 approaches the eigenvalue,
the gain increases dramatically. This explains the gap between
two solid curves. When the imaginary part of the eigenvalue
vanishes [Eq. (31)] as we increase the intensity, g1 exactly
equals the eigenvalue, which as expected would lead to a
vanishing âs(kin), or infinite gain. Therefore, a sharp peak
emerges, in the plots, for intensities beyond which absolute
instability is present and convective gain ceases to have any
physical meaning. Mathematically, for intensities beyond the
threshold intensity, g1 becomes far from the eigenvalue and
the gain decreases.

Notice that if we consider the eigenvalues in both wave
number and frequency together, we find that below the ab-
solute threshold, the eigenvalue in frequency has a negative
imaginary part, leading to an exponentially decaying temporal
solution, but the eigenvalue in wave number gives rise to
convective growth. Therefore, below the absolute threshold,
it is dominated by convective growth. Above the absolute
threshold, convective growth weakens and positive temporal
growth dominates. The instability here becomes absolutely

FIG. 5. Gain comparison with small damping. Numerical param-
eters are λ0 = 0.351 µm, L = 500 µm, θ0 = 50◦, ner = 0.17nc, and
Te = 1 keV. The corresponding dampings are νei = 2.2 × 10−4ω0

and νLD = 1.8 × 10−11ω0. The shaded area is dominated by absolute
instability (positive eigenvalue in frequency), and convective gains
are no longer valid here.

unstable in the shaded region shown in Fig. 4. Therefore,
this peak provides a way to calculate the absolute threshold
[17,22].

A comparison between the curves shows that the gain ob-
tained from the WKB method (blue-dashed line) is closer to
G	ky=0 than that from Mostrom and Kaufman (green dash-
dotted line), but none of the formulas are able to match
Geigen. One may think Mostrom’s gain seems good at the
very beginning of Geigen. However, that is not true because
the scalings are quite different: If we scale Eq. (26) or (3)
slightly (the coefficient changes from 0.618 to 0.45), it can be
made to perfectly match G	k=0, as shown in the brown-dotted
line. This means that Eq. (3) is more likely to predict the
noneigenmode gain, but it is not as good as our WKB result.
This can also be checked in the following examples. The small
discrepancy between Eq. (26) and G	ky=0 is just due to the
finite integration limit.

Next, we add a small damping to the wave coupling system
so that the gains from the path integral method can be com-
pared. The parameters discussed here are more realistic, λ0 =
0.351 µm, L = 500 µm, θ0 = 50◦, ner = 0.17nc, and Te =
1 keV (which corresponds to a scattered light wavelength λs =
609 µm). The damping rates here are not large—collisional
damping is νei = 2.2 × 10−4ω0 and Landau damping is νLD =
1.8 × 10−11ω0.

Figure 5 shows the gain comparison with small damping.
Again, a sharp peak exists for Geigen, determining the absolute
threshold, and Eq. (26) is close to G	ky=0. The two path
integral formulas perform differently. As shown by the gray-
dotted line, Eq. (2), which includes thermal effects, does not
predict the numerical gains well, even if we further increase
the electron temperature. However, the damping-dominated
gain in the dotted-purple line derived from the path integral
[Eq. (1)] or the k-space integral [Eq. (27)] is surprisingly
good at predicting Geigen at the beginning, although the gap
between the predictions of Eq. (1) and Geigen increases quite
dramatically as the absolute threshold is approached. Some
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FIG. 6. Gain comparison with strong damping. Numerical pa-
rameters are λ0 = 0.351 µm, L = 500 µm, θ0 = 50◦, ner = 0.14nc,
and Te = 5 keV. The corresponding damping rates are νei = 2.1 ×
10−5ω0 and νLD = 0.017ω0.

extended discussions on the applicability conditions of these
two formulas are presented in Appendix.

If we further increase the wave damping rates by increas-
ing the electron temperature to Te = 5 keV and the resonant
density to ner = 0.14nc (λs = 620 µm), the collisional and
Landau damping are, respectively, νei = 2.1 × 10−5ω0 and
νLD = 0.017ω0. The gain comparison shown in Fig. 6 in-
dicates that only Eq. (1) or (27) can accurately predict the
numerical gains in this strong damping regime. This is be-
cause the size of the resonant region increases with increased
damping. When the size of the resonant region increases,
the effect of the eigenvalue becomes less and less important.
When the eigenmode is unimportant, the WKB approximation
is good enough to accurately predict the gain. The imaginary
part of the eigenvalue g1 is negligible compared with the
damping ν1, so the black curve and red curve are close to each
other. For this reason, the intensity scaling law becomes linear,
G ∝ I , as with the case of backward scattering. There is also
an absolute threshold in this case, but the threshold intensity
is as high as 1015 W/cm2, and the gain above that threshold
becomes chaotic (see Ref. [22]), which is not shown here. To
summarize, in this strong damping regime, the path integral
method gives reasonably accurate results.

VI. CONCLUSIONS

In this paper, we have developed a k-space theory of SRS.
The linearized SRS equations in k-space can be described by
two types of Schrödinger equation. The Schrödinger equa-
tion with a quadratic potential characterizes backward SRS,
while the Schrödinger equation with a quartic potential de-
scribes side scattering, where the scattered light is nearly
perpendicular to the local density gradient. We have also
built connections of k-space theory with the existing x-space
theory and a simpler path integral method (with details in the
Appendixes). A similar k-space path integral formula is de-
rived in Eq. (A3).

The k-space theory is used to calculate the convective
gains of SRSS in order to clarify some misunderstandings on

the gain of SRSS. The WKB solutions of Schrödinger equa-
tions reproduce the Rosenbluth gain for backward or oblique
scattering and give us better gain predictions for SRSS in two
limits: Eq. (26) for the weak damping limit, and Eq. (27) for
the strong damping limit. However, SRSS is essentially an
eigenvalue problem. The eigenvalue can dramatically modify
the gain, which cannot be correctly predicted by the WKB
method. We term this an unstable scattering problem, com-
pared with stable scattering such as backward scattering. We
find that the maximum gain occurs not at the perfect matching
condition but with a small wave-number deviation correlated
with the real part of the eigenvalue of SRSS.

Numerical solutions of k-space coupling equations consol-
idate these perspectives and show us how to correctly use the
different gain formulas and to assess the severity of SRSS
for given interaction conditions. When damping is negligi-
ble, Eq. (26) can better predict the gain at perfect resonance
(	ky = 0). However, the maximum gain should be evaluated
numerically due to modifications caused by the eigenvalue.
As damping starts to dominate the regime, the path integral
formula, Eq. (27) or Eq. (1), becomes more and more accurate.
The eigenvalue effect fades away gradually, leaving the sys-
tem more likely to behave as backward scattering—which can
be considered as a smooth transition to what we are familiar
with.
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APPENDIX: CONNECTIONS BETWEEN THE k-SPACE
THEORY AND THE PATH INTEGRAL METHOD

In this Appendix, we show that we can obtain a gain
formula, involving a k-space path integral, that reproduces
Eqs. (1) and (2) as previously derived by Michel et al. [3]
from the k-space theory.

The path integral method is used to obtain a convective gain
by integrating the coupling coefficient along the trajectory of
the scattered light ray. The integral is derived from x-space
steady-state intensity coupling equations, under the assump-
tion of strong damping. The method is very appealing as it can
be easily combined with ray-tracing codes to quickly assess
the severity of SRS instability due to its simplicity [23]. The
path integral formula often has a form of [3]

G =
∫

S

k2
ba2

0ω
2
pr

8ks

2νpωb

D(s)2 + 4ν2
pω

2
b

ds, (A1)

where G is modified to amplitude gain, and D(s) is the real
part of the Langmuir wave dispersion function.
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This type of integral is also attainable from the k-space
theory. Without loss of generality, we use the dimensional
form of Eqs. (10)–(12) to derive the path integral formula
in k-space. Since strong damping is assumed, we can Taylor
expand the phase integral:

G = Im

[
L

2ω2
pr

∫ k √
(Dl − Dp)2 + k2

brv
2
0ω

2
prdk′

]

≈ Im

[
L

2ω2
pr

∫ k

(Dl − Dp)

(
1 + k2

brv
2
0ω

2
pr

2(Dl − Dp)2

)
dk′

]

= Im

[
L

2ω2
pr

(Dl − Dp)k

]
+ Im

[
L

4ω2
pr

∫ k k2
brv

2
0ω

2
pr

Dl − Dp
dk′

]
.

(A2)

The approximation is valid when k2
brv

2
0ω

2
pr 	 (Dl − Dp)2.

The first term relates to the mitigation effect (in k-space) of
wave damping, and the second term is what we are seeking,

Gpath = Im

[
L

4ω2
pr

∫ k k2
brv

2
0ω

2
pr

Dl − Dp
dk′

]

= k2
brv

2
0L

4

∫ k 2(νpωb + νsωs)

(Re[Dl − Dp])2 + 4(νpωb + νsωs)2
dk′,

(A3)

which has the same form as Eq. (A1).

It is easy to check this result. When backward scatter-
ing is considered, we have Dl ≈ 2c2ksrk − 2iνsωs and Dp ≈
−6v2

e kbrk + 2iνpωb. Substituting these into Eq. (A3), we ob-
viously obtain the Rosenbluth gain, Gpath = GRos, if k is
integrated from −∞ to ∞.

It is a little more complicated when we are dealing with
side scattering. Without wave-number deviation, the disper-
sion relations are Dl ≈ c2k2 − 2iνsωs and Dp ≈ −6v2

e k0xk +
2iνpωb. Substituting these into Eq. (A3), we have

Gpath = k2
brv

2
0L

4

∫ k 2(νpωb + νsωs)(
c2k2 + 6v2

e k0xk
)2 + 4(νpωb + νsωs)2

dk′.

(A4)
The magnitudes of c2k2 and 6v2

e k0xk do affect the gain. For
two limiting cases, we can obtain simple formulas. First, if
c2k2 	 6v2

e k0xk, i.e., in the high-temperature regime, Eq. (A4)
reduces to

Gpath = GRos
ksc2

3v2
e k0x

, (A5)

which is exactly Eq. (2). In the other limit, c2k2 
 6v2
e k0xk,

i.e., in the low-temperature regime, Eq. (A4) reduces to

Gpath = GRos
ksrc√

νpωb + νsωs
, (A6)

which is equivalent to Eq. (1).

[1] M. J. Rosenberg, A. A. Solodov, J. F. Myatt, W. Seka, P.
Michel, M. Hohenberger, R. W. Short, R. Epstein, S. P.
Regan, E. M. Campbell et al., Phys. Rev. Lett. 120, 055001
(2018).

[2] M. J. Rosenberg, A. A. Solodov, W. Seka, R. K. Follett,
J. F. Myatt, A. V. Maximov, C. Ren, S. Cao, P. Michel, M.
Hohenberger et al., Phys. Plasmas 27, 042705 (2020).

[3] P. Michel, M. J. Rosenberg, W. Seka, A. A. Solodov, R. W.
Short, T. Chapman, C. Goyon, N. Lemos, M. Hohenberger, J. D.
Moody, S. P. Regan, and J. F. Myatt, Phys. Rev. E 99, 033203
(2019).

[4] G. Cristoforetti, L. Antonelli, D. Mancelli, S. Atzeni, F. Baffigi,
F. Barbato, D. Batani, G. Boutoux, F. D’Amato, J. Dostal et al.,
High Power Laser Sci. Eng. 7, e51 (2019).

[5] C. Z. Xiao, H. B. Zhuo, Y. Yin, Z. J. Liu, C. Y. Zheng, Y.
Zhao, and X. T. He, Plasma Phys. Controlled Fusion 60, 025020
(2018).

[6] C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids 17,
1211 (1974).

[7] B. B. Afeyan and E. A. Williams, Phys. Fluids 28, 3397 (1985).
[8] R. P. Drake, R. E. Turner, B. F. Lasinski, K. G. Estabrook, E. M.

Campbell, C. L. Wang, D. W. Phillion, E. A. Williams, and
W. L. Kruer, Phys. Rev. Lett. 53, 1739 (1984).

[9] R. P. Drake, R. E. Turner, B. F. Lasinski, E. A. Williams, D. W.
Phillion, K. G. Estabrook, W. L. Kruer, E. M. Campbell, K. R.
Manes, J. S. Hildum, and T. W. Johnston, Phys. Fluids 31, 3130
(1988).

[10] R. P. Drake, Phys. Fluids B 1, 1082 (1989).

[11] X. Zhao, X. H. Yuan, J. Zheng, Y. F. Dong, K. Glize, Y. H.
Zhang, Z. Zhang, and J. Zhang, Rev. Sci. Instrum. 93, 053505
(2022).

[12] R. P. Drake, E. A. Williams, P. E. Young, K. Estabrook, W. L.
Kruer, D. S. Montgomery, H. A. Baldis, and T. W. Johnston,
Phys. Fluids B 1, 2217 (1989).

[13] S. Depierreux, C. Neuville, C. Baccou, V. Tassin, M. Casanova,
P.-E. Masson-Laborde, N. Borisenko, A. Orekhov, A. Colaitis,
A. Debayle et al., Phys. Rev. Lett. 117, 235002 (2016).

[14] M. A. Mostrom and A. N. Kaufman, Phys. Rev. Lett. 42, 644
(1979).

[15] M. A. Mostrom, D. R. Nicholson, and A. N. Kaufman,
Lawrence Berkeley Laboratory Report No. 2082, 1978 (unpub-
lished).

[16] J. Heading, An Introduction to Phase Integral Methods
(Methuen, London, 1962).

[17] R. W. Short, Phys. Plasmas 27, 042703 (2020).
[18] C. S. Liu and M. N. Rosenbluth, Phys. Fluids 19, 967 (1976).
[19] A. Simon, R. W. Short, E. A. Williams, and T. Dewandre, Phys.

Fluids 26, 3107 (1983).
[20] M. N. Rosenbluth, Phys. Rev. Lett. 29, 565 (1972).
[21] M. N. Rosenbluth, R. B. White, and C. S. Liu, Phys. Rev. Lett.

31, 1190 (1973).
[22] C. Z. Xiao, Y. G. Chen, J. F. Myatt, Q. Wang, Y. Chen, Z. J. Liu,

C. Y. Zheng, and X. T. He, Phys. Rev. E 104, 065203 (2021).
[23] J. F. Myatt, J. G. Shaw, R. K. Follett, D. H. Edgell, D. H.

Froula, J. P. Palastro, and V. N. Goncharov, J. Comput. Phys.
399, 108916 (2019).

025203-9

https://doi.org/10.1103/PhysRevLett.120.055001
https://doi.org/10.1063/1.5139226
https://doi.org/10.1103/PhysRevE.99.033203
https://doi.org/10.1017/hpl.2019.37
https://doi.org/10.1088/1361-6587/aa9b41
https://doi.org/10.1063/1.1694867
https://doi.org/10.1063/1.865340
https://doi.org/10.1103/PhysRevLett.53.1739
https://doi.org/10.1063/1.866970
https://doi.org/10.1063/1.858978
https://doi.org/10.1063/5.0090841
https://doi.org/10.1063/1.859037
https://doi.org/10.1103/PhysRevLett.117.235002
https://doi.org/10.1103/PhysRevLett.42.644
https://doi.org/10.1063/1.5131158
https://doi.org/10.1063/1.861591
https://doi.org/10.1063/1.864037
https://doi.org/10.1103/PhysRevLett.29.565
https://doi.org/10.1103/PhysRevLett.31.1190
https://doi.org/10.1103/PhysRevE.104.065203
https://doi.org/10.1016/j.jcp.2019.108916

