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We present a rigorous derivation of the point vortex model starting from the two-dimensional nonlinear
Schrödinger equation, from the Hamiltonian perspective, in the limit of well-separated, subsonic vortices on the
background of a spatially infinite strong condensate. As a corollary, we calculate to high accuracy the self-energy
of an isolated elementary Pitaevskii vortex.
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I. INTRODUCTION

In two-dimensional (2D) cold-atom systems such as super-
fluids and Bose gases, as well as in nonlinear optical systems,
the dynamics can often be modeled by a field ψ (x, t ) :
R2 × [0,∞) �→ C (physical examples of which we specify
in Sec. I A below) evolving via the 2D nonlinear Schrödinger
(NLS) equation [1],

i
∂ψ

∂t
+ ∇2ψ − |ψ |2ψ + ψ = 0, (1)

where ∇2 = ∂2
x + ∂2

y . In an infinite domain, the stationary
ground-state solution of Eq. (1) has constant density ρ = |ψ |2
everywhere (for convenience we have normalized the density
to ρ0 = 1, see Sec. I A). This state is known as the uniform
condensate solution.

An important dynamical regime manifested by the 2D NLS
equation is that of a strong condensate punctuated by N well-
separated, subsonic (so compressibility effects are neglected),
coherent vortices—points where the dynamical field ψ (x, t )
vanishes and the vorticity is singular, see Sec. III below. In this
case, one can significantly reduce the complexity by tracking
only the self-consistent motion of each vortex due to the
flow induced by all the other vortices. Given the locations of
the vortices {x j (t )}, with j = 1, . . . N , the kth vortex moves
according to

dxk (t )

dt
≡ ẋk (t ) =

N∑
j=1
j �=k

κ j

2π

ẑ × (xk − x j )

|xk − x j |2 , (2)

where ẑ points out of the plane and κ j = 4π (in this paper,
we reserve the overdot notation for the total time derivative of
a vortex position only). This is the point vortex (PV) model,
which reduces the modeling problem from the partial differen-
tial equation for the full field (1) to N two-component ordinary
differential equations (2), where N is the number of vortices.

The PV model has enjoyed widespread use, particularly
in the cold-atom community [2–7], but it is often motivated

by the fact that the NLS equation can be recast into hydro-
dynamical form (see Sec. II A), and then appealing to the
theorem that for incompressible inviscid flows, vorticity is
transported along Lagrangian paths [8]. However, this vor-
ticity transport theorem is only valid for well-behaved fields,
whereas for the NLS equation the vorticity is singular at the
vortex positions. The hydrodynamical description therefore
fails precisely on the points where hydrodynamic intuition is
invoked. It is therefore prudent to examine how, and under
what conditions, the PV model can be derived rigorously from
the NLS equation.

One approach to such a derivation, taken in Ref. [9], is
to specify topological boundary conditions around the vor-
tices, and solve for the motion of these boundaries in a way
that is self-consistent with the dynamics of the rest of the
field. In this paper, we take an alternative approach. Here,
we present a derivation of the PV equation of motion from
the Hamiltonian formulation of the NLS equation. In doing
so, we distinguish between the parts of the Hamiltonian that
lead to the PV equation of motion, and the parts that lead to
the self-interaction energy of an NLS vortex. We numerically
calculate the self-energy per vortex for the first time, to our
knowledge.

This paper can be considered a companion piece
to Ref. [10], in which the Biot-Savart model for line
vortices was derived directly from the 3D NLS equa-
tion. The key difference between the present 2D case
and the 3D case is that the Biot-Savart integral in the lat-
ter has a singularity which is regularized by means of a
small-scale cutoff, whose value is determined accurately in
Ref. [10]. However, in the 2D problem the singularity is
in fact integrable and requires no cutoff. The derivation we
present here is thus simpler than, and independent of, the
3D case.

Before commencing the derivation, we briefly discuss two
important areas of physics where Eq. (1) is the governing
equation and where the PV model is frequently used as a
reduced model of the dynamics.
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A. The 2D NLS equation in physical contexts

The 2D NLS equation is frequently used in low-
temperature physics to model superfluid dynamics and
turbulence in Bose-Einstein condensates of alkali gases in
highly anisotropic 2D traps and superfluid helium films [3,
11–15]. In this context, the NLS equation is more often re-
ferred to as the Gross-Pitaevskii equation [16,17], and appears
with physical units, as

ih̄
∂ψ

∂t
+ h̄2

2m
∇2ψ − g|ψ |2ψ = 0. (3)

In Eq. (3), ψ represents the one-particle wave function of
the boson comprising the condensate or superfluid, h̄ is the
reduced Plank’s constant, m is the boson mass, and g charac-
terizes the strength of interatomic s-wave interactions. In the
2D case that we are concerned with here, Eq. (3) is an effective
equation in which the trapping potential in the z direction
confines the dynamics to the x-y plane. We treat this plane
as being infinite, which is far from experimental reality, but is
convenient for the theoretical derivation we present here.

Equation (3) can be written in terms of nondimensionalised
variables, indicated by primes, by writing ψ = √

ρ0ψ
′, where

ρ0 is the far-field number density of bosons in physical units,
t = (h̄/gρ0)t ′, and x = ξx′. Here ξ = h̄/

√
2mgρ0 is the heal-

ing length in physical units, and is the length scale over which
vortices recover to the background density ρ0; see Sec. III.
Finally, we move to a frame corotating with the condensate in
the complex plane, via ψ ′(x′, t ′) = ψ ′′(x′, t ′) exp(−it ′), i.e.,
the chemical potential μ = gρ0 has been normalized to 1.
Dropping all primes immediately, we recover the nondimen-
sionalised NLS Eq. (1).

Another principal application of Eq. (1) is in nonlinear op-
tics. Here, the equation is the leading-order model for paraxial
propagation of a linearly polarized, continuous wave laser
beam through a homogeneous Kerr medium [18–21]. In this
context, the equation appears with physical units as

2ik0
∂ψ

∂z
+ ∇2

⊥ψ + 4k2
0

n2

n0
|ψ |2ψ = 0, (4)

and ψ represents the complex envelope of the input electric
field. The distance along the propagation axis of the beam, z,
plays the role of a timelike variable, leaving the dynamics to
take place in the 2D x-y plane, as reflected by the perp symbol
in the Laplacian. In Eq. (4), k0 is the wave number of the laser
in the medium, which has refractive index n0, and n2 is the
Kerr coefficient.

We make the transformation to nondimensional (primed)
variables via ψ = √

ρ0ψ
′, where ρ0 is the far-field intensity in

physical units, z = (n0/2k0n2ρ0)z′, and x = ξx′ with physical

healing length ξ =
√

n0/4k2
0n2ρ0. Transforming to the frame

corotating with the condensate as above, and dropping the
primes, we again recover Eq. (1).

For the rest of this paper, we work in nondimensional units.
In particular, the fiducial density ρ0 and length ξ both become
1 in these units.

II. HAMILTONIAN AND HYDRODYNAMIC
DESCRIPTIONS

The NLS equation (1) can be written in Hamiltonian
form [22]

i
∂ψ

∂t
= δH

δψ∗ , (5)

where the Hamiltonian functional

H =
∫ [

|∇ψ |2 + 1

2
(|ψ |2 − 1)2

]
dx (6)

is equal to the energy of the system, and is conserved by
evolution under Eq. (1), or equivalently Eq. (5). We take the
spatial domain to be R2. The normalization of Sec. I A gives
the far-field conditions |ψ |2 → 1 and ∇ψ → 0 as |x| → ∞.
The latter allows us to integrate by parts and neglect the
boundary term at infinity.

A. Hydrodynamic description and the Madelung transform

We can change the dynamical variable from the complex
field ψ (x, t ) to the real fields ρ(x, t ) and φ(x, t ) via the
Madelung transform ψ = √

ρ exp(iφ) [23,24]. Substituting
this into Eq. (1), and separating the real and imaginary parts,
gives the equations

∂ρ

∂t
+ ∇ · (ρu) = 0, (7a)

∂u
∂t

+ (u · ∇)u = −∇ρ2

ρ
+ ∇

(
2
∇2√ρ√

ρ

)
. (7b)

We identify these as the mass and momentum conservation
equations of an inviscid fluid with density ρ(x, t ) and velocity

u(x, t ) = 2∇φ(x, t ). (8)

Thus, we see that when ρ and φ can be defined, the fluid
description (7) is equivalent to the original NLS equation (1).
This fluid description has two contributions to the pressure on
the right-hand side (RHS) of Eq. (7b). The first is due to a
polytropic equation of state p = ρ2. The second is due to the
so-called quantum pressure, and represents the only difference
between the fluid description of an NLS system and a real
physical fluid.

Note that ∇ψ = [i(∇φ)
√

ρ + ∇√
ρ] exp(iφ). Therefore,

the condition ∇ψ → 0 as |x| → ∞ implies that in the far
field both |u| → 0 (by Eq. (8), cf. the slow-phase-variation
condition considered in Ref. [9]), and ρ → const, which we
set to 1.

III. QUANTIZED VORTICES
AND THE PITAEVSKII PROFILE

Even though the fluid velocity u obtained from the
Madelung transform is manifestly irrotational, vortices may
still appear in the system. These are the points {x j} where
the density ρ, and hence ψ , vanish. Consequently, the phase
φ, and hence the velocity u, is undefined at these points.
The Madelung transformation cannot be made there. How-
ever, it is precisely at these points where we wish to apply
hydrodynamical intuition. It is this paradox that motivates the
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present detailed derivation of the PV model from the 2D NLS
equation.

To see that the phase defect points represent vortices, con-
sider any closed contour C that embraces such a defect. On
traversing C, the phase φ must change by a multiple of 2π to
keep ψ single valued. One can then define the fluid circulation
around C,

κ =
∮

C
u · dl =

∮
C

2∇φ · dl = 2[φ]C = ±4πn, (9)

where n is a positive integer. By contrast, κ = 0 on contours
that embrace no phase defects. We thus conclude that the
phase defects are vortices, and note that the circulation of each
such vortex is quantized in integer multiples of 4π . However,
vortices with n � 2 are unstable and decay into elementary
vortices with n = 1 on any general smooth change of the field
φ (see Ref. [25] for the n = 2 case, and references therein).
Therefore, we only consider elementary point vortices with
κ = ±4π for the remainder of this paper.

Considering an isolated elementary vortex at x = 0 and
taking a circular contour with radius r = |x|, Eq. (9) gives the
vortex velocity profile

u(x) = 2

r
θ̂(x), (10)

where θ̂(x) is an azimuthal unit vector.
The density profile of an isolated NLS vortex was found by

Pitaevskii [17] (although Ginzburg and Pitaevskii had earlier
found the same vortex solution when examining superfluid
helium in the framework of Landau’s theory of phase tran-
sitions [26]). Setting φ(r, θ ) = θ for an elementary vortex, we
assume a time-independent solution with a radially symmetric
density profile: ψv (x) = R(r) exp(iθ ). Substituting this into
Eq. (1) gives the equation

d2R

dr2
+ 1

r

dR

dr
− 1

r2
R + (1 − R2)R = 0, (11)

with the boundary conditions R(0) = 0 and R(r) → 1 as r →
∞. We refer to R(r) as the Pitaevskii profile, and the associ-
ated complex field ψv (x) as the Pitaevskii vortex solution.

The asymptotics of R(r) = √
ρ(r) can be found by balanc-

ing dominant terms in Eq. (11). Deep in the vortex core, we
balance the second and third terms and obtain a linear profile
which we write as

R(r) →
√

2αr as r → 0,

with α = const. Far from the vortex, we balance the first
and fourth terms of Eq. (11). Noting that |1 − R(r)| � 1,
we obtain exponential convergence to the asymptotic value√

ρ0 = 1. More generally, we solve Eq. (11) via the highly ac-
curate numerical method of Ref. [10]. This method improves
on other less accurate methods of calculating the Pitaevskii
profile, such as the Padé approximation method [27] (see
Ref. [10] for relevant comparisons).

We plot the vortex profile R(r) in Fig. 1. The characteristic
radius over which the vortex heals to ρ0 is the healing length
ξ ∼ 1/

√
ρ0, found by balancing the nonlinear and linear terms

in Eq. (1).
The velocity profile (10) and the density profile obtained

from Eq. (11) are fixed for all isolated elementary vortices in

FIG. 1. Profiles of R(r) = √
ρ(r) (solid blue) and the pseudovor-

ticity field ω(r) (solid orange) of an isolated Pitaevskii vortex. The
horizontal grey dashed line represents the uniform condensate.

an NLS system (as opposed the arbitrary profiles of vortices in
classical fluids). For an ensemble of well-separated vortices,
these profiles will become asymptotically correct as r → 0.

IV. ASSUMPTIONS OF THIS DERIVATION

As well as the assumption of a spatially constant conden-
sate in the far field, in this paper we restrict ourselves to the
case where we have N elementary vortices located at positions
x j (t ), 1 � j � N , where N is finite. We take the number of
vortices with positive and negative circulation to be equal,
which we term a neutral ensemble. This is to ensure that in
the far field, the overall anticlockwise rotation induced by
the positive vortices exactly balances the overall clockwise
rotation induced by the negative vortices. In other words,
the system has no net angular momentum, as required by the
condition |u| → 0 at infinity.

We further assume that the vortices start well separated and
remain so during the dynamics, i.e., for every pair of vortices
labeled by j and m, the intervortex distance 
 jm(t ) = |x j (t ) −
xm(t )| is always much greater than the healing length ξ . In
addition, we assume the flow u(t ) to be incompressible, i.e.,
all motions of the vortices remain subsonic [ẋk (t ) � 1], and
that there are no significant acoustic excitations present in the
initial field. This assumption is there to retain consistency with
the PV model that will be the outcome of this derivation, and
which does not describe compressible dynamics.

While these assumptions might not be the most general in
relation to physically realizable scenarios, we believe they are
the minimal set of assumptions that enable us to derive the PV
model from the NLS equation with the degree of rigor that we
seek to employ.

V. TRANSFORMING THE HAMILTONIAN

After the Madelung transformation, the Hamiltonian (6)
becomes H = HK + H0, where

HK = 1

2

∫
ρ|u|2

2
dx (12)

is the kinetic energy of the fluid that is described by Eq. (7).
The spatial regions that contribute to HK are delocalized due
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to the slow ∼1/r decay of velocity with distance r from the
vortex cores. On the other hand,

H0 = 1

2

∫
[(ρ − 1)2 + 2|∇√

ρ|2] dx (13)

represents the total internal energy derived from the hydrody-
namic and quantum pressures in Eq. (7b).

Despite the singularity of the Madelung transform at the
vortex positions {x j}, the integrals in Eqs. (12) and (13) are
well-defined over all of R2, since ρ is well-defined every-
where, and zero at the vortex positions. In particular, Eq. (12)
picks up zero contribution at the vortex positions, as we show
in Sec. V 2.

1. Calculation of the internal energy per vortex

The integrand in H0 is only significant when the density
deviates from the background value of 1, so the contributions
to H0 are localized to the vortex cores. As the cores are well-
separated by assumption, we have N identical contributions
and can speak of the internal energy per vortex:

H0

N
= π

∫ ∞

0

[
(R2 − 1)2 + 2

(
dR

dr

)2]
r dr

= 4.8951725778. (14)

(This result was obtained numerically in Ref. [10].)

2. Rewriting the kinetic energy

Following Ref. [10], we wish to write HK in terms of new
flow variables that have constant density to leading order, and
that are regular at the vortex positions. We therefore introduce
a new field v(x, t ), which we term the pseudovelocity:

v =
√

ρ

2
u = ∇ × (� ẑ). (15)

We have expressed the pseudovelocity in terms of the stream
function �(x, t ) as the flow is incompressible by assumption.
The corresponding pseudovorticity field is ω = (∇ × v) · ẑ =
−∇2�, which has the formal solution

�(x, t ) = −
∫

G(|x − x′|) ω(x′, t ) dx′, (16)

where, for the infinite 2D domain, the Green’s function is
G(|x − x′|) = (2π )−1 ln(|x − x′|). We will shortly comment
on the regularity of the integral in Eq. (16) in our case.

For an isolated vortex at the origin, the profile of the v
field is

v =
√

2ρ(r)

r
θ̂,

with v = |v| → 2α as r → 0. The corresponding ω profile is

ω = 1

r

∂

∂r
(rv) → 2α

r
as r → 0. (17)

Recalling the behavior of R(r) = √
ρ(r), we conclude that the

ω(r) profile is a strong spike with characteristic length scale
ξ , decaying to zero rapidly outside the vortex core. This is
shown in Fig. 1.

In terms of the v field, the kinetic energy becomes

HK = 1

2

∫
|v(x, t )|2 dx = 1

2

∫
�(x, t ) ω(x, t ) dx, (18)

where we have used Eq. (15), and integrated by parts.
The latter step requires some care as ω is singular at the

vortex locations {x j}. Therefore, to carry out the integration
by parts, we consider the following limiting procedure. We
first consider taking the integral over the perforated domain
R2 \ ∪N

j=1P j , i.e., we remove a patch of finite area around
each vortex, with P j denoting the patch around the jth vortex.
Each patch is constructed so its boundary is a closed stream-
line of v. As it is a streamline, � is constant on the boundary.
The boundary around the jth patch, ∂P j , contributes a term to
Eq. (18) of

1

2
�

∮
∂P j

v · dl,

with the integral around ∂P j taken clockwise. Reversing the
integration direction, and using Stokes’ theorem to relate this
to an integral over the interior of P j , the jth boundary term
becomes −(�/2)

∫
P j

ω dx. Next, we take any sequence of
progressively smaller patches localized on the vortices. As
the area of each patch progressively shrinks, the bounding
streamlines become more and more circular with radius r, so
we can use Eq. (17) and write the jth boundary term as

−1

2
�

∫
P j

2α

r′ r′dr′ dθ → 0 as r → 0.

Thus, we restore the domain of integration in Eq. (18) to R2.
Using Eq. (16), the kinetic energy becomes

HK = −1

2

∫
ω(x, t ) ω(x′, t ) G(|x − x′|) dx dx′. (19)

Dividing the kinetic energy into local
and distant contributions

The next step is to separate out the contributions to HK

that are local to one vortex from those that involve spatially
distant parts of the domain. We do this by introducing an
intermediate length scale a such that ξ � a � 
 = min(
 jm),
and then writing HK = H< + H>, which we define below.

1. Self-interaction kinetic energy H<

H< contains the sum of all contributions where both inte-
gration variables x and x′ lie within distance a of the same
vortex, say, the jth, i.e., within the ball Ba(x j ), as shown in
Fig. 2(a).

Clearly, H< gives the total energy due to the self-
interaction of the N vortices. By assumption, the vortices of
our system are well separated; to leading order, we treat each
as giving an identical contribution. Therefore,

H< = − N

4π

∫
x,x′∈Ba (x j )

ω(x, t )ω(x′, t ) ln(|x − x′|) dx dx′.

(20)

Furthermore, the ξ � a assumption allows us to formally
send a → ∞ when calculating this integral.
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(a) (b) (c)

(ii)

O

xj

x

x'

xm

O

x

x'

x, x'

x', x

x

x'

O

O

a

(xj)

(xm)

(xj)

(xm)

(xj)

(xj)

xj

xm

xj

xj

No contribution
(i)

FIG. 2. Typical contributions to HK . (a) Contribution to H< when x, x′ lie within the same ball Ba(x j ) for some vortex j. [We also indicate
the scale separation ξ � a � 
 = min(
 jm ).] (b) Contribution to H> when x ∈ Ba(x j ) and x′ ∈ Ba(xm ) for different vortices j, m. (c) No
contribution when (i) one or (ii) both of x, x′ do not lie inside Ba(x j ) for any vortex j.

We change coordinates from (x, x′) to polar coordinates
(r, θ, r′, ϕ), where ϕ is the angle between x and x′. Using
Eq. (17) for the ω(r) profile and integrating over θ immedi-
ately, we obtain

H<

N
= −

∫ ∞

0

∫ ∞

0

∫ 2π

0

dR(r)

dr

dR(r′)
dr′

× ln(
√

r2 + r′2 − 2rr′ cos ϕ)dϕ dr′ dr. (21)

The ϕ integration can be done analytically as follows. We
can use cos(2π − ϕ) = cos ϕ to double the integrand while
halving the integration domain. Then, assuming first that β =
r/r′ � 1, we write

I =
∫ π

0
ln(r2 + r′2 − 2rr′ cos ϕ) dϕ

=
∫ π

0
[ln(r′2) + ln(1 − 2β cos ϕ + β2)]dϕ

= π ln(r′2) + π ln(β2)

= π ln(r2),

where in the penultimate step we have used the Leibniz
integral rule [28]. Likewise, assuming β = r′/r � 1 gives
I = π ln(r′2). Combining the two results, we obtain I =
π ln[max(r2, r′2)].

We substitute this into Eq. (21) and integrate over r and r′
numerically using the method given in Ref. [10] for dR(r)/dr,
obtaining

H<

N
= −π

∫ ∞

0

∫ ∞

0

dR(r)

dr

dR(r′)
dr′ ln[max(r2, r′2)]dr dr′

= −2.5020210587. (22)

2. Total self-energy per vortex

Using Eqs. (14) and (22), we can now write the total self-
energy per vortex:

Hself

N
= H0 + H<

N
= 2.3931515191. (23)

Note that Hself/N is positive despite H</N being negative. As
discussed in Sec. VII A 2, this energy contributes to the energy
of acoustic waves that are generated when vortices are allowed
to annihilate.

To recap, Eq. (23) gives the energy that is localized to
a vortex core, in a neutral ensemble of vortices, situated
in an infinite domain (and in accordance with the other as-
sumptions stated in Sec. IV). Other authors give different
expressions for the energy of a PV. For example, Ginzburg
and Pitaevskii [17,26] calculate the total energy (correspond-
ing to our total Hamiltonian H) of a single isolated vortex
in the center of a disk, with a large-scale cutoff associated
with the disk radius R. By contrast, here we are concerned
with the neutral N-vortex configuration in an infinite domain,
and have divided the contributions to the energy into Hself

and H>. As we shall see, it is H> that leads to the mutual
interaction between vortices, and hence the PV equation of
motion (2). Maestrini [29] carries out a calculation that is sim-
ilar to that of this section, but he discards the terms that lead
to Hself . In addition, his calculation relates to an N-vortex en-
semble that is not necessarily neutral. Any imbalance between
positive and negative vortices results in a contribution to the
energy associated with the cutoff at R, just as in Ginzburg and
Pitaevskii’s case. We discuss this contribution in Sec. VII A 1.
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3. Mutual-interaction kinetic energy H>

H> contains all cases where x, x′ do not lie within the same
ball Ba(x j ). Now recall that ω(x, t ) is sharply peaked over the
vortex cores and decays rapidly to zero outside them over a
length scale ∼ξ . If either x or x′ lie outside any vortex core,
in particular, outside any ball Ba(x j ), then the corresponding
ω will be vanishingly small and there will be practically no
contribution to H>. This is illustrated in Fig. 2(c). Therefore,
H> only picks up contributions where x and x′ lie within
distance a of different vortices, see Fig. 2(b) (if they both lie
within a of the same vortex, the contribution is to H<). We
therefore have

H> = −
N∑

j,m=1
j �=m

1

4π

∫
x∈Ba (x j ),
x′∈Ba (xm )

ω(x, t )ω(x′, t ) ln(|x − x′|) dx dx′.

(24)

Clearly, this contribution to the Hamiltonian reflects
the mutual interactions of each vortex with every
other vortex.

Given the restriction of x, x′ to different vortex neighbor-
hoods, the integral only has contributions when |x − x′| �

. On these scales, ln(|x − x′|) is a slowly varying func-
tion compared to ω(x, t ), which is peaked sharply around
{x j (t )}. Thus, we can treat the logarithm as a constant
over the width of each vortex core, i.e., under the integral
in Eq. (24) we have ω(x, t ) ≈ (κ j/

√
2)δ(x − x j (t )), where

κ j = ±4π is the elementary quantum of circulation of each
vortex j. Using the properties of the Dirac delta, we can
therefore write

H> = − 1

8π

N∑
j,m=1
j �=m

κ jκm ln(|x j − xm|). (25)

VI. FROM THE HAMILTONIAN TO
THE POINT VORTEX MODEL

Having obtained the expressions for H< and H>, we now
return to the original NLS in Hamiltonian form (5). To turn
this into an equation of motion for a particular vortex k, we
must change the dynamical variables from the fields ψ,ψ∗ to
the vortex position coordinates xk . We do this by multiplying
Eq. (5) by ∂ψ∗/∂xk , adding the resulting complex conjugate
(c.c.), and integrating the result over the x plane:

i
∫

∂ψ∗

∂xk

∂ψ

∂t
dx + c.c. = i

∫ [
δH

δψ∗
∂ψ∗

∂xk
+ δH

δψ

∂ψ

∂xk

]
dx

≡ ∂H

∂xk
. (26)

We now work on the left-hand side (LHS) of Eq. (26).
Recalling the Pitaevskii vortex solution ψv , we can construct
the field ψ (x, t ) for N well-separated vortices as the product
of N displaced Pitaevskii vortices,

ψ (x, t ) =
N∏

j=1

ψv (x − x j (t )) =
N∏

j=1

eis jθ j R j, (27)

where Rj = R(|x − x j |) is the Pitaevskii profile of the jth
vortex, s j = κ j/4π = ±1 is its sign, and θ j is the polar angle
around it:

θ j (x − x j ) = arctan

(
y − y j

x − x j

)
.

Note that the time dependence in ψ (x, t ) comes via the x j (t )’s
only due to the assumptions of well-separated vortices and
incompressibility, which ensure that the Pitaevskii profiles
remain rigid as the vortices move. This implies that

∂ψ

∂t
=

N∑
j=1

∂ψ

∂x j
· ẋ j .

Equation (27) implies

∂ψ

∂x j
=

(
N∏

m=1
m �= j

Rmeismθm

)
∂

∂x j
(Rje

is jθ j ),

giving for the LHS of Eq. (26),

∫ N∑
j=1

(
N∏

m=1
m �= j,k

R2
m

){
i[RjRkei(skθk−s jθ j )](1−δ jk )

×
[

ẋ j · ∂

∂x j
(Rje

is jθ j )

][
∂

∂xk
(Rke−iskθk )

]}
dx + c.c.,

(28)

where δ jk is a Kronecker delta.
In Eq. (28), we have enclosed the complex factors in the

summand by large braces. For brevity, we extract them for
further manipulation. Using the complex conjugate, the factor
in braces becomes the real vector quantity:

2

[
skRk

(
ẋ j · ∂Rj

∂x j

)
∂θk

∂xk
− s jR j

(
ẋ j · ∂θ j

∂x j

)
∂Rk

∂xk

]
. (29)

We now define the radial vector from the jth vortex r j =
x − x j (with corresponding length r j) and note that ∂x j θ j =
−ẑ × r j/(r j )2, while ∂x j R j = −R′

jr j/r j .
Recall that we are considering the motion of vortex k.

Taking into account that ∂x j θ j decays as 1/r j and that Rj heals
exponentially to 1 (and R′

j decays faster than exponentially to
0) on the length scale ∼ξ �
 jk if j �= k, we see that the main
contribution to the sum in (28) comes from the j = k term.
Retaining only this term, Eq. (29) becomes

2
skRkR′

k

r3
k

[(ẋk · rk ) (ẑ × rk ) − (ẋk · (ẑ × rk )) rk]

= 2
skRkR′

k

r3
k

[ẋk × ((ẑ × rk ) × rk )]

= 2
skRkR′

k

rk
(ẑ × ẋk ),

where we have used the vector triple product formula and the
fact that ẑ ⊥ rk .
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Therefore, for the LHS of Eq. (26), we have∫ ( N∏
m=1
m �=k

R2
m

)
2

skRkR′
k

rk
(ẑ × ẋk )dx

≈ 2sk (ẑ × ẋk )
∫ ∞

0

RkR′
k

rk
2π rk drk

= 2πsk (ẑ × ẋk ),

where we have again used the fact that the vortices are well
separated, so R2

m ≈ 1 in the vicinity of xk if m �= k, and also
used the asymptotics of Rk .

Finally, Eq. (26) becomes

κk

2
(ẋk × ẑ) = − ∂H

∂xk
. (30)

For the RHS, we note that H = H0 + H< + H>, and that H0

and H< are constants that vanish when differentiated. We re-
cover the fact that vortex k only moves due to the velocity field
induced by all other vortices, i.e., the dynamics are determined
entirely by H>. Differentiating Eq. (25) with respect to xk , and
taking the vector product with ẑ, finally gives the well-known
equation of motion (2) for a PV.

VII. DISCUSSION AND CONCLUSION

Before we state our conclusions, we first make some re-
marks regarding the assumptions used in this derivation and
the order of correction in the calculation.

A. Discussion

1. Assumption of a neutral ensemble and discussion
of boundary conditions

In this paper, we restrict our consideration to a neutral
ensemble of vortices. This is to ensure that the fluid velocity
u, and hence ∇ψ , vanishes at infinity (assisted by ρ → 1 in
that limit), allowing us to integrate by parts with a vanish-
ing boundary term contribution at infinity. As mentioned in
Sec. V, the energy calculations by other authors [17,26,29],
of non-neutral vortex ensembles in finite discs of radius R,
lead to nonvanishing boundary contributions (dependent on
the specific boundary conditions imposed), which cannot nec-
essarily be neglected in the R → ∞ limit. In those works, the
authors implicitly assume a free-slip boundary at radius R. In
that case, the leading-order contribution to the energy comes
from the monopole moment due to the imbalance of positive
and negative vortices, and diverges as ∼ ln(R).

Here we are interested in the infinite system, and so
formally need to take R → ∞, before differentiating the
Hamiltonian on the RHS of Eq. (30), to get the PV model.
However, the differentiation cannot be done when H contains
a divergent contribution. By contrast, for the neutral ensemble
the monopole moment vanishes, and so the boundary term
decays to zero as R → ∞. Thus, to maintain a level of rigor
that is commensurate with the rest of this derivation, we re-
strict ourselves to a neutral ensemble of vortices in the infinite
system.

Having said that, our derivation can be modified to a
non-neutral collection of vortices inside a finite disk, with

free-slip boundary conditions, as follows. By uniqueness of
solutions (16) to Poisson’s equation, a free-slip boundary can
be reproduced by the method of images. Each real vortex
within the disk will have a single image vortex of opposite
sign, lying outside the disk. The overall ensemble of real and
image vortices will therefore be neutral, and the entire deriva-
tion of this paper follows, with the boundary term of the partial
integration taken at infinity (i.e., beyond the finite radius of the
disk). The only caveat is that the PV equations of motion (2)
apply only to the real vortices within the disk, and do not
apply to the image vortices, as the stream function obtained
outside the disk is purely auxiliary: the image vortices have
unphysical dynamics.

Finally, we remark that choosing a boundary other than
the disk requires additional care, particularly in situations
where reproducing the boundary conditions requires an in-
finite lattice of replica vortices. Such an infinite series of
replicas pertains to systems with periodic boundary condi-
tions [30]. The problem of rectangular free-slip domains can
also be mapped to the periodic problem, after reflecting the
system into a two-by-two cell, to ensure periodicity of the
phase [6,29]. Furthermore, periodic systems of point vortices
in the Euler equations were considered in Ref. [31], but it was
shown that the motion of vortices in the corresponding peri-
odic NLS system differs by a constant velocity drift, arising
from the requirement of a periodic phase with respect to the
boundary [32]. Consequently, the derivation of the PV model
from the NLS equation in the rectangular domain requires
additional considerations that go beyond the treatment in this
paper.

2. Assumptions of well-separated vortices and incompressible flow

Our assumptions also include that of well-separated vor-
tices, and the exclusion of compressible (acoustic) excitations.
If these assumptions are relaxed, the Pitaevskii profiles of
the vortices can become significantly distorted. In that case,
we can no longer decompose the problem into that of N
vortices with identical density profiles, interacting from afar.
The errors in the quantities that we calculate in this derivation
(e.g., the terms in the Hamiltonian) may become of the same
order as, or even exceed, the quantities themselves, meaning
the PV model will no longer be a good approximation of the
NLS equation.

The generation of acoustic excitations and the close prox-
imity of vortices go hand in hand: it is known that in a
full NLS system, acoustic waves are excited when vortices
approach each other, and indeed sound is vitally important
in the process of vortex annihilation [12,33]. On annihilation,
the self-energy Hself/N of each participating vortex will be
liberated into the energy of acoustic waves. The total Hself

of the vortex collection thus provides a lower bound on the
amount of acoustic energy that can be produced by annihi-
lating all vortices (although the contributions from H> are
unbounded). We note that vortex production, collision, and
annihilation can now be manipulated with exquisite control
experimentally [15], and our calculation of Hself might be
used to help quantify the acoustic energy produced in such
annihilations.
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3. Order of correction

To estimate the error in our calculation, let us assume that
the system stays within the assumptions stated in Sec. IV.
In the discussion before Eq. (25), the assumption of well-
separated vortices allowed us to collapse the vorticity profiles
to delta functions. The leading correction will come from
the variation of the vorticity of one vortex (say the jth)
over the ∼ξ width of its nearest neighbor (say the mth),
located at distance 
 jm. Considering the nearest pair of vor-
tices in the ensemble, we need to consider how the vorticity
ω j (r) varies between r = 
 and r = 
 + ξ . Taylor expand-
ing the vorticity profile (17) gives a relative error in ω j

of O(ξ/
). Propagating this error through the calculation,
and noting that this is an upper bound, we see that the
PV model reproduces the dynamics of the full NLS equa-
tion to within O(ξ/
) if the conditions of Sec. IV remain
adhered to.

B. Conclusion

In this paper, we have derived the equation of mutually
induced motion of a collection of point vortices (2) (with
the collection including the same number of positive and
negative vortices) from the 2D defocusing NLS equation in
its Hamiltonian formulation (5). Our approach complements
previous derivations of the PV model by other methods, e.g.,
Refs. [9,29,34].

In particular, considering the short- and long-range con-
tributions to the Hamiltonian has allowed us to calculate the
self-energy per vortex, Hself/N (23), in such a collection.

In addition, we have found that the contribution to the
kinetic energy local to each vortex core, H</N , is negative.
However, since the total kinetic energy is manifestly positive,
cf. Eq. (12), this establishes a lower bound on the mutual, and
hence the PV, energy H> > |H<|.

As a final mathematical remark, we note that the rigorous
derivation of the PV model we present here is simplified by
the fixed profiles of a Pitaevskii vortex, Eqs. (10) and (11).
By contrast, in the Euler equations, the density and vorticity
profiles have considerable functional freedom. There will be
no universal value for Hself/N in a system of hydrodynamic
vortices and the calculation of Hself will depend on the partic-
ular profiles of each vortex in the system.

The dynamical stability of a single vorticity profile should
also be guaranteed before considering the limit of an array
of such vortices. In our case of the NLS, the rigidity of the
Pitaevskii profile provides a regularization that gives us a
delta-distributed vorticity, which we mollify by introducing
the pseudovorticity, that is stable in the well-separated as-
sumption. This advantage highlights the attractive property of
the NLS equation as a mathematical regularization of the 2D
Euler equations.
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