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Anomalous scaling in kinematic magnetohydrodynamic turbulence: Two-loop
anomalous dimensions of leading composite operators
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Using the field theoretic formulation of the kinematic magnetohydrodynamic turbulence, the explicit expres-
sions for the anomalous dimensions of leading composite operators, which govern the inertial-range scaling
properties of correlation functions of the weak magnetic field passively advected by the electrically conductive
turbulent environment driven by the Navier-Stokes velocity field, are derived and analyzed in the second order
of the corresponding perturbation expansion (in the two-loop approximation). Their properties are compared to
the properties of the same anomalous dimensions obtained in the framework of the Kazantsev-Kraichnan model
of the kinematic magnetohydrodynamics with the Gaussian statistics of the turbulent velocity field as well as
to the analogous anomalous dimensions of the leading composite operators in the problem of the passive scalar
advection by the Gaussian (the Kraichnan model) and non-Gaussian (driven by the Navier-Stokes equation)
turbulent velocity field. It is shown that, regardless of the Gaussian or non-Gaussian statistics of the turbulent
velocity field, the two-loop corrections to the leading anomalous dimensions are much more important in the
case of the problem of the passive advection of the vector (magnetic) field than in the case of the problem of
the passive advection of scalar fields. At the same time, it is also shown that, in phenomenologically the most
interesting case with three spatial dimensions, higher velocity correlations of the turbulent environment given by
the Navier-Stokes velocity field play a rather limited role in the anomalous scaling of passive scalar as well as
passive vector quantities, i.e., that the two-loop corrections to the corresponding leading anomalous dimensions
are rather close to those obtained in the framework of the Gaussian models, especially as for the problem of
scalar field advection. On the other hand, the role of the non-Gaussian statistics of the turbulent velocity field
becomes dominant for higher spatial dimensions in the case of the kinematic magnetohydrodynamic turbulence
but remains negligible in the problem of the passive scalar advection.
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I. INTRODUCTION

The presence of the anomalous scaling in fully developed
turbulent environments [1–12], i.e., the existence of deviations
from the scaling behavior predicted by simple dimensional
analysis in the framework of the classical phenomenologi-
cal Kolmogorov-Obukhov (KO) theory [13], belongs among
most typical basic features of turbulent systems, the ultimate
theoretical understanding of which on the fundamental level
of well-defined microscopic models still remains an open
problem. Let us recall that the KO theory is based on two
fundamental assumptions formulated in two well-known hy-
potheses about the statistical properties of various random
quantities (such as, e.g., correlation functions of turbulent
velocity field) deep inside the so-called inertial interval l �
r � L, where l represents the so-called dissipation scale (the
scale where energy starts to dissipate intensively) and L is the
so-called integral scale, i.e., a typical large scale at which the
energy is pumped into the system in order to maintain the
steady state. According to the KO theory the statistical prop-
erties of random quantities deep inside the inertial interval are
independent of L (the assertion of the first Kolmogorov hy-
pothesis) as well as of l (the subject of the second Kolmogorov
hypothesis). For example, the assumption of validity of these
two Kolmogorov hypothesis directly leads to the prediction of

simple scale-invariant inertial-range behavior of phenomeno-
logically interesting single-time two-point structure functions
of the turbulent velocity field

SN (r) = 〈[vr (t, x) − vr (t, x′)]N 〉, r = |x − x′| (1)

in the following form:

SN (r) = const × (ε̄r)N/3, (2)

where vr denotes the component of the velocity field directed
along the vector r = x − x′ and ε̄ is the mean dissipation
rate. However, as real experiments, numerical simulations,
and theoretical investigations show (see, e.g. Refs. [1–12,
14–18] as well as references cited therein), the scaling prop-
erties of turbulent systems remain dependent on the integral
scale L even deep inside the inertial interval in contradiction
with the first Kolmogorov hypothesis. This behavior is known
as the anomalous or nondimensional scaling, and, as a result,
e.g., the aforementioned structure functions of the velocity
field (1) must be written in the following more general scaling
form:

SN (r) = (ε̄r)N/3RN (r/L), (3)

with the explicit presence of the corresponding scaling func-
tion RN for given value of N . At the same time, it is quite
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clear that the scaling functions RN must depend singularly
on dimensionless parameter r/L in the limit L → ∞ to give
nontrivial correction to the inertial-range scaling exponents
of the structure functions SN . In this respect, it is usually
supposed that the asymptotic behavior of the scaling functions
RN for r � L can be represented in the following power-like
form:

RN (r/L) ∼ (r/L)qN , (4)

where it is evident that the presence of the anomalous scal-
ing of the structure functions (1), i.e., the deviation from
the scaling behavior predicted by the simple KO theory with
simple exponent N/3 in Eq. (2), requires negative values of the
exponents qN in the representation (4) of the scaling functions
RN . Physically, such a behavior of turbulent systems, i.e., the
presence of the anomalous scaling, is usually explained by the
existence of strong developed fluctuations of the dissipative
rate, i.e., by the intermittency [1–4,6,11]. From a geometrical
point of view, it means that the turbulent flows have fractal
nature, i.e., that not the whole volume of the turbulent environ-
ment is filled by vortices (such a situation in fact corresponds
to the pure dimensional scaling in the KO theory) but that
there always exist dynamically changing places with pure
laminar flows at all scales of the inertial range.

At the same time, it is also well known that the anomalous
scaling is even more strongly pronounced in the inertia-range
scaling behavior of various correlation functions of scalar
or vector quantities passively advected by turbulent envi-
ronments than in the behavior of turbulent velocity fields
themselves [4,6,9,19–35]. In this respect, for a long time the
central role has been played by simple models of passive
advection of scalar (e.g., the temperature field or field of
impurity) or vector (e.g., the weak magnetic field in an elec-
trically conductive turbulent environment) fields by turbulent
velocity fields with significantly simplified statistics, namely,
by the so-called Kraichnan model [36] and the Kazantsev-
Kraichnan model [37], in the framework of which scalar and
vector fields are advected by turbulent velocity fields that obey
Gaussian statistics. Note that, namely, in the framework of the
Kraichnan model of the passive scalar advection a systematic
theoretical analysis of anomalous scaling in turbulent systems
was performed for the first time using the so-called zero-mode
technique (see Ref. [6] as well as references cited therein).

However, although the Kraichnan model and the
Kazantsev-Kraichnan model describe many features of
the anomalous scaling of passively advected scalar and vector
quantities in genuine turbulent systems, nevertheless it is
desirable to have a fundamental description of the anomalous
scaling of various passively advected quantities in more
realistic turbulent environments driven by the stochastic
Navier-Stokes equation. In this respect, the field theoretic
renormalization group (RG) technique is invaluable since it
allows systematic perturbative investigation of anomalous
scaling using the operator product expansion (OPE) [38–40].
Moreover, the field theoretic approach also allows one to
investigate systematically the influence of various symmetry
breaking on the inertial-range anomalous scaling properties
of random quantities in the Gaussian as well as non-Gaussian
turbulent environments [9,31,41–59].

All these field theoretic investigations have also shown that
although the presence of the anomalous scaling in turbulent
systems is always visible already in the framework of the
first-order approximation (the one-loop approximation in the
field theoretic language), nevertheless many important fea-
tures as well as differences in the anomalous scaling of various
turbulent systems are invisible at this simplest level of pertur-
bative approximation. Therefore, at least a two-loop level of
approximation is usually needed for the correct description
as well as deeper understanding of various peculiarities of
anomalous scaling in different turbulent systems. For exam-
ple, it is known that at the one-loop level of approximation
the anomalous dimensions of the leading composite operators
in the corresponding OPEs (that drive the scaling properties
of correlation functions of the corresponding passive quanti-
ties) are completely the same for the Kraichnan model of the
Gaussian passive scalar advection [41] and for the Kazantsev-
Kraichnan model of the Gaussian passive vector advection
[31], as well as for the advection of passive scalar and vector
fields by the turbulent velocity field driven by the stochas-
tic Navier-Stokes equation [47,49]. On the other hand, the
two-loop calculations of the corresponding leading anomalous
dimensions in the Kraichnan model [41], in the Kazantsev-
Kraichnan model [53,54], and in the model of passive scalar
advection in the Navier-Stokes turbulence [47] have shown
that this universality of the leading anomalous dimensions is
only an artifact of the one-loop approximation. First of all, it
was shown in Ref. [47] that the two-loop corrections to the
leading anomalous dimensions of passive scalar field remain
rather restricted even in the case when the Navier-Stokes
turbulent velocity field is considered. At the same time, it
was shown in Refs. [53,54] that, at least in the case of the
Kazantsev-Kraichnan model with the Gaussian statistics of
the turbulent velocity field, the internal vector structure of a
passively advected quantity [e.g., the weak magnetic field in
the magnetohydrodynamic (MHD) turbulence] has significant
impact on the anomalous scaling, namely, that the anomalous
scaling is much more pronounced in the case of the pas-
sive vector advection than in the case of the passive scalar
advection. Here the open question is whether this behavior
is not related only to the Gaussian statistics of the velocity
field in the Kazantsev-Kraichnan model. Of course, to find an
answer to this question, it is necessary to perform the two-loop
calculations in the framework of the corresponding model
of the passively advected vector field by the Navier-Stokes
turbulence, i.e., in the framework of the kinematic MHD tur-
bulence.

In this respect, the aim of the present study is threefold.
First of all, our aim is to calculate and present explicit analytic
two-loop expressions (as functions of the spatial dimension)
for the anomalous dimensions of the leading composite oper-
ators, which drive the asymptotic scaling behavior of various
single-time two-point correlation functions of the weak mag-
netic field in the genuine kinematic MHD turbulence. The
second aim is to compare the obtained results to the corre-
sponding two-loop leading anomalous dimensions obtained
in the framework of the Kazantsev-Kraichnann model of the
kinematic MHD turbulence [53,54], where the turbulent ve-
locity field is supposed to be Gaussian, to analyze in detail the
importance of the presence of higher-order correlations of the
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turbulent velocity field (represented by the turbulent velocity
field driven by the stochastic Navier-Stokes equation in the
genuine kinematic MHD turbulence) for the values of afore-
mentioned leading anomalous dimensions.

Finally, the third aim is to compare the obtained results for
the two-loop leading anomalous dimensions to the analogous
anomalous dimensions of the corresponding leading compos-
ite operators that drive the inertial-range scaling properties
of various single-time two-point correlation functions of pas-
sively advected scalar quantities (fields) in the framework of
the Kraichnan model [41] as well as in the framework of the
model with advection by the Navier-Stokes turbulent velocity
field [47] to understand the role and importance of the internal
tensor structure of the advected quantity (scalar or vector) for
the existence and intensity of the anomalous scaling of the
corresponding correlation functions.

Moreover, having explicit expressions for the leading
anomalous dimensions of all four models as functions of the
spatial dimension, we will also investigate in detail theoret-
ically interesting differences in properties of their leading
anomalous dimensions in higher spatial dimensions related to
the different tensor nature (scalar or vector) of the advected
fields.

As will be shown, the internal vector nature of the mag-
netic field in the Gaussian (the Kazantsev-Kraichnan model)
as well as non-Gaussian (with the Navier-Stokes turbulent
velocity field) model of the kinematic MHD turbulence has
a significant impact on the anomalous scaling properties of
magnetic field correlation functions since the corresponding
leading anomalous dimensions behave radically in a different
way than the leading anomalous dimensions in the analogous
Gaussian (the Kraichnan model) and non-Gaussian (the ve-
locity field driven by the stochastic Navier-Stokes equation)
models of the passive scalar advection. We will also show that,
at least at the studied two-loop level of approximation, the
higher correlations of the turbulent velocity field (represented
by the velocity field driven by the stochastic Navier-Stokes
equation) play a rather restricted role in the anomalous scaling
in the most interesting three-dimensional turbulent systems.
Nevertheless, it seems that higher correlations of the turbulent
velocity field must play much a more important role in the
case of passive advection of a vector (magnetic) field than
in the case of the problem of passive scalar advection since,
as we will see, the dependence of the leading anomalous
dimensions in the two studied models of kinematic MHD
turbulence on the spatial dimension is radically different than
in the models of passive scalar advection, where the value of
the spatial dimension plays rather limited role.

The paper is organized as follows. In Sec. II the model
of the kinematic MHD turbulence is defined. In Sec. III the
field theoretic formulation of the model is given and basic
facts of its ultraviolet (UV) renormalization in the two-loop
approximation are presented. In Sec. IV the two-loop ex-
plicit analytic expressions for the anomalous dimensions of
leading composite operators of the studied model are de-
termined. In Sec. V the behavior of the leading anomalous
dimensions of the studied model is analyzed and compared
to other three models of passive scalar and vector advec-
tion. Obtained results are briefly reviewed and discussed
in Sec. VI.

II. THE KINEMATIC MHD TURBULENCE

As was discussed in the Introduction, we are intending to
calculate and investigate in detail the properties of the anoma-
lous dimensions of the leading composite operators that drive
the anomalous scaling of the single-time two-point correlation
functions of the magnetic field b ≡ b(x) [x ≡ (t, x)] in the
MHD turbulence in the framework of the so-called kinematic
limit with the weak magnetic field when the influence of the
magnetic field on the turbulent velocity field of the electri-
cally conductive environment can be neglected, i.e., when
the magnetic field behaves as a passively advected solenoidal
(∂ · b = 0) vector field.

In the framework of the incompressible kinematic MHD
turbulence, the behavior of the magnetic field and of the
solenoidal (owing to the incompressibility) velocity field v ≡
v(x) (∂ · v = 0) is driven by the following system of stochastic
equations

∂t b = ν0u0
b − (v · ∂ )b + (b · ∂ )v + fb, (5)

∂t v = ν0
v − (v · ∂ )v − ∂P + fv, (6)

where ∂t ≡ ∂/∂t , ∂i ≡ ∂/∂xi, 
 ≡ ∂2 is the Laplace operator,
ν0 is the viscosity (the subscript 0 will always denote bare
parameters of the unrenormalized theory), ν0u0 = c2/(4πσ )
represents the magnetic diffusivity (where the dimensionless
reciprocal magnetic Prandtl number u0 is extracted for con-
venience), c is the speed of light, σ is the conductivity, and
P ≡ P(x) is the pressure.

The energy pumping into the dissipative stochastic system
described by Eqs. (5) and (6) is realized through transverse
random noises fb and fv, the statistics of which is supposed
to be Gaussian. The transverse random noise fb = fb(x) rep-
resents the source of fluctuations of the magnetic field b (the
magnetic energy pumping) to maintain the steady state of the
system. Its Gaussian statistics is assumed in the following
form of the correlation function:

Db
i j (x1; x2) ≡ 〈

f b
i (x1) f b

j (x2)
〉 = δ(t1 − t2)Ci j (r/L), (7)

where r = x1 − x2, L is an integral (large) scale related to the
corresponding stirring, and Ci j is a tensor function that rapidly
decreases for |r| � L and must be finite in the limit L → ∞.
At the same time, in what follows, the detailed form of the
function Ci j is not important. However, let us note that through
the form of the function Ci j a large-scale anisotropy can be
introduced into the system (see, e.g., Ref. [31]).

On the other hand, the kinetic energy pumping into the
system from large scales is realized through the random force
fv = fv(x) in Eq. (6). Its Gaussian statistics is defined through
the correlation function

Dv
i j (x1; x2) ≡ 〈

f v
i (x1) f v

j (x2)
〉

= δ(t1 − t2)
∫

dd k
(2π )d

D0k4−d−2εPi j (k)eik·r, (8)

where d denotes the spatial dimension of the system, k is
the wave-number vector (momentum), Pi j (k) = δi j − kik j/k2

is the ordinary isotropic transverse projector, and D0 ≡ g0

ν3
0 > 0 is the positive amplitude. The physical value of for-

mally small parameter 0 < ε � 2 is ε = 2. Note that the
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parameter ε plays an analogous role as the parameter ε =
4 − d in the theory of critical behavior and the introduced
parameter g0 plays the role of the coupling constant of the
model (a formal small parameter of the ordinary perturbation
theory). The coupling constant g0 is related to the charac-
teristic ultraviolet (UV) momentum scale 	 (or inner length
l ∼ 	−1) by the following relation:

g0 � 	2ε. (9)

The needed infrared finiteness of the correlation function
(8) (its infrared regularization) is realized by the restriction
of the integration from below, i.e., it is suppose that |k| � m,
where m represents another integral scale. In what follows, it
is supposed that L � 1/m.

For completeness, note that the correlation function (8) is
chosen in the form which, on the one hand, describes the real
infrared energy pumping into the system since the function
D0k4−d−2ε is proportional to δ(k) when ε → 2 for appropri-
ate choice of the amplitude factor D0 (it corresponds to the
injection of energy to the system through interaction with the
largest turbulent eddies), and, on the other hand, its power-
like form gives the possibility to apply the RG technique for
analysis of the problem [5,40,60].

Finally, let us also note that the stochastic model of kine-
matic MHD turbulence given in Eqs. (5)–(8) represents a
simplification of real MHD turbulence problem since the
so-called Lorentz force term is absent in Eq. (6) (the Navier-
Stokes equation), i.e., there is no influence (feedback) of
the magnetic field on the behavior of the velocity field
of the conductive fluid. Therefore, as was already mentioned,
the magnetic field b in the present model behaves like a
passively advected vector field.

III. FIELD THEORETIC FORMULATION OF THE
KINEMATIC MHD TURBULENCE AND THE MAIN

RESULTS OF ITS TWO-LOOP RENORMALIZATION
GROUP ANALYSIS

The stochastic model given by Eqs. (5)–(8) can be rewritten
into the corresponding field theoretic model of the double
set of fields 
 = {v, b, v′, b′} [61] described by the action
functional

S(
) = 1

2

∫
dt1 dd x1 dt2 dd x2

[
v′

i (x1)Dv
i j (x1; x2)v′

j (x2)

+ b′
i(x1)Db

i j (x1; x2)b′
j (x2)

]
+

∫
dt dd x{v′[−∂t + ν0
 − (v · ∂ )]v

+ b′[−∂t b + ν0u0
b − (v · ∂ )b + (b · ∂ )v]}, (10)

where v′ and b′ are auxiliary transverse fields which have the
same tensor properties as fields v(x) and b(x), Db

i j and Dv
i j are

correlation functions given in Eqs. (7) and (8), respectively,
and summations over dummy indices are tacitly assumed.

Note that, due to the assumption of transversality of the
auxiliary vector field v′(x), the pressure ∂P in Eq. (6) is omit-
ted in action (10) since it vanishes when the corresponding

vivj 0 =

bibj 0 =

bibj 0 =

vivj 0 =

FIG. 1. Graphical representation of the propagators (11)–(14) of
the model.

integration by parts is performed:∫
dt dd x v′

i∂iP = −
∫

dt dd x P ∂iv
′
i = 0.

The field theoretic model (10) can be investigated pertur-
batively using the standard Feynman diagrammatic technique,
in the framework of which we have the following set of four
bare propagators [52]:

〈viv j〉0 = g0ν
3
0 k4−d−2εPi j (k)

(−iω + ν0k2)(iω + ν0k2)
, (11)

〈v′
iv j〉0 = 〈viv

′
j〉∗0 = Pi j (k)

iω + ν0k2
, (12)

〈bib j〉0 = Ci j (k)

(−iω + ν0u0k2)(iω + ν0u0k2)
, (13)

〈b′
ib j〉0 = 〈bib

′
j〉∗0 = Pi j (k)

iω + ν0u0k2
, (14)

where Ci j (k) is the Fourier transform of function Ci j (r/L) in
Eq. (7). Since, in what follows, we will need their graphical
representation, therefore it is shown explicitly in Fig. 1 (the
end with a slash in the propagators 〈b′

ib j〉0 and 〈v′
iv j〉0 corre-

sponds to the field b′ and v′, respectively, and the end without
a slash corresponds to the field b and v, respectively).

On the other hand, the model contains two interac-
tion vertices (triple vertices) of the following analytic
form: b′

i(−v j∂ jbi + b j∂ jvi ) = b′
iv jVi jl bl and −v′

iv j∂ jvi =
v′

iv jUi jlvl/2, where, in the momentum-frequency representa-
tion (in which all calculations are performed), Vi jl = i(k jδil −
klδi j ) and Ui jl = i(klδi j + k jδil ). Their graphical representa-
tion is shown in Fig. 2, where the momentum k is flowing
into the vertices via auxiliary fields b′ and v′, respectively.

Note that, in the field theoretic formulation, the statisti-
cal averages of random quantities in the stochastic problem
described by Eqs. (5)–(8) are replaced by the corresponding
functional averages with weight exp S(
) (see, e.g., Ref. [40]
for details). At the same time, the main advantage of the
field theoretic formulation of the studied stochastic problem

Vijl =
v′i

vj

vl

Uijl =
b′i

vj

bl

FIG. 2. The interaction vertices U and V of the model.
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is given by the fact that the well-defined field theoretic means
(such as the RG technique) can be used for its analysis.

Since the detailed two-loop RG analysis of the field-
theoretic model (10) was already performed in Ref. [52],
where the corresponding two-loop value of the turbulent mag-
netic Prandtl number was calculated, therefore, there is no
need to repeat it here. In what follows, however, we present
the main results of this analysis, which are important for the
determination of the anomalous dimensions of the leading
composite operators that drive the inertial-range scaling prop-
erties of correlation functions of the magnetic field.

As was shown in Ref. [52], the field theoretic model de-
scribed by the action (10) is multiplicatively renormalizable
and, in the framework of the minimal subtraction scheme
[39], all UV divergences in correlation functions of the model
have the form of poles in ε. The RG analysis performed in
Ref. [52] has shown that the scaling properties of the studied
stochastic system deep inside the inertial interval is driven by
the infrared (IR) stable fixed point of the RG equations, the
coordinates g∗ and u∗ of which have the following form in the
two-loop approximation (the second-order approximation in
the corresponding perturbation expansion):

g∗ = g(1)
∗ ε + g(2)

∗ ε2 + O(ε3), (15)

u∗ = u(1)
∗ + u(2)

∗ ε + O(ε2), (16)

where the one-loop corrections (g(1)
∗ and u(1)

∗ ) and the two-loop
corrections (g(2)

∗ and u(2)
∗ ) are given as follows:

g(1)
∗ = (2π )d

Sd

8(d + 2)

3(d − 1)
, (17)

g(2)
∗ = (2π )d

Sd

8(d + 2)

3(d − 1)
λ, (18)

u(1)
∗ = 1

2

(
−1 +

√
9d + 16

d

)
, (19)

u(2)
∗ = 2(d + 2)

d[1 + 2u(1)
∗ ]

[
λ − 128(d + 2)2

3(d − 1)2
B(u(1)

∗ )

]
, (20)

where Sd ≡ 2πd/2/(d/2) denotes the surface area of the d-
dimensional unit sphere, (x) is Euler’s Gamma function, and
the explicit expressions of the functions λ and B(u(1)

∗ ) can be
found in Refs. [62] and [52], respectively. Note that this fixed
point is IR stable when ε > 0. Note also that, for clarity, in all
expressions we preserve completely the same notation used in
Refs. [52] and [62].

Existence of the stable IR fixed point means that the cor-
relation functions of the model exhibit scaling behavior deep
inside the inertial range with given critical dimensions. The
issue of interest are usually various multiplicatively renor-
malizable equal-time two-point quantities G(r). Among such
quantities belong, e.g., various equal-time structure functions
a general definition of which is

SN (r) = 〈[θ (t, x) − θ (t, x′)]N 〉, r = |x − x′|, (21)

where N is the order of the structure function and θ can
represent a given component of the velocity field [see Eq. (1)
in the Introduction], or of the advected scalar field, etc. In the
case of the studied model of the passively advected magnetic

field in the framework of the kinematic MHD turbulence, the
important structure functions are defined as follows:

SN (r) = 〈[br (t, x) − br (t, x′)]N 〉, r = |x − x′|, (22)

where br denotes the component of the magnetic field directed
along the vector r = x − x′. However, it is also quite evident
that the structure functions (22) represent a definite linear
combinations of simpler quantities, namely, of the single-time
two-point correlation functions [31,33]

BN−m,m(r) ≡ 〈
bN−m

r (t, x)bm
r (t, x′)

〉
, r = |x − x′|, (23)

built of two composite operators bN−m
r (t, x) and bm

r (t, x′). The
existence of the IR scaling driven by the corresponding IR
stable fixed point means that the correlation functions (23)
exhibit the following scaling behavior in the inertial range
(for all general details see, e.g., Ref. [49], where the one-loop
analysis of the studied problem was performed together with
the needed dimensional analysis):

BN−m,m(r) � ν
−N/2
0 lN (r/l )N (1−ε/3)−γ ∗

N−m−γ ∗
m RN,m(r/L), (24)

where γ ∗
N−m and γ ∗

m are the fixed point values of the anomalous
dimensions of the composite operators bN−m

r and bm
r , respec-

tively, and the scaling functions RN,m(r/L) remain unknown
within the standard RG analysis.

At the same time, however, the asymptotic behavior of
the scaling functions RN,m(r/L) in the limit r/L → 0, i.e.,
deep inside the inertial interval, can be found using the OPE
technique [39], in the framework of which they can be written
in the following power form:

RN,m(r/L) =
∑

i

CFi (r/L)(r/L)�Fi , r/L → 0, (25)

where the summation over all possible renormalized compos-
ite operators Fi allowed by the symmetry of the problem is
performed, �Fi are their critical dimensions, and all coeffi-
cient functions CFi (r/L) are regular in r/L.

From the asymptotic representation (25) of the scaling
functions, it is evident that they have a nontrivial impact on the
inertial-range behavior of the correlation functions (23) only
when there exist the so-called dangerous composite operators
in the OPE, i.e., the operators with negative critical dimen-
sions, since only such operators give singular contributions
in the limit r/L → 0 (see, e.g., Ref. [31] for details) and
are therefore responsible for the anomalous scaling of the
corresponding correlation or structure functions. Of course,
if more different types of such composite operators exist, then
the leading role is played by those with the smallest values
of the critical dimensions. In this respect, when full isotropy
is assumed in the studied model, the leading composite oper-
ators that drive the asymptotic inertial-range behavior of the
correlation functions (23) have the following simple form:

FN = (b · b)N/2. (26)

On the other hand, in the more realistic situation with the
presence of the large-scale anisotropy [introduced, e.g., by the
following specific form of the random noise fb ∝ (B · ∂ )v,
where B = |B|n represents a constant large-scale (macro-
scopic) magnetic field, the source of the aforementioned
uniaxial large-scale anisotropy described by the unit vector
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n], the central role is played by the following set of composite
operators (see, e.g., Refs. [31,49]):

FN,p = (n · b)p(b · b)l , N = 2l + p. (27)

Using all these facts, it can be shown [31,49] that the final
asymptotic behavior of the correlation functions (23) deep
inside the inertial interval has the following form:

BN−m,m(r) ∼ r−γ ∗
N−m−γ ∗

m+γ ∗
N , (28)

where γ ∗
X for X = N − m, m, and N are the corresponding

fixed point values of the anomalous dimensions γX,p of the
composite operators FX,p for such value of p, for which γ ∗

X,p
is minimal for given X .

Thus, to describe the scaling properties of the correlation
functions (23), it is necessary to calculate the fixed-point
values of the anomalous dimensions γN,p of the composite
operators (27). The corresponding one-loop calculations were
performed in Ref. [49], and their two-loop expressions as
functions of the spatial dimension d > 2 are calculated in
the framework of the present study and are given in the next
section. Moreover, in Sec. V, they will be also compared to the
corresponding two-loop anomalous dimensions of the same
leading composite operators (27) calculated in the framework
of the Kazantsev-Kraichnan model of the kinematic MHD
turbulence with the Gaussian statistics of the turbulent veloc-
ity field [53,54] as well as to the anomalous dimensions of
the corresponding leading composite operators that drive the
anomalous scaling of the correlation and structure functions
of the passively advected scalar field in the Kraichnan model
with the Gaussian statistics of the velocity field [41] and in the
case when the scalar field is advected by the Navier-Stokes
velocity field [47]. For completeness, let us note that, in
the case of the passive scalar advection by the Gaussian or
non-Gaussian turbulent velocity field, the leading composite
operators that drive the scaling properties of various single-
time two-point correlation functions of the advected scalar
field φ in the presence of the large-scale uniaxial anisotropy
have the form (n · ∂φ)p(∂φ · ∂φ)l , i.e., they are built of gradi-
ents of the advected scalar field [41,47].

IV. TWO-LOOP EXPRESSIONS FOR THE ANOMALOUS
DIMENSIONS OF THE COMPOSITE OPERATORS FN,p

As was discussed in the previous section, the central role in
the analysis of the inertial-range scaling properties of various
correlation functions of the magnetic field in the framework
of the kinematic MHD turbulence with the presence of the
uniaxial large-scale anisotropy is played by the anomalous
dimensions of the composite operators (27). These compos-
ite operators have two important features that significantly
simplify the procedure of their renormalization (see, e.g.,
Ref. [49] for more details). The first of them is that the
operators of different orders, i.e., with different values of
N , are not mixed during the renormalization. The second
important feature is that the corresponding matrix of renor-
malization constants Z[N,p][N,p′] for a given value of N is
triangular when the large-scale anisotropy of the turbulent
environment is considered. It means that no diagonalization
of the matrix of renormalization constants is needed and the
anomalous dimensions γN,p of operators FN,p are directly

FIG. 3. Graphical representation of the one-loop contribution


(1)
N,p to the function N,p(x; b) [see Eq. (32)].

given by the diagonal elements of Z[N,p][N,p′], i.e., by elements
ZN,p ≡ Z[N,p][N,p], through the standard relation

γN,p = μ∂μ ln ZN,p, (29)

where μ is the renormalization mass (a scale setting parame-
ter), an artifact of the dimensional regularization of the model
[49]. Thus, to find the two-loop expressions for the anomalous
dimensions γN,p it is necessary to calculate the correspond-
ing two-loop renormalization constants ZN,p that connect the
renormalized (finite) and the unrenormalized (infinite) com-
posite operators:

FN,p = ZN,pF R
N,p. (30)

The renormalization constants ZN,p for the composite op-
erators FN,p are determined analyzing the N th-order term with
respect to the magnetic field b of the expansion of the gen-
erating functional of one-irreducible Green’s functions with
the presence of one composite operator FN,p and any number
of fields b (see, e.g., Ref. [31] for all details). It is given as
follows:

N,p(x; b) = 1

n!

∫
dx1 · · ·

∫
dxn bi1 (x1) . . . biN (xN )

×〈FN,p(x) bi1 (x1) . . . biN (xN )〉1−ir . (31)

Then, in the two-loop approximation, it can be written in the
following series:

N,p = FN,p + 
(1)
N,p + 

(2)
N,p + · · · , (32)

where 
(1)
N,p and 

(2)
N,p represent the corresponding one-loop

and the two-loop contributions, which are determined by the
calculation of the corresponding Feynman diagrams shown
explicitly in Figs. 3 and 4, respectively (note that each diagram
must be taken with the corresponding symmetry constant).
The standard propagators and vertices of the model are given
in Sec. II (see Figs. 1 and 2), and the black circle in each
diagram represents vertex related to the composite operator
FN,p defined as follows:

Vi1,...,ik (x; x1, . . . , xk ) = δkFN,p

δbi1 (x1) . . . δbik (xk )
, (33)

where k denotes the number of attached lines.
Finally, the explicit expressions for the anomalous dimen-

sions γN,p are found from the renormalization constants ZN,p

determined through the two-loop renormalization procedure
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FIG. 4. The Feynman diagrams that determine the two-loop con-
tribution 

(2)
N,p to the function N,p(x; b) [see Eq. (32)].

that removes all UV divergences presented in Feynman di-
agrams depicted in Figs. 3 and 4. Their final fixed-point
expressions can be written in the following form:

γ ∗
N,p = γ

∗(1)
N,p ε + γ

∗(2)
N,p ε2 + O(ε3), (34)

where γ
∗(1)
N,p and γ

∗(2)
N,p represent the corresponding one-loop

and the two-loop contributions.
The one-loop contribution γ

∗(1)
N,p was calculated in Ref. [49]

and is given as follows:

γ
∗(1)
N,p = 2N (N − 1) − (N − p)(d + N + p − 2)(d + 1)

3(d + 2)(d − 1)
.

(35)
This one-loop result (of course, after the corresponding

redefinition of the parameter ε) is completely the same as in
the case of the Kazantsev-Kraichnan model of the kinematic
MHD turbulence with pure Gaussian statistics of the turbulent
velocity field (see, e.g., Ref. [31]). Moreover, the anoma-
lous dimensions γ

∗(1)
N,p are also the same as the corresponding

one-loop anomalous dimensions of the leading composite op-
erators that drive the anomalous scaling of the correlation and
structure functions of passively advected scalar field by the
Gaussian turbulent velocity field (i.e., in the framework of the
Kraichnan model) [41] as well as in the case when the scalar
advection is realized in the turbulent environment driven by
the stochastic Navier-Stokes equation [47]. It means that, at
the one-loop level of approximation, there is no difference
between the anomalous scaling properties of correlation (or
structure) functions of passively advected scalar and vector
quantities as well as there is no difference (at least as for

these scaling properties) whether the advection is realized by
the simple Gaussian turbulent velocity field or by the much
more realistic turbulent velocity field driven by the stochas-
tic Navier-Stokes equation. As was already discussed in the
Introduction, this is in fact one of the main reasons why it
is necessary to perform at least the second-order (two-loop)
calculations that, as we will see in the next section, clearly
distinguish scaling properties of all aforementioned different
models.

The explicit expression for the two-loop contribution γ
∗(2)
N,p

to the anomalous dimensions γ ∗
N,p (34) of the composite op-

erators (27) in the kinematic MHD turbulence represents the
main result of the present paper and can be written as follows:

γ
∗(2)
N,p = −128(d + 2)

9(d − 1)3
[(d + 1)k1 − 2k2]B(u(1)

∗ )

−256(d + 2)

9(d − 1)3


(

d
2

)
√

π
(

d−1
2

) ∫ 1

0
dx(1 − x2)

d−1
2

×
(

[(d + 1)k1 − 2k2]X1 + 2(dk2 − k1)(1 − x2)X2

+ 3

d + 4

{
3[(d + 1)k3 − 2k4]X3

+ 2x(1 − x2)[(d + 2)k4 − 3k3]

24u2(u2 − 1)2
X4

})
, (36)

where the explicit expression for B(u(1)
∗ ) can be found in

Ref. [52],

k1 = (N − p)(d + N + p − 2), (37)

k2 = N (N − 1), (38)

k3 = (N − 2)(N − p)(d + N + p − 2), (39)

k4 = N (N − 1)(N − 2), (40)

and the explicit form of the functions Xi, i = 1, . . . , 4 is given
in the Appendix.

Before we will analyze the behavior of the fixed-point
anomalous dimensions γ ∗

N,p of the composite operators FN,p, it
is necessary to bear in mind that, since (due to the presence of
the large-scale anisotropy) there exists the corresponding set
of anomalous dimensions with different values of p for given
value of N , only the most negative of them is important for the
determination of the anomalous scaling of various correlation
functions of the magnetic field. Detailed analysis shows that,
at least at the studied two-loop level of approximation, the
anomalous dimensions (34) meet the following conditions:

γ ∗
N,p < γ ∗

N,p′ , p < p′, (41)

γ ∗
N,0 < γ ∗

N ′,0, N > N ′, (42)

γ ∗
N,1 < γ ∗

N ′,1, N > N ′, (43)

where relation (42) holds for even values of N and N ′ and
relation (43) is valid for odd values of N and N ′, respectively.
Therefore, only the anomalous dimensions γ ∗

N,0 (for even val-
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ues of N) and γ ∗
N,1 (for odd values of N) are important for the

analysis of the scaling behavior of the correlation functions
(23) since, using the hierarchy relations (41)–(43) together
with the asymptotic representation (28), the final asymptotic
behavior of the correlation functions (23) deep inside the
inertial interval has the following form (which is valid at the
one-loop level of approximation [49] as well as when the
second-order corrections are taken into account):

BN−m,m(r) ∼ rγ ∗
N,0−γ ∗

N−m,0−γ ∗
m,0 , (44)

for even values of N and m,

BN−m,m(r) ∼ rγ ∗
N,0−γ ∗

N−m,1−γ ∗
m,1 , (45)

for even value of N and odd value of m, and

BN−m,m(r) ∼ rγ ∗
N,1−γ ∗

N−m,0−γ ∗
m,1 , (46)

for odd values of N and m. The fourth possibility with odd
value of N and even value of m is in fact contained in the last
case.

However, a detailed analysis of the scaling behavior of the
correlation functions (23) will be given elsewhere. Instead,
in the present paper, we will focus our attention on analysis
of the properties of the leading anomalous dimensions γ ∗

N,0
(for even values of N) and γ ∗

N,1 (for odd values of N). In
this respect, on the one hand, we will show the importance
of the second-order corrections in comparison to the one-
loop result, and, on the other hand, we will also compare
the obtained two-loop values of the anomalous dimensions
γ ∗

N,p to the corresponding anomalous dimensions obtained
in the framework of the Kazantsev-Kraichnan model of the
kinematic MHD turbulence [53,54] and to the corresponding
anomalous dimensions of the leading composite operators that
drive the scaling properties of the structure functions of the
scalar field passively advected by the Gaussian velocity field
in the framework of the Kraichnan model [41] as well as
passively advected by the turbulent velocity field driven by
the stochastic Navier-Stokes equation [47]. Note that such
kind of comparison is possible since the same hierarchies
(41)–(43) among the anomalous dimensions of the cor-
responding leading composite operators are valid in all
aforementioned models.

V. COMPARISON OF ANOMALOUS DIMENSIONS γ∗
N,0

AND γ∗
N,1 OF LEADING COMPOSITE OPERATORS

OF FOUR MODELS OF PASSIVE SCALAR
AND VECTOR ADVECTION

Thus, as was already mentioned, our aim is, on the one
hand, to show the importance of the two-loop corrections
(36) to the anomalous dimensions γ ∗

N,0 and γ ∗
N,1 (34) of the

composite operators FN,p defined in Eq. (27) and, on the
other hand, to compare them to the analogous anomalous
dimensions of the leading composite operators that drive the
scaling properties of the corresponding passive quantities in
the Kazantsev-Kraichnan model [53,54], in the Kraichnan
model [41], and in the model of passive scalar advection by
the stochastic Navier-Stokes equation [47], we seek to find
answers at least to the following two fundamental questions.
The first of them is: How important is different tensor struc-
ture (scalar or vector) of advected fields for the strength of

FIG. 5. Dependence of the two-loop anomalous dimensions γ ∗
2,0

of the leading composite operators, which drive the scaling properties
of the correlation functions of the corresponding passively advected
quantities in the kinematic MHD turbulence studied in the present
paper [the (black) curve denoted as PV], in the Kazantsev-Kraichnan
model of passive vector advection [the (red) curve denoted as KKM],
in the Kraichnan model of passive scalar advection [the dashed curve
denoted as KM], and in the model of passive scalar advection by the
Navier-Stokes velocity field [the same dashed curve denoted as PS],
on the common, i.e., in the same way defined, parameter ε for spatial
dimension d = 3. The one-loop result, which is the same for all four
studied models [which is also the same as the two-loop result for the
Kraichnan model (KM) as well as the two-loop result for the passive
scalar advection by the Navier-Stokes turbulent velocity field (PS)],
is denoted as γ

∗(1)
2,0 ε (the same dashed curve).

the anomalous scaling, i.e., for the values of the anomalous
dimensions of the leading composite operators that drive the
scaling properties of various correlation functions of advected
fields? The second question, the answer to which is not less
important, is: How important is non-Gaussian statistics of the
turbulent velocity field (represented by the turbulent velocity
field driven by the stochastic Navier-Stokes equation) for the
anomalous scaling of the passive magnetic field in comparison
to the much simpler case when the magnetic field is advected
by the Gaussian turbulent velocity field in the framework
of the Kazantsev-Kraichnan model of the kinematic MHD
turbulence?

In this respect, in Figs. 5–10, the dependence of the two-
loop anomalous dimensions γ ∗

N,0 for N = 2, 4, 6 and γ ∗
N,1 for

N = 3, 5, 7 of the corresponding leading composite operators
of all four aforementioned models on the parameter ε is shown
for the most interesting three-dimensional case. Here it is
necessary to stress that, to be able to perform such a compar-
ison, the corresponding redefining of the parameter ε in the
Kraichnan model [41] and in the Kazantsev-Kraichnan model
[53,54] is done, to have the same meaning of the parameter
ε for all models with the same physical value ε = 2 that
corresponds to the Kolmogorov scaling [63].
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FIG. 6. Dependence of the two-loop anomalous dimensions γ ∗
3,1

of the leading composite operators, which drive the scaling properties
of the correlation functions of the corresponding passively advected
quantities in the kinematic MHD turbulence studied in the present
paper [the (black) curve denoted as PV], in the Kazantsev-Kraichnan
model of passive vector advection [the (red) curve denoted as KKM],
in the Kraichnan model of passive scalar advection [the (blue) curve
denoted as KM], and in the model of passive scalar advection by the
Navier-Stokes velocity field [the (green) curve denoted as PS], on the
common parameter ε for spatial dimension d = 3. The correspond-
ing one-loop result, which is common for all four studied models,
is represented by dashed curve and is denoted as γ

∗(1)
3,1 ε in the inset,

which gives a detailed view near ε = 2.

FIG. 7. Dependence of the two-loop anomalous dimensions γ ∗
4,0

of the leading composite operators relevant in the discussed four
models of passive advection on the parameter ε for spatial dimension
d = 3 (see Fig. 6 for notation). The corresponding one-loop result,
which is common for all four studied models, is represented by the
dashed curve denoted as γ

∗(1)
4,0 ε in the inset, which gives a detailed

view near ε = 2.

FIG. 8. Dependence of the two-loop anomalous dimensions γ ∗
5,1

of the leading composite operators relevant in the discussed four
models of passive advection on the parameter ε for spatial dimension
d = 3 (see Fig. 6 for notation). The corresponding one-loop result,
which is common for all four studied models, is represented by the
dashed curve denoted as γ

∗(1)
5,1 ε in the inset, which gives a detailed

view near ε = 2.

As follows from Fig. 5, where the two-loop anomalous
dimensions γ ∗

2,0 for all four models are shown as the functions
of the common parameter ε for d = 3, while there are no
two-loop corrections to these anomalous dimensions in the
case of the Gaussian model (the Kraichnan model) as well
as non-Gaussian model (with the velocity field driven by the
stochastic Navier-Stokes equation) of passive scalar advection
(see the dashed curve in Fig. 5), the corresponding two-loop
corrections in the case of the analogous models of the pas-
sive vector (weak magnetic field) advection are significant
in both cases, i.e., in the case of the Gaussian advection
(the Kazantsev-Kraichnan model) as well as in the case of
genuine kinematic MHD turbulence. At the same time, the
two-loop corrections to the anomalous dimension γ ∗

2,0 are
larger (more negative) in the case of the advection by the
Gaussian turbulent velocity field, i.e., in the framework of
the Kazantsev-Kraichnan model [the (red) curve denoted as
KKM], than in the case of the kinematic MHD turbulence with
velocity field driven by the stochastic Navier-Stokes equation
[the (black) curve denoted as PV]. It means that the presence
of higher velocity correlations of the turbulent conductive
environment reduces the negative value of the anomalous
dimension γ ∗

2,0, i.e., as a result, their presence must also reduce
the manifestation (visibility) of the anomalous scaling.

The same behavior of the leading anomalous dimensions,
i.e., that the two-loop negative corrections are larger in the
Gaussian model of the passive vector advection than in the
non-Gaussian model, is also valid for anomalous dimensions
γ ∗

3,1 and γ ∗
4,0 (see Figs. 6 and 7, respectively). It means that

one can expect less pronounced anomalous behavior of the
corresponding correlation functions of the magnetic field of
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FIG. 9. Dependence of the two-loop anomalous dimensions γ ∗
6,0

of the leading composite operators relevant in the discussed four
models of passive advection on the parameter ε for spatial dimension
d = 3 (see Fig. 6 for notation). The corresponding one-loop result,
which is common for all four studied models, is represented by the
dashed curve denoted as γ

∗(1)
6,0 ε in the inset, which gives a detailed

view near ε = 2.

the order N = 3 and N = 4 in the genuine kinematic MHD
turbulence with the Navier-Stokes velocity field than in the
framework of the simplified model of the kinematic MHD
turbulence with Gaussian statistics of the velocity field (the
Kazantsev-Kraichnan model).

On the other hand, the situation is opposite for higher
anomalous dimensions with N � 5 (see Figs. 8–10, where
the corresponding behavior of the anomalous dimensions γ ∗

5,1,
γ ∗

6,0, and γ ∗
7,1 is shown). It means that the presence of higher

correlations of the turbulent velocity field described by the
stochastic Navier-Stokes equation leads to more negative val-
ues of the anomalous dimensions of the composite operators
of higher orders (with N � 5) that drive the scaling proper-
ties of the higher correlation functions (23) with N � 5 of
the passive vector (magnetic) field through the corresponding
asymptotic expressions (44)–(46).

Note also that the situation in the case of the two analogous
models of passive scalar advection is different, namely, the
two-loop results for anomalous dimensions γ ∗

N,0 (for even
values of N) and γ ∗

N,1 (for odd values of N) in the case
with the Navier-Stokes velocity field are always smaller than
the corresponding results for the Kraichnan model with the
Gaussian turbulent velocity field (see Figs. 6–10). The only
exception is the case with N = 2, when there are no two-loop
corrections at all (see Fig. 5).

As also follows from all Figs. 5–10, the two-loop correc-
tions to the anomalous dimensions γ ∗

N,0 (for even values of N)
and γ ∗

N,1 (for odd values of N) are much more important in
the problem of the passive vector advection than in the case of
the passive scalar advection, regardless whether the turbulent
velocity field is Gaussian or non-Gaussian (driven by the
stochastic Navier-Stokes equation). At the same time, it is also

FIG. 10. Dependence of the two-loop anomalous dimensions γ ∗
7,1

of the leading composite operators relevant in the discussed four
models of passive advection on the parameter ε for spatial dimension
d = 3 (see Fig. 6 for notation). The corresponding one-loop result,
which is common for all four studied models, is represented by the
dashed curve denoted as γ

∗(1)
7,1 ε in the inset, which gives a detailed

view near ε = 2.

evident that in three-dimensional turbulent environments, at
least from the anomalous scaling point of view, the Gaussian
or non-Gaussian character of the turbulent velocity field is
much less important than the intrinsic tensor nature of the
advected field (scalar or vector).

From a theoretical point of view, in order to understand
deeper the difference between the scaling behavior of var-
ious correlation functions of passively advected scalar and
vector fields deep inside the inertial interval of turbulent en-
vironments, it is also important to analyze and compare the
dependence of the corresponding anomalous dimensions of
leading composite operators in the aforementioned four mod-
els of passive advection on the value of the spatial dimension
d . Such an analysis is also important for deeper theoretical
understanding of the role of the non-Gaussian statistics of
the turbulent velocity fields in the anomalous scaling of pas-
sively advected scalar and vector fields. In this respect, such
a comparison is shown explicitly in Figs. 11–16, where the
spatial dependence of the anomalous dimensions γ ∗

N,0 (for
even values of N) and γ ∗

N,1 (for odd values of N) of leading
composite operators of four studied models is presented for
the physical value ε = 2 (let us note once more that the needed
redefinition of the parameter ε in the Kraichnan model and the
Kazantsev-Kraichnan model is performed).

As follows from Figs. 11–16, the spatial dimension plays
much more important role in the case of passive vector ad-
vection than in the case of passive scalar advection. For
example, while the two-loop anomalous dimensions γ ∗

N,0 (for
even values of N) and γ ∗

N,1 (for odd values of N) of the
leading composite operators in the problem of passive scalar
advection by turbulent velocity fields with the Gaussian (the
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FIG. 11. Dependence of the two-loop anomalous dimensions γ ∗
2,0

of the leading composite operators, which drive the scaling properties
of the correlation functions of the corresponding passively advected
quantities in the framework of four studied models, on the spatial
dimension d for the common physical value of the parameter ε = 2.
For notation see Fig. 5. The one-loop result, which is the same for
all four studied models [which is also the same as the two-loop result
for the Kraichnan model (KM) as well as the two-loop result for the
passive scalar advection by the Navier-Stokes turbulent velocity field
(PS)], is denoted as γ

∗(1)
2,0 ε (the same dashed curve).

FIG. 12. Dependence of the two-loop anomalous dimensions γ ∗
3,1

of the leading composite operators, which drive the scaling properties
of the correlation functions of the corresponding passively advected
quantities in the framework of four studied models, on the spatial
dimension d for the common physical value of the parameter ε = 2.
For notation see Fig. 6. The corresponding one-loop result γ

∗(1)
3,1 ε,

which is common for all four studied models, is represented by the
dashed curve.

FIG. 13. Dependence of the two-loop anomalous dimensions γ ∗
4,0

of the leading composite operators, which drive the scaling properties
of the correlation functions of the corresponding passively advected
quantities in the framework of four studied models, on the spatial
dimension d for the common physical value of the parameter ε = 2.
For notation see Fig. 6. The corresponding one-loop result γ

∗(1)
4,0 ε,

which is common for all four studied models, is represented by the
dashed curve.

FIG. 14. Dependence of the two-loop anomalous dimensions γ ∗
5,1

of the leading composite operators, which drive the scaling properties
of the correlation functions of the corresponding passively advected
quantities in the framework of four studied models, on the spatial
dimension d for the common physical value of the parameter ε = 2.
For notation see Fig. 6. The corresponding one-loop result γ

∗(1)
5,1 ε,

which is common for all four studied models, is represented by the
dashed curve.
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FIG. 15. Dependence of the two-loop anomalous dimensions γ ∗
6,0

of the leading composite operators, which drive the scaling properties
of the correlation functions of the corresponding passively advected
quantities in the framework of four studied models, on the spatial
dimension d for the common physical value of the parameter ε = 2.
For notation see Fig. 6. The corresponding one-loop result γ

∗(1)
6,0 ε,

which is common for all four studied models, is represented by the
dashed curve.

FIG. 16. Dependence of the two-loop anomalous dimensions γ ∗
7,1

of the leading composite operators, which drive the scaling properties
of the correlation functions of the corresponding passively advected
quantities in the framework of four studied models, on the spatial
dimension d for the common physical value of the parameter ε = 2.
For notation see Fig. 6. The corresponding one-loop result γ

∗(1)
7,1 ε,

which is common for all four studied models, is represented by the
dashed curve.

Kraichnan model) and non-Gaussian (driven by the stochastic
Navier-Stokes equation) statistics rapidly converge one to an-
other with increasing value of the spatial dimension (see the
corresponding curves denoted as KM and PS in Figs. 12–16),
such a behavior is not observed in the case of the Gaussian
(Kazantsev-Kraichnan model) and non-Gaussian models of
the kinematic MHD turbulence (see the corresponding curves
denoted as KKM and PV in Figs. 11–16). Moreover, as also
follows from these figures, while the two-loop corrections to
these anomalous dimensions in the problem of passive scalar
advection become very small even for moderate values of
the spatial dimension, the corresponding two-loop corrections
remain dominant even for large values of spatial dimension in
the problems of passive vector advection. These differences
in the behavior of the anomalous dimensions of leading com-
posite operators in the problems of passive scalar and vector
advection show the importance of the inner tensor structure
of the advected field for the inertial-range scaling properties
of the corresponding correlation (or structure) functions. At
the same time, this behavior of the leading anomalous di-
mensions also shows that one can expect that the scaling
properties of the correlation functions of passively advected
vector fields must be much more sensitive to the presence of
higher correlations of the velocity field (here represented by
the Navier-Stokes turbulent velocity field) than the analogous
scaling properties of the correlation functions of passively
advected scalar fields.

Note that the dependence of the two-loop anomalous di-
mensions of the leading composite operators on the spatial
dimension (Figs. 11 and 12) clearly demonstrates the fact that
they are smaller in the case of the Kazantsev-Kraichnan model
than in the genuine kinematic MHD turbulence for N = 2, 3,

and 4 (Figs. 5–7) and larger for N � 5 (Figs. 8–10) in the
spatial dimension d = 3.

Finally, let us also note that the anomalous dimensions γ ∗
N,0

(for even values of N) and γ ∗
N,1 (for odd values of N) for given

value of N of the corresponding leading composite operators
in the Kraichan model and the Kazantsev-Kraichnan model
tend to the same value in the limit d → 2. The same is also
true for the models of passive scalar and vector advection by
the Navier-Stokes velocity field. They also tend to the same
value (but different than in the case of Gaussian models) in
the limit d → 2. This behavior is related to the well-known
fact that the magnetic field behaves as the scalar field (it has
one component) in the two-dimensional case.

VI. CONCLUSION

In conclusion, let us briefly discuss the main results ob-
tained in this paper.

In the present paper, the explicit analytic expressions for
the anomalous dimensions of the leading composite operators,
which are crucial for the determination of the anomalous
scaling properties of the single-time two-point correlation
functions of the magnetic field in the kinematic MHD tur-
bulence, are derived using the field theoretic RG technique
together with the OPE in the two-loop approximation. The
anisotropy hierarchy between various anomalous dimensions
of the same order taken at the fixed point is established, and it
is shown that for the even values of their order N the most
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negative are the isotropic ones, i.e., γ ∗
N,0, and for the odd

values of N the most negative are the anomalous dimensions
γ ∗

N,1, i.e., those with the smallest presence of anisotropy, in
accordance with the Kolmogorov’s local isotropy restoration
hypothesis. Their dependence on the parameter ε for d = 3
as well as on the spatial dimension d for the physical value
ε = 2, which corresponds to the Kolmogorov scaling, is in-
vestigated for various values of N , namely, for N = 2, . . . , 7.
Moreover, their properties are compared to the corresponding
properties of the anomalous dimensions of the same leading
composite operators obtained in the framework of the simpli-
fied kinematic MHD turbulence with the Gaussian statistics of
the turbulent velocity field, i.e., in the Kazantsev-Kraichnan
model [53,54]. In addition, the behavior of these anomalous
dimensions are also compared to the analogous anomalous
dimensions of the leading composite operators that drive the
inertial-range scaling properties of the correlation functions of
passively advected scalar quantities by the Gaussian turbulent
velocity field, i.e., in the framework of the Kraichnan model
[41], as well as by the genuine turbulent velocity field driven
by the Navier-Stokes equation [47].

Our analysis shows a few nontrivial facts as for the prop-
erties of the passive scalar and vector advection by turbulent
environments. First, our analysis shows that for phenomeno-
logically the most interesting spatial dimension d = 3 the
two-loop corrections to the leading anomalous dimensions
in the problem of passive magnetic field advected by the
Gaussian as well as non-Gaussian turbulent velocity fields
are much more important than in the analogous models of
passively advected scalar field (Figs. 5–10). It means that
the presence of the internal tensor structure of the passively
advected field (in our case the vector structure) has a strong
impact on the properties of the anomalous scaling. At the same
time, it is also shown that, in the three-dimensional case, the
presence of higher correlations of the turbulent velocity field,
here represented by the velocity field driven by the Navier-
Stokes equation, has much less impact on the anomalous
scaling even in the case of the passive vector advection (for
example, as follows from Fig. 7, these nonlinear corrections
almost vanish for N = 4), where their presence can even
lead to the reduction of the anomalous scaling. This can be
seen in the behavior of the two-loop anomalous dimensions
for N = 2, 3, and 4 (see Figs. 5–7). On the other hand, for
higher anomalous dimensions with N � 5, the leading anoma-
lous dimensions γ ∗

N,0 or γ ∗
N,1 become smaller in the genuine

kinematic MHD turbulence than in the Kazantsev-Kraichnan
model (see Figs. 8–10). Note also that the importance of the
higher correlations of the velocity field is even smaller in the
case of the passive scalar advection (see Figs. 5–10).

In addition, the dependence of the leading anomalous di-
mensions γ ∗

N,0 (for even values of N) and γ ∗
N,1 (for odd values

of N) of the model on the spatial dimension d > 2 is inves-
tigated for N = 2, . . . , 7 for physically the most interesting
value ε = 2. At the same time, the corresponding comparison
to the analogous results obtained in the framework of the
aforementioned three other models of passive advection is
performed. It is shown that the studied leading anomalous
dimensions as functions of the spatial dimension behave sig-
nificantly in a different way in the models of passive scalar
advection in comparison to the models of the kinematic MHD

turbulence (see Figs. 11–16). While the leading anomalous
dimensions of the corresponding composite operators of the
Gaussian model (the Kraichnan model) and the non-Gaussian
model (velocity driven by the Navier-Stokes equation) of pas-
sive scalar advection are almost the same and tend to the
same value with increasing d , the presence of the higher
correlations of the velocity field in the genuine kinematic
MHD turbulence has a strong impact on the two-loop values
of the leading anomalous dimensions, which are significantly
different than in the case of the Kazantsev-Kraichnan model
(see Figs. 11–16).

In the end, the analysis performed in this paper can be used
directly for the analysis of the inertial-range scaling properties
of the single-time two-point correlation functions (23) through
their asymptotic expressions (44)–(46). However, such kind of
analysis as well as other questions (for instance, such as the
question of the anisotropy persistence deep inside the inertial
range) requires separate systematic investigation and will be
performed elsewhere.
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APPENDIX

The explicit form of the functions Xi, i = 1, . . . , 4 in
Eq. (36) is the following:

X1 = A1

B1
+ A2Y1

B2
+ A3Y2

B3
+ A4(Y3 + Y4)

B4
+ A5Y5

B5

+A6Y6

B6
+ A7Y7

B7
+ A8Y8

B8
+ A9Y9

B9
+ A10Y10

B10

+A11Y11

B11
,

X2 = A12Y1

B12
+ A13Y6

B13
+ uxY7

B14
+ A13Y8

B15
+ x2Y12

B16
,

X3 = − x

72u2(u2 − 1)2

×
[

(−9 + 5d − 4x2)Y2√
4 − x2

+ A14Y6√
2 − u(x2 − 2)

+ A15Y7√
u2(1 − x2) + 2u + 1

+ A16Y8√
u(x2 − 2) − 2

]
,

X4 = − Y2√
4 − x2

− u3/2Y6√
2 − u(x2 − 2)

− u3Y7√
u2(1 − x2) + 2u + 1

+ u3/2Y8√
u(x2 − 2) − 2

,

where

A1 = u3[(5 − 2d )x2 − 2]

+ u2[−4(4d − 7)x4 + (10d − 21)x2 + 2]

− u(4x2 − 1)[8(d − 1)x4 + (3 − 6d )x2 + 2]

− 16(d − 1)x4 + (14d − 11)x2 − 2,
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A2 = x{−d (u + 1)[3u4 + 2u3(12x2 − 5)

+ u2(32x4 − 20x2 + 9) + 4u(4x2 − 1) + 2]

+ 4u6(x2 − 1) + u5(32x4 − 40x2 + 13)

+ u4(64x6 − 64x4 + 40x2 − 11)

+ u3(128x6 − 144x4 + 116x2 − 39)

+ u2(144x4 − 112x2 + 27) + u(48x2 − 22) + 4},
A3 = (1 − x2){u[−(d + 5)x2 + 2x4 − 4]

+ (5d − 3)x2 − 2x4 + 4},
A4 = x{d[11u5 + u4(23 − 4x2)

+ 2u3(48x4 − 62x2 + 19) + u2(32x4 + 36x2 − 58)

+ u(28x2 − 17) + 3] + 2u6 − u5(6x2 + 13)

+ u4(−48x4 + 42x2 − 51) + u3(32x6 − 256x4

+ 264x2 − 90) − 4u2(8x6 − 20x4 + 48x2 − 33)

+ u(−32x4 + 30x2 + 7) − 10x2 + 13},
A5 = (2 − d )x,

A6 = −x([u6(8x6 − 30x4 + 37x2 − 18)

+ 2u5(20x6 − 75x4 + 81x2 − 35)

+ 2u4(16x6 − 81x4 + 64x2 − 10)

+ u3(−64x6 + 118x4 − 94x2 + 76)

+ u2(96x4 − 37x2 + 30) + u(60x2 − 6) + 8]

×
√

u(x2 − 2) − 2

+{2d[u5(4x4 − 10x2 + 7) + u4(8x4 − 14x2 + 9)

+ 2u3(2x4 + x2 − 4) − 2u2(8x4 − 7x2 + 4) − 8ux2

+ u − 1] + u[u4(−8x4 + 26x2 − 19)

+ 2u3(4x4 + x2 − 5) + 2u2(8x4 − 13x2 + 8)

− 2u(x2 − 5) + 3]}
√

[u(x2 − 2) − 2]3),

A7 = u5(dx2 − 4x4 + 4) + u4[12(d − 2)x4

− 2(d − 6)x2 + 5] + 2u3x2[2d (5x2 − 3) − 14x2

+ 13] + u2[−4(5d − 7)x4 − 7(2d − 3)x2 − 5]

+ u[−12(d − 2)x4 + (6 − 5d )x2 − 4]

+ u6[−(x2 − 1)] + 4x4 − 1,

A8 = (2 − d )x[u5(4x4 − 10x2 + 7) + u4(8x4 − 14x2

+ 9) + 2u3(2x4 + x2 − 4) − 2u2(8x4 − 7x2 + 4)

− 8ux2 + u − 1],

A9 = d[u5 + u4(−16x4 + 52x2 − 19) + u3(−32x4

+ 60x2 + 18) + 2u2(24x4 − 10x2 + 9) + u(36x2

− 19) + 1] + u5(6x2 − 3) + u4(48x4 − 98x2 + 37)

− 2u3(16x6 − 64x4 + 72x2 + 15) + 2u2(16x6

− 88x4 + 36x2 − 19) + u(33 − 86x2) − 6x2 + 1,

A10 = (2 − d )[u3(2x4 − 3x2 + 1) + u2(4x4 − 5x2 − 1)

+ u(−6x4 + 3x2 − 1) − 3x2 + 1],

A11 = 2(d − 2)x4 + 2u(x2 − 1)2 + 3x2 − 2,

A12 = −x[u2 + u(4x2 − 1) + 1],

A13 = x[1 + u(x2 − 1)],

A14 = √
u[4du + d − u(4x2 + 7) − 2],

A15 = u2[d (3u + 2) − u(4x2 + 5) − 4],

A16 = √
u[−d (4u + 1) + u(4x2 + 7) + 2],

B1 = 128u(u + 1)2x2(x2 − 1)[u2 + u(4x2 − 2) + 1],

B2 = 16u2(u + 1)2
√

1 − x2[u2 + u(4x2 − 2) + 1]2,

B3 = 32(u − 1)2(u + 1)x3
√

4 − x2,

B4 = 32(u − 1)2u(u + 1)2
√

2u − x2 + 2

× [u2 + u(4x2 − 2) + 1]2,

B5 = 4u(u2 − 1)2
√

u2 + 2u − x2 + 1,

B6 = 16(u − 1)2u3/2(u + 1)2
√

2 − u(x2 − 2)

× [u(x2 − 2) − 2]3/2[u2 + u(4x2 − 2) + 1]2,

B7 = 64(u − 1)2u(u + 1)3x3
√

u2(1 − x2) + 2u + 1,

B8 = 8(u − 1)2u3/2(u + 1)2
√

u(x2 − 2) − 2

× (u2 + u[4x2 − 2) + 1]2,

B9 = 32(u − 1)2u(u + 1)2[u2 + u(4x2 − 2) + 1]2,

B10 = 4(u − 1)2(u + 1)2[u2 + u(4x2 − 2) + 1]2,

B11 = 256u(u + 1)x3(x2 − 1)3/2,

B12 = 16u2(u + 1)
√

1 − x2[u2 + u(4x2 − 2) + 1],

B13 = 8(u − 1)
√

u(u + 1)2
√

2 − u(x2 − 2)

× [u2 + u(4x2 − 2) + 1],

B14 = 16(u − 1)(u + 1)2
√

u2(1 − x2) + 2u + 1,

B15 = 8(1 − u)
√

u(u + 1)2
√

u(x2 − 2) − 2

× [u2 + u(4x2 − 2) + 1],

B16 = 8(1 − u)(u + 1)2[u2 + u(4x2 − 2) + 1],

and

Y1 = arctan

(
1 − x√
1 − x2

)
− arctan

(
x + 1√
1 − x2

)
,

Y2 = arctan

(
2 − x√
4 − x2

)
− arctan

(
x + 2√
4 − x2

)
,

Y3 = arctan

(
2 − x√

2u − x2 + 2

)
− arctan

(
x + 2√

2u − x2 + 2

)
,

Y4 = arctan

(
u − x + 1√
2u − x2 + 2

)
− arctan

(
u + x + 1√
2u − x2 + 2

)
,

Y5 = arctan

(
u − x + 1√

u2 + 2u − x2 + 1

)

− arctan

(
u + x + 1√

u2 + 2u − x2 + 1

)
,
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Y6 = arctan

( √
u(x − 2)√

2 − u(x2 − 2)

)

+ arctan

( √
u(x + 2)√

2 − u(x2 − 2)

)
,

Y7 = arctan

(
−ux + u + 1√

u2(1 − x2) + 2u + 1

)

− arctan

(
ux + u + 1√

u2(1 − x2) + 2u + 1

)
,

Y8 = argtgh

(
u(x − 1) − 1√

u
√

u(x2 − 2) − 2

)

+ argtgh

(
ux + u + 1√

u
√

u(x2 − 2) − 2

)
,

Y9 = ln
2

1 + u
, Y10 = ln u,

Y11 = ln
1 − x2 − x

√
x2 − 1

1 − x2 + x
√

x2 − 1
,

Y12 = ln
2u

1 + u
.

In all expressions u represents the one-loop fixed-point value
of the turbulent magnetic Prandtl number u(1)

∗ given in
Eq. (19), i.e.,

u = 1

2

(
−1 +

√
9d + 16

d

)
.

[1] A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics,
Vol. 2 (MIT Press, Cambridge, MA, 1975).

[2] W. D. McComb, The Physics of Fluid Turbulence (Clarendon,
Oxford, 1990).

[3] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cam-
bridge University Press, Cambridge, 1995).

[4] K. R. Sreenivasan and R. A. Antonia, Annu. Rev. Fluid Mech.
29, 435 (1997).

[5] L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasil’ev, The
Field Theoretic Renormalization Group in Fully Developed
Turbulence (Gordon & Breach, London, 1999).
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[56] E. Jurčišinová, M. Jurčišin, and M. Menkyna, Phys. Rev. E 95,
053210 (2017).

[57] N. V. Antonov, N. M. Gulitskiy, M. M. Kostenko, and A. V.
Malyshev, Phys. Rev. E 97, 033101 (2018).
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