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We elucidate the theoretical relationships among fundamental physical concepts that are involved in the diffuse
interface modeling for an isothermal single-component liquid-vapor system, which cover both the equation of
state (EOS) and the surface tension force. As an example, a flat surface at equilibrium is discussed both
theoretically and numerically by using two different approaches. Particularly, the force structure in the transition
region is clearly presented, which demonstrates that the capillary contributions due to the density gradients
can suppress the mechanical instability of the thermodynamic pressure and lead to constant hydrodynamic
pressure (and chemical potential). Then, by comparing with the van der Waals (vdW) EOS for a flat interface
at equilibrium, it is shown that applying the double-well approximation can give qualitative predictions for
relatively high density ratio (ρl/ρg = 7.784) and satisfactory results for relatively low density ratio (ρl/ρg =
1.774). The main cause for this observation is attributed to the nonlinear variation of the generalized coefficient
function in the double-well formulation at different density ratios. In addition, for the latter case, we simulate
a droplet impact on a hydrophilic wall by using a recently proposed well-balanced discrete unified gas kinetic
scheme (WB-DUGKS), which justifies the applicability of the double-well approximation to complex interfacial
dynamics in the low-density-ratio limit. Furthermore, the reason for the inconsistency between the coefficients
of the mean-field force expressions in the existing literature is explained.
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I. INTRODUCTION

Physical modeling on the interface between two fluids
has been widely discussed from different perspectives [1–9].
The sharp interface model considers two fluids separated by
an interface with zero thickness which needs to be tracked
explicitly in the numerical simulation. Both fluids satisfy the
Navier-Stokes (NS) equations, which are properly coupled by
virtue of the interfacial boundary conditions. The interface is
equipped with some fundamental physical properties such as
the surface tension, and the physical quantities are allowed
to have a jump across the interface [3]. In contrast, the in-
terface exhibits a finite thickness from the diffuse-interface
perspective, where the physical quantities vary smoothly in
the transition region between the bulk phases [4,7,10]. Two
fluids are described by one set of Navier-Stokes-Korteweg
(NSK) equations. Therefore, explicit tracking of the interface
is circumvented in the diffuse interface model.

Various diffuse interface models have been successfully
applied to investigate fluid hydrodynamics and a wide range
of interfacial phenomena [4,7,11,12]. It has been recognized
that the diffuse interface model is particularly suitable for
near-critical liquid-vapor flows (small density ratio), complex
topological changes and large deformations of the interface,
interface breakup and coalescence, and so on, where the
traditional sharp interface model may fail to give accurate
prediction of the interfacial changes. In recent years, some
new numerical schemes and methods were proposed and
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applied to simulate different kinds of complex interfacial
flows based on the diffuse interface model [10,11,13–22].
To our knowledge, most of the existing methods cannot give
accurate predictions for the interfacial structure under a spe-
cific equation of state (EOS). The sharp interface methods do
not provide any opportunity to study the interfacial structure,
where only the total jump of a physical quantity across the
interface can be extracted. The numerical studies based on
the phase field method usually have some artificial numerical
treatments in the interfacial region to maintain the mass flux
and the hyperbolic tangent profile. Moreover, the spurious
velocity and the spurious chemical potential inherently exist
in the traditional lattice Boltzmann method (LBM) due to
the discretization errors in the force term [10]. Compared to
these existing methods, the recently developed well-balanced
discrete unified gas kinetic scheme (WB-DUGKS) [10,23,24]
can remove the spurious currents thoroughly, making it possi-
ble to discuss the interfacial structure.

This paper attempts to elucidate the theoretical relation-
ships among the fundamental physical concepts involved
in the diffuse interface modeling for an isothermal single-
component liquid-vapor system. A general description is
provided before subsequent detailed discussions invoking spe-
cific model approximations. First, in Secs. II and III, under
the Helmholtz-free-energy-based variational description, re-
lationships among different forms of the chemical potential
gradient force are clarified. Second, in Sec. IV, we provide
two different but equivalent approaches to investigate a flat
interface at equilibrium, from which a deeper understanding
of the force structure of the transition region is obtained.
Third, in Sec. V, we discuss the EOS and its double-well
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approximation, followed by detailed comparison of their
predictions concerning the interfacial structures for the flat
interface problem (Sec. VI).

Furthermore, in order to justify the applicability of the
double-well approximation to complex interfacial flows for
near-critical fluids, we simulate a droplet impact on a hy-
drophilic wall using the well-balanced discrete unified gas
kinetic scheme (WB-DUGKS), as shown in Sec. VII. It is
noted that the pressure drop in the EOS is directly related
to the mean field force, which also includes the surface
tension effect. In Sec. VIII, we explain the reason for the
inconsistency between the coefficients of the mean-field force
expressions in the existing literature, which is important for
understanding the physical modeling of the interfacial force.
Conclusions are given in Sec. IX. Appendix A documents the
validation of the developed WB-DUGKS code by comparing
with the analytical solution. The L2 errors between the analyt-
ical and approximate solutions are discussed in Appendix B.
In Appendix C, an extended discussion on the speed of sound
and interfacial compressibility is provided.

II. FREE ENERGY, CHEMICAL POTENTIAL,
AND EQUATION OF STATE

The thermodynamics of an isothermal single-component
liquid-vapor system at equilibrium can be described by the
classical second-gradient theory, where the corresponding
Helmholtz free energy functional is given by [1,2,14,25]

F (ρ,∇ρ) =
∫

V

(
ψ (ρ) + 1

2
κ‖∇ρ‖2

)
dV, (1)

where ρ is the fluid density, κ is a constant interfacial free
energy coefficient partially governing the surface tension σs,
and V is the integral volume occupied by the fluids. The
first term ψ (ρ) is the bulk free energy density while the
second term κ‖∇ρ‖2/2 is the interfacial free energy density
caused by the nonlocal molecular interactions. The total free
energy density f is the sum of these two contributions, i.e.,
f ≡ ψ (ρ) + κ‖∇ρ‖2/2.

The first-order variation of the free energy functional with
respect to the density gives the chemical potential μρ , namely,

μρ ≡ δF
δρ

= μ0 − κ∇2ρ, (2)

where the first term is the bulk chemical potential μ0 ≡ ∂ρψ

and the second term is determined by the capillary contri-
bution due to the Laplacian of density. When the bulk free
energy density ψ (ρ) is given, the thermodynamic pressure p0

(namely, the EOS) is evaluated by the following expression:

p0 = ρμ0 − ψ. (3)

By applying the spatial gradient operator ∇ on both sides
of Eq. (3), a thermodynamic identity is readily obtained as

ρ∇μ0 = ∇p0, (4)

which indicates that the gradient of the thermodynamic pres-
sure ∇p0 is proportional to that of the bulk chemical potential
∇μ0. Since p0 and μ0 are functions of the density ρ, we
can also write Eq. (4) as ∂ρ p0 = ρ∂ρμ0 = ρ∂ρ∂ρψ , which is
exactly the same as the result by Jamet et al. [7]. However, the

essential link between different equations was not provided in
their paper, where they actually gave an extended description
based on the earlier work of Rowlinson and Widom [25].

III. HYDRODYNAMICS: NAVIER-STOKES-KORTEWEG
EQUATIONS

The hydrodynamics of an isothermal two-phase flow sys-
tem can be well described by the Navier-Stokes-Korteweg
(NSK) equations:

∂ρ

∂t
+ ∇ · (ρu) = 0, (5a)

∂ (ρu)

∂t
+ ∇ · (ρuu) = −ρ∇μρ + ∇ · � + ρG, (5b)

where u is the macroscopic velocity and −ρ∇μρ is the
chemical potential gradient force (potential form) [10,26].
� ≡ 2μS + λϑI is the viscous stress tensor, where μ is the
dynamic viscosity and λ = μV − 2μ/3 with μV being the
bulk viscosity. G is the acceleration due to the external force.

We point out that two equivalent expressions of the chem-
ical potential gradient force can be readily obtained by virtue
of only two identities. First, by using the thermodynamic
identity in Eq. (4), an equivalent pressure form of the chemical
potential gradient force is obtained as [27]

−ρ∇μρ = −∇p0 + κρ∇∇2ρ. (6)

Then, by virtue of the identity

ρ∇∇2ρ = ∇ · [(
ρ∇2ρ + 1

2‖∇ρ‖2
)
I − ∇ρ∇ρ

]
, (7)

the chemical potential gradient force can be written in a diver-
gence form,

−ρ∇μρ = −∇ · P, (8)

where the Korteweg pressure tensor P is given by [28]

P = (
p0 − κρ∇2ρ − 1

2κ‖∇ρ‖2
)
I + κ∇ρ∇ρ

≡ pI + κ∇ρ∇ρ. (9)

Equation (8) provides two different ways to express the phys-
ical origin of the rate of change of the fluid momentum. One
the one hand, as indicated by its left-hand side, the two-phase
flow system is driven by the chemical potential gradient to
transport the fluid momentum, so that the phase equilibrium
can be reached with the minimum free energy. On the other
hand, its physical effect can be described as the divergence
of the second-order tensor P (like that of the viscous stress
tensor � accounting for the viscous stress), which yields an
additional force on a fluid element. In Eq. (9), the nonlocal
total pressure p is defined as

p ≡ p0 − κρ∇2ρ − 1
2κ‖∇ρ‖2, (10)

which includes the thermodynamic pressure p0 and two cap-
illary contributions due to the density gradients.

By using Eqs. (2) and (3), it follows that

p = ρμρ − f , (11)

which directly relates the total pressure p to the chemical
potential μρ and the free energy density f . Note that Eq. (9) is
formally consistent with the pressure tensor derived from the
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kinetic Enskog-Vlasov (E-V) equation, which combines En-
skog’s kinetic theory for short-range molecular interaction due
to the repulsive force [29] and the mean field theory [28,30]
for long-range attractive interaction between molecules.

Furthermore, we relate Eq. (9) to an equivalent stress form
of the Korteweg pressure tensor P reported by Lee and Lin
[31]. Using the notations in this paper, it can be easily derived
by adjusting the terms in Eq. (9), which results in

P = phI − �, (12a)

with ph and � given by

ph ≡ p0 − κρ∇2ρ + 1
2κ‖∇ρ‖2, (12b)

� ≡ κ (‖∇ρ‖2I − ∇ρ∇ρ), (12c)

where ph is defined as the hydrodynamic pressure and � is the
surface tension stress tensor. The hydrodynamic pressure ph is
typically of the order O(Ma2), which varies smoothly across
the interfacial region compared to that of the thermodynamic
pressure p0. Here, Ma is the characteristic Mach number. �

has three eigenvalues (λ1, λ2, and λ3) and three mutually
perpendicular principal axes. One of the principal axes is
parallel to the unit normal vector of the density isosurface S,
namely, n = ∇ρ/‖∇ρ‖, whose corresponding eigenvalue is
λ1 = 0. The two remaining eigenvalues are equal to twice the
interfacial energy density (i.e., λ2 = λ3 = κ‖∇ρ‖2), whose
corresponding principal axes can be specified as any two
perpendicular vectors lying in the tangent plane of S. The
integral of λ2 (or λ3) gives the surface tension coefficient
σs = κ

∫ +∞
−∞ ( dρ

dζ
)2dζ , where ζ is the surface-normal coordi-

nate. The surface tension contains the contributions from both
the bulk and interfacial gradient energies [7,25]. We think
that Eq. (12a) gives a very neat separation of hydrodynamic
pressure ph and the surface tension force σs.

IV. FLAT INTERFACE PROBLEM

The simplest case for two-phase flow is a flat diffuse in-
terface at equilibrium, which is essentially one-dimensional
(1D) and can be solved directly. Although it is geometrically
simple, a better understanding of the interfacial structure be-
tween the saturated phases can be achieved by studying the
problem from two different perspectives (namely, the chem-
ical equilibrium and the force balance). In this section, we
provide two approaches to derive the various forms of the
balance equation at equilibrium, where the relations among
the fundamental concepts are clearly presented. In particular,
the well-known Maxwell equal-area rule (namely, Maxwell
construction) is recovered as a corollary. The equivalence
between different approaches is strictly proved. A complete
derivation that naturally combines different concepts cannot
be found in the existing literature. The derivation in this sec-
tion is more direct and systematic, which makes the necessary
preparation for the comparisons in Section V and VI.

A. Approach A: Chemical equilibrium

Consider a flat interface at equilibrium which separates the
liquid and gas phases with their saturated densities ρl and
ρg in the bulk regions [i.e., asymptotic boundary conditions
ρ(+∞) = ρl , ρ(−∞) = ρg, and dρ/dx(x → ±∞) = 0 are

required for the transition region]. By minimizing the free
energy functional F (ρ,∇ρ) or equivalently by setting the
fluid velocity u = 0 in the NSK equations [Eqs. (5a) and (5b)],
one can obtain a constant chemical potential, i.e.,

μρ = μ0 − κ
d2ρ

dx2
= μ∗, (13)

where x is the surface normal coordinate satisfying ρ(x =
0) = (ρl + ρg)/2, and μ∗ = μ0(ρl ) = μ0(ρg) represents a
constant chemical potential, which is a combination of the
bulk chemical potential and the contribution from the Lapla-
cian of density.

Since the density ρ(x) has a one-to-one mapping with
respect to the coordinate x in the transition region, we can
reduce the order of the derivative via the transformation

d2ρ

dx2
= dρ

dx

d

dρ

(
dρ

dx

)
= d

dρ

[
1

2

(
dρ

dx

)2
]
. (14)

From Eqs. (13) and (14), we obtain

d

dρ

[
ψ − 1

2
κ

(
dρ

dx

)2
]

= μ∗, (15)

which results in the following energy balance equation:

1

2
κ

(
dρ

dx

)2

= ψ − ρμ∗ + p∗ ≡ ψ (ρ), (16)

where p∗ = p0(ρl ) = p0(ρg) is the constant pressure in the
bulk fluid regions and ψ (ρ) is the redefined (or effective) bulk
free energy density. Equation (16) allows a smooth transition
across the phase interface between the saturated bulk phases
at equilibrium, and indicates that the interfacial free energy
density is equal to the effective bulk free energy density at
each spatial point. The saturated densities ρl and ρg can be ob-
tained by solving the two algebraic equations p0(ρl ) = p0(ρg)
and μ0(ρl ) = μ0(ρg) for two unknowns. Note that Eq. (16) is
the same as Eq. (8) of Jamet et al. [7], where the derivation
details were not provided. The key point addressed by them is
different from the present paper. Their study actually provided
an extended discussion on the modification of the EOS in
order to simulate liquid-vapor flow with phase change.

By using Eq. (3), Eq. (16) can be equivalently written as

1

2
κ

(
dρ

dx

)2

= ψ (ρ) − ψ (ρg) − μ0(ρg)(ρ − ρg) (17a)

or

1

2
κ

(
dρ

dx

)2

= ψ (ρ) − ψ (ρl ) − μ0(ρl )(ρ − ρl ). (17b)

Eqs. (17a) and (17b) imply that the bulk free energy densities
are related by

ψ (ρl ) = ψ (ρg) + μ∗(ρl − ρg) ⇔ p∗ = p0(ρl ) = p0(ρg).

(18)

In terms of the effective bulk free energy density ψ (ρ) in
Eq. (16), we can redefine the thermodynamic pressure p0 and
the bulk chemical potential μ0 as

μ0 ≡ ∂ψ

∂ρ
and p0 ≡ ρ

∂ψ

∂ρ
− ψ. (19)
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Then, it can be proved that

μ0 = μ0 − μ∗, p0 = p0 − p∗. (20)

Equations (20) shows that p0 (or μ0) only differs from p0 (or
μ0) by a constant. In other words, at equilibrium, we have
μ0 = 0 and p0 = 0 in the bulk regions.

B. Approach B: Force balance

Equations (8) and (9) give a description of the phase
equilibrium through the divergence of the Korteweg pressure
tensor P. For 1D case, using Eq. (12), the surface tension
stress tensor � vanishes so that P = phI and ∇ · P = ∇ph,
which gives

d

dx

[
p0 − κρ

d2ρ

dx2
+ 1

2
κ

(
dρ

dx

)2
]

= 0, (21)

whose first integral is expressed as

p0 − κρ
d2ρ

dx2
+ 1

2
κ

(
dρ

dx

)2

= p∗. (22)

The left-hand side of Eq. (22) is just the hydrodynamic pres-
sure ph introduced in Eq. (12b), which varies smoothly across
the interfacial region compared to the thermodynamic pres-
sure p0. At equilibrium, Eq. (22) actually implies a constant
hydrodynamic pressure ph = p∗ in the whole domain.

It is noted that the capillary stresses in Eq. (22) can be
written as

−κρ
d2ρ

dx2
+ 1

2
κ

(
dρ

dx

)2

= −κρ2

[
1

ρ

d2ρ

dx2
− 1

ρ2

1

2

(
dρ

dx

)2
]
.

(23)

Using Eq. (14) to replace d2ρ/dx2 in the right-hand side of
Eq. (23) and applying the chain rule for the partial derivative,
we obtain

−κρ
d2ρ

dx2
+ 1

2
κ

(
dρ

dx

)2

= −1

2
κρ2 d

dρ

[
1

ρ

(
dρ

dx

)2
]
. (24)

Therefore, Eq. (22) is transformed into

p0 − 1

2
κρ2 d

dρ

[
1

ρ

(
dρ

dx

)2
]

= p∗, (25)

which can be further written as

d

[
1

ρ

1

2
κ

(
dρ

dx

)2
]

= (p∗ − p0)d

(
1

ρ

)
. (26)

Integrating both sides of Eq. (26) from ρl to ρ, we obtain
the following representation:

1

2
κ

(
dρ

dx

)2

= ρ

∫ ρ−1

ρ−1
l

(p∗ − p0)d

(
1

ρ

)
. (27)

If the upper limit of the integral is taken as the inverse of the
saturated fluid density ρ−1

g , the well-known Maxwell equal-
area rule is naturally recovered, namely,∫ ρ−1

g

ρ−1
l

p0d

(
1

ρ

)
= p∗

(
1

ρg
− 1

ρl

)
. (28)

With Eq. (28), it is clear that the lower limit of the right-hand
side of Eq. (27) can be replaced by ρ−1

g without changing the
integral value.

C. Equivalence between Eqs. (16) and (27)

Now we can prove the equivalence of Eqs. (16) and (27).
First, we note that the thermodynamic pressure p0 in

Eq. (16) can be rewritten as

p0 = ρ2

(
1

ρ

dψ

dρ
− 1

ρ2
ψ

)
= ρ2 d

dρ

(
ψ

ρ

)
, (29)

which is equivalent to

−p0d

(
1

ρ

)
= d

(
ψ

ρ

)
. (30)

Second, integrating Eq. (30) from ρl to ρ, we obtain

−
∫ ρ−1

ρ−1
l

p0d

(
1

ρ

)
= ψ

ρ
− ψ (ρl )

ρl
. (31)

In addition, the following integral is always valid due to con-
stant p∗, i.e., ∫ ρ−1

ρ−1
l

p∗d

(
1

ρ

)
= p∗

(
1

ρ
− 1

ρl

)
. (32)

Therefore, the right-hand side of Eq. (27) can be evaluated by
the sum of Eqs. (31) and (32):

ρ

∫ ρ−1

ρ−1
l

(p∗ − p0)d

(
1

ρ

)
= ψ (ρ) − ψ (ρl ) + p∗

ρl
ρ + p∗.

(33)

Finally, by using p∗ = ρlμ
∗ − ψ (ρl ), the coefficient of the

second term in the right-hand side of Eq. (33) is simplified
as −[ψ (ρl ) + p∗]/ρl = −μ∗. Therefore, the equivalence be-
tween Eqs. (16) and (27) is proved.

D. Force structure in the transition region between two phases
at equilibrium

As an example, we consider the van der Waals (vdW) EOS:
[25]

p0 = ρRT

1 − bρ
− aρ2, (34)

where a is a parameter due to the attractive molecular inter-
action, b accounts for the volume correction due to the finite
molecular size effect, and R is the gas constant. By solving the
equations ∂ρ p0(ρc, Tc) = 0 and ∂ρ∂ρ p0(ρc, Tc) = 0 at the crit-
ical point, the critical density ρc, temperature Tc, and pressure
pc of Eq. (34) are obtained as

ρc = 1

3b
, Tc = 8a

27Rb
, pc = a

27b2
. (35)

The corresponding bulk free energy density ψ (ρ) is

ψ (ρ) = ρRT ln

(
bρ

1 − bρ

)
− aρ2. (36)
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(a) (b)

FIG. 1. (a) Distributions of the thermodynamic pressure p0 = p0 − p∗ and two capillary stresses [−κρd2ρ/dx2 and κ (dρ/dx)2/2] in the
transition region for a flat interface at equilibrium. (b) p0 − ρ diagram. Three zero-crossing points (A, B, and D) and two extreme points (C
and E ) are marked. CE represents the unstable region of the thermodynamic pressure. A and B correspond to the saturated bulk densities with
the same thermodynamic pressure.

In addition, the bulk chemical potential μ0(ρ) is

μ0(ρ) = RT

[
ln

(
bρ

1 − bρ

)
+ 1

1 − bρ

]
− 2aρ. (37)

For convenience, the comparison for the flat interface prob-
lem will be presented in the lattice units, which is widely used
in the community of the LBM [24,32]. Here, we choose a =
9/49, b = 2/21 and R = 1. The corresponding critical val-
ues are ρc = 3.500, Tc = 0.571, and pc = 0.750, respectively.
The coexisting densities (ρl and ρg) and the bulk thermo-
dynamic pressure p∗ can be obtained through the Maxwell
equal-area rule [see Eq. (28)]. At the temperature T = 0.46 <

Tc, the coexisting saturated densities are ρl = 6.723 and ρg =
0.864, which result in the density ratio ρl/ρg = 7.784. The
bulk thermodynamic pressure and chemical potential are p∗ =
0.296 and μ∗ = −0.926, respectively. The density profile
ρ(x) at equilibrium can be obtained by solving Eq. (16) nu-
merically. The interfacial free energy coefficient κ is set as
0.02. Then, with the obtained density field ρ(x), the first-order
and the second-order derivatives of the density field (dρ/dx
and d2ρ/dx2) can be obtained by using Eqs. (13) and (16).

Figure 1(a) shows the distributions of different terms in
Eq. (22), which include the (redefined) thermodynamic pres-
sure p0 = p0 − p∗ and the capillary stresses caused by the
density gradients [−κρd2ρ/dx2 and κ (dρ/dx)2/2]. The sum
of these three terms is equal to zero at equilibrium, which
implies the consistency of the above analysis from different
perspectives. The capillary stress κ (dρ/dx)2/2 is equal to the
bulk chemical potential ψ , which is not fully symmetric with
respect to the origin x = 0 (as shown in the zoom-in view) due
to different interaction strengths between the interfacial region
and each bulk region. It is observed that there exists a por-
tion of the blue curve with negative slope d p0/dx < 0. Since
dρ/dx > 0 holds at the same region, we have d p0/dρ < 0,
which implies that this region is mechanically unstable [as
displayed in Fig. 1(b)]. Fortunately, the thermodynamic pres-
sure p0 = p0 − p∗ in the transition region is balanced by the
capillary contributions due to the density gradients, finally

leading to the phase equilibrium (with constant hydrodynamic
pressure).

We observe that the term κ (dρ/dx)2/2 remains non-
negative in the whole region. In contrast, both p0 and
−κρ(d2ρ/dx2) have a zero-crossing point in this region
(where d p0/dρ < 0). It is noticed that these two zero-crossing
points do not coincide with each other, which divides the
unsteady portion into three parts. Before the first zero-
crossing point, p0 is positive and −κ (d2ρ/dx2) is negative.
κ (dρ/dx)2/2 tends to increase the magnitude of p0, whose
sum is suppressed by −κρ(d2ρ/dx2). Between these two
zero-crossing points, p0 becomes negative, which is enhanced
by the capillary contribution −κρ(d2ρ/dx2). The sum of
these two terms is neutralized by κ (dρ/dx)2/2. After the
second zero-crossing point, p0 decreases rapidly to reach a
global negative valley point. It is clear that the positive con-
tribution of κ (dρ/dx)2/2 itself cannot maintain the balance.
However, the magnitude of −κρ(d2ρ/dx2) grows rapidly to
highly positive values, which leads to the global equilibrium.

V. THEORETICAL ANALYSIS ON
DOUBLE-WELL APPROXIMATION

For near-critical fluids (in a small vicinity of the critical
point of the EOS), many studies [10,27,33] adopted the well-
known double-well approximation for the bulk free energy
density ψ (ρ), namely,

ψ (ρ) ≈ β0(ρ − ρl )
2(ρ − ρg)2, (38)

where the positive coefficient β0 is assumed to be a constant.
In the original paper of Cahn and Hillard [34], β0 is taken as

β0 = βCH ≡ 1

4!

∂4ψ

∂ρ4
(ρc, Tc), (39)

where ρc and Tc are the critical density and the critical temper-
ature of a given EOS for p0, respectively. This is reasonable
because both the second and third derivatives of ψ are equal
to zero at the critical point.
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The advantage for this simple representation is that the
interfacial thickness parameter W and the surface tension
coefficient σs can be tuned separately based on the corre-
sponding analytical solution of a flat surface at equilibrium:

ρ(x) = ρl + ρg

2
+ ρl − ρg

2
tanh

(
2x

W

)
. (40)

which can be obtained by solving Eq. (16). In other words,
they can be explicitly evaluated through the following rela-
tions [2,6,7]:

W = 1

ρl − ρg

√
8κ

β0
, σs = κ

∫ +∞

−∞

(
dρ

dx

)2

dx

= 1

6
(ρl − ρg)3

√
2κβ0, (41)

when κ and β0 are already given.
It is also noted that Eq. (38) has been widely applied in

two-phase flow simulations focusing on phase separation, so
it is not limited to single-component liquid-vapor flows. By
introducing a flexible pressure parameter in the momentum
equation to enhance the incompressibility [15,18,35], Eq. (38)
has been generalized for the order parameter in the phase-field
method to simulate large-density-ratio fluids when combining
with the phase-field evolution equations [34,36]. However,
for the original form in Eq. (38) corresponding to isothermal
liquid-vapor flows, whether this simple approximation can
match the given EOS is not fully explored even for relatively
low density ratio ρl/ρg [for example, ρl/ρg � O(10)].

Instead of adopting the double-well approximation with a
constant coefficient β0, we prefer to discuss this problem in a
more general way and assume the following form for ψ (ρ):

ψ (ρ) = β(ρ)(ρ − ρl )
2(ρ − ρg)2, (42)

where β(ρ) is a smooth function of the density to match the
EOS for fixed temperature T . To distinguish Eq. (42) from the
double-well approximation with the constant coefficient β0

[see Eq. (38)], it is referred to as the double-well formulation
with the density-dependent coefficient β(ρ).

When ρ 
= ρl and ρg, the coefficient function β(ρ) can be
directly evaluated by

β(ρ) = ψ (ρ)

(ρ − ρl )2(ρ − ρg)2
, (43)

where ψ (ρ) is given by the considered EOS. When the density
ρ is equal to ρl or ρg, the values of β(ρ) at the saturated
densities (ρl and ρg) can be obtained by virtue of the limit
theory.

Since ψ (ρg) = 0 and μ0(ρg) = ∂ρψ (ρg) = 0, applying the
l’Hôpital rule twice gives

β(ρg) = lim
ρ→ρg

ψ (ρ)

(ρ − ρl )2(ρ − ρg)2

= lim
ρ→ρg

μ0(ρ)

2(ρ − ρg)(ρ − ρl )(2ρ − ρl − ρg)

= 1

2(ρl − ρg)2

∂2ψ

∂ρ2
(ρg). (44)

Similarly, due to ψ (ρl ) = 0 and μ0(ρl ) = ∂ρψ (ρl ) = 0, β(ρl )
is obtained as

β(ρl ) = 1

2(ρl − ρg)2

∂2ψ

∂ρ2
(ρl ). (45)

Because of ∂ρ p0 = ρ∂ρ∂ρψ , it follows that

β(ρg) = 1

2ρg(ρl − ρg)2

∂ p0

∂ρ
(ρg), (46a)

β(ρl ) = 1

2ρl (ρl − ρg)2

∂ p0

∂ρ
(ρl ), (46b)

which implies that β(ρg) and β(ρl ) are directly related to
the square of the sound speed c2

s = ∂ρ p0 in the bulk phases,
namely, the slopes at ρl and ρg in the p0-ρ diagram. The
mechanically stability condition requires that both the slopes
should be positive, implying that β(ρl ) > 0 and β(ρg) > 0.
Generally speaking, β(ρg) and β(ρl ) are not equal, and are
computed from the given EOS.

We will prove that β(ρ) generally could not be approxi-
mated by a linear function. To this end, we need to compute
the first-order derivatives ∂ρβ at the bulk phases. The best way
to evaluate ∂ρβ(ρl ) is to employ the limit definition of the
derivative:

∂β

∂ρ
(ρl ) = lim

ρ→ρl

1

ρ − ρl

[
ψ (ρ)

(ρ − ρl )2(ρ − ρg)2
− β(ρl )

]
.

(47)

By noting that ψ (ρl ) = 0 and μ0(ρl ) = ∂ρψ (ρl ) = 0, we ob-
tain

∂β

∂ρ
(ρl ) = 1

(ρl − ρg)2
lim
ρ→ρl

ψ (ρ) − β(ρl )(ρ − ρl )2(ρ − ρg)2

(ρ − ρl )3

= 1

(ρl − ρg)2
lim
ρ→ρl

μ0(ρ) − β(ρl )2(ρ − ρl )(ρ − ρg)(2ρ − ρl − ρg)

3(ρ − ρl )2

= 1

(ρl − ρg)2
lim
ρ→ρl

∂2ψ

∂ρ2 (ρ) − β(ρl )[2(ρ − ρl )2 + 2(ρ − ρg)2 + 8(ρ − ρl )(ρ − ρg)]

6(ρ − ρl )
. (48)
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Then, due to Eqs. (46a) and (46b), the l’Hôpital rule can be
applied once again to Eq. (48), which yields

∂β

∂ρ
(ρl ) = 1

(ρl − ρg)2
lim
ρ→ρl

∂3ψ

∂ρ3 (ρ) − β(ρl )12(2ρ − ρl − ρg)

6

= 1

6(ρl − ρg)2

[
∂3ψ

∂ρ3
(ρl ) − 12β(ρl )(ρl − ρg)

]

= 1

6(ρl − ρg)2

[
∂3ψ

∂ρ3
(ρl ) − 6

ρl − ρg

∂2ψ

∂ρ2
(ρl )

]
, (49)

Similarly, the derivative ∂ρβ(ρg) can be evaluated as

∂β

∂ρ
(ρg) = 1

6(ρl − ρg)2

[
∂3ψ

∂ρ3
(ρg) + 6

ρl − ρg

∂2ψ

∂ρ2
(ρg)

]
.

(50)

Since the third-order derivative of ψ can be expressed as

∂3ψ

∂ρ3
= 1

ρ

∂2 p0

∂ρ2
− 1

ρ2

∂ p0

∂ρ
, (51)

we obtain

∂β

∂ρ
(ρl ) = 1

6(ρl − ρg)2

[
1

ρl

∂2 p0

∂ρ2
(ρl ) − 7ρl − ρg

ρ2
l (ρl − ρg)

∂ p0

∂ρ
(ρl )

]
,

(52a)

∂β

∂ρ
(ρg) = 1

6(ρl − ρg)2

[
1

ρg

∂2 p0

∂ρ2
(ρg) + 7ρg − ρl

ρ2
g (ρl − ρg)

∂ p0

∂ρ
(ρg)

]
.

(52b)

It is proved that ∂ρβ(ρl ) and ∂ρβ(ρg) are directly associated
with both the slopes and curvatures at ρl and ρg in the p0-ρ
diagram.

Therefore, in addition to β(ρl ) 
= β(ρg), we could have
different slopes at the two saturated phases, i.e., ∂ρβ(ρl ) 
=
∂ρβ(ρg), which implies that β(ρ) could not be approximated
or replaced by a simple linear function. We will show that
the nonlinearity of β(ρ) increases with the density ratio
of two bulk phases. For low-density-ratio liquid-vapor flow,
Eqs. (39), (46a), and (46b) provide three available choices
[βCH , β(ρl ), and β(ρg)] for the constant coefficient β0 in the
double-well approximation. We will make a direct compari-
son between the interfacial structures produced by the vdW
EOS and the double-well approximation for the flat interface
problem. The key point addressed in our paper is different
from that of Jamet et al. [7] In their paper, the interfacial
thickness is artificially enlarged while the surface tension and
the speed of sound at the bulk phases are retained. They realize
this goal at the price of using a modified EOS so that the
original interfacial structure is not maintained. In contrast, our
attention is paid to the alteration of the original interfacial
structure due to the use of the double-well approximation.

VI. COMPARISON FOR A FLAT INTERFACE
AT EQUILIBRIUM

A. Density ratio ρl/ρg = 7.784

First, we consider the same case as discussed in Sec. IV D
with relatively high density ratio ρl/ρg = 7.784. Accord-
ing to the analysis in Sect. V, β(ρ) serves as a nonlinear
function of the fluid density. By applying Eqs. (46) and
(52) to the vdW EOS in Eq. (34), we obtain β(ρl ) =
2.352 × 10−3 > 0 and β(ρg) = 3.859 × 10−3 > 0, as well
as the partial derivatives ∂ρβ(ρl ) = 1.749 × 10−4 > 0 and
∂ρβ(ρg) = −1.599 × 10−3 < 0, which indeed show β(ρl ) 
=
β(ρg) and ∂ρβ(ρl ) 
= ∂ρβ(ρg). In addition, the coefficient
βCH in Eq. (39) (derived by Cahn and Hilliard [34] in
a sufficiently small vicinity of the critical point) is equal
to 1.874 × 10−3.

In Fig. 2(a), we plot the coefficient β(ρ) as a function of
ρ in the range (0, b−1), which is divided into three parts by
the two saturated points A, (ρg, β(ρg)), and B, (ρl , β(ρl )).
The tangent lines are marked at these two points according to
the slopes ∂ρβ(ρl ) and ∂ρβ(ρg), which are consistent with the
variation of β(ρ). The nonlinear variation of β(ρ) between
the saturated points A and B is directly related to the static
structure of the transition region, which will be influenced
by the approximation with constant coefficient. Figure 2(b)
shows the bulk free energy density ψ (ρ) obtained from the
double-well approximations [with three different coefficients
β(ρl ), β(ρg), and βCH for β0] and the analytical solution
obtained from the vdW EOS. The comparison indicates that
the double-well approximation is sensitive to the choice of
the constant coefficient β0, particularly in the transition region
between the two bulk phases. We observe that the results
with both β0 = β(ρl ) and β0 = βCH are close to the an-
alytical solutions obtained from the vdW EOS, while the
latter (with β0 = βCH ) shows larger discrepancies. Moreover,
the result with β0 = β(ρg) shows more obvious difference
compared to that with β0 = βCH . Since p0(ρ) is directly
determined by ψ (ρ), similar features can be observed in
Fig. 2(c).

Figure 3 demonstrates the spatial distributions of differ-
ent physical quantities in the transition region. It is found
that all the physical quantities are well approximated by the
double-well approximation with the constant coefficient β0 =
β(ρl ), showing small visible deviations from the analytical
solutions. As illustrated in Fig. 3(a), the slope of density
profile increases by the use of β0 = β(ρg) and decreases if
β0 = βCH is applied. For other three quantities including the
bulk free energy density ψ , the thermodynamic pressure p0
and the capillary stress −κρ(d2ρ/dx2), the resulting profiles
with β0 = β(ρg) are not in good agreement with the analytical
solutions, with overestimated magnitudes near the peak and
valley points, as displayed in Figs. 3(b)–3(d). Nevertheless,
the overall trends of the variations are correctly given by
β0 = β(ρg). Compared to β0 = β(ρg), the results obtained
from β0 = βCH are closer to the analytical solutions. The
comparison indicates that, for relatively high density ratio
(ρl/ρg = 7.784), the predictions with the double-well ap-
proximation are very sensitive to choice of the constant β0

due to relatively strong nonlinear variation of β(ρ) in the
transition region.
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(a)

(b) (c)

FIG. 2. Comparison of the analytical solution and the double-well approximation with constant coefficients [β(ρl ), β(ρg) and βCH ]. The
analytical solution as well as the coefficients β(ρg) and β(ρl ) are obtained from the vdW EOS. (a) Coefficient function β(ρ ) at fixed temperature
T . A: (ρg, β(ρg)); B: (ρl , β(ρl )). (b) Redefined bulk free energy density ψ (ρ ). (c) Thermodynamic pressure p0 as a function of ρ−1.

B. Density ratio ρl/ρg = 1.774

Second, by increasing the temperature to T = 0.56, the
liquid and vapor densities are evaluated as ρl = 4.513
and ρg = 2.543, whose ratio is ρl/ρg = 1.774. By using
Eqs. (46) and (52), we obtain β(ρl ) = 1.845 × 10−3 >

0 and β(ρg) = 2.074 × 10−3 > 0, as well as the partial
derivatives ∂ρβ(ρl ) = −2.967 × 10−5 < 0 and ∂ρβ(ρg) =
−2.300 × 10−4 < 0, which also show β(ρl ) 
= β(ρg) and
∂ρβ(ρl ) 
= ∂ρβ(ρg). The bulk thermodynamic pressure and
chemical potential are p∗ = 0.691 and μ∗ = −0.834, respec-
tively. The coefficient βCH (evaluated at the critical point) is
still equal to 1.874 × 10−3.

Figure 4(a) shows the variation of β(ρ) with respect to
the density ρ. Compared to the first case, the density ratio
is smaller so that the nonlinearity feature of β(ρ) between
A, (ρg, β(ρg)), and B, (ρl , β(ρl )), is greatly weakened. With
different coefficients β0 = β(ρl ), β(ρg) and βCH , the bulk
free energy density potential ψ (ρ) and the thermodynamic
pressure p0(ρ) are displayed in Figs. 4(b) and 4(c). It is
observed that the results obtained from the double-well ap-
proximations with different coefficients are in good agreement
with the analytical solution from vdW EOS between ρl and
ρg. Furthermore, we also compare the static structures of

different physical quantities in the transition region, as dis-
played in Fig. 5. Compared to the case with relatively high
density ratio ρl/ρg = 7.784, all the density profiles agree
very well with each other, as shown in Fig. 5(a). For ψ ,
p0, and −κρ(d2ρ/dx2), the double-well approximations with
β0 = β(ρl ) and β0 = β(ρg) mainly yield small discrepancies
near the peak and valley points, especially for those with
β0 = β(ρg). The results with β0 = βCH appear closer to the
analytical solution than other results. This is reasonable be-
cause βCH is originally derived in a small vicinity of the
critical point.

The comparison shows that for near-critical fluids (rel-
atively low density ratio ρl/ρg = 1.774), the double-well
approximation with constant coefficients (β0 = β(ρl ), β(ρg)
and βCH ) can achieve satisfactory predictions to static struc-
tures in the transition region when compared to the analytical
solution obtained from the vdW EOS.

However, the above analysis and conclusions are restricted
to a stationary flat interface, where the effects of surface
curvature and complex interfacial dynamics are not involved.
In addition, the particularity of 1D problem takes effect in
the simplification (for example, the surface tension stress ten-
sor � = 0 holds for the 1D problem). With the double-well

025104-8



DIFFUSE INTERFACE MODEL FOR A … PHYSICAL REVIEW E 107, 025104 (2023)

(a) (b)

(c) (d)

FIG. 3. Comparison between the analytical solution and the double-well approximations with constant coefficients [β(ρl ), β(ρg) and βCH ].
(a) Density ρ; (b) bulk free energy density ψ ; (c) thermodynamic pressure p0; (d) capillary stress −κρ(d2ρ/dx2).

approximation in Eq. (38), it is known that Eq. (16) admits an
asymptotic solution, which exhibits a hyperbolic tangent dis-
tribution [Eq. (40)] at equilibrium. In the limit of low-density
ratio, this asymptotic solution yields a good approximation
to the density distribution corresponding to the given EOS.
For complex two-phase hydrodynamics, theoretical analysis
is usually difficult to carry out. The bulk densities could also
be influenced by the fluid-solid interaction and the surface
wettability. Whether the theoretical relations derived for a
flat interface at equilibrium could be approximately applied
to simulate complex interfacial flows remains a question. To
our knowledge, direct comparison of the numerical results ob-
tained from the given EOS and its double-well approximation
has not been reported previously.

VII. COMPARISON FOR COMPLEX TWO-PHASE FLOWS

To demonstrate the applicability of the double-well ap-
proximation for near-critical fluids (low-density-ratio limit),
we will simulate a droplet impact on a hydrophilic wall with
the prescribed contact angle θw = π/3 based on the follow-
ing considerations. On one hand, in addition to the unsteady
effect, the physical complexity of this problem is attributed to
fluid-solid interaction and interfacial vorticity dynamics asso-
ciated with the moving and deforming interface. On the other
hand, direct numerical comparison between the double-well
approximation and the given EOS is not found in the existing

literature, although both of them have been widely applied
in different numerical tests. In order to realize a convincing
comparison, both the choice of the computational method and
the design of simulation cases are significant.

A. A brief introduction of WB-DUGKS

Recently, Guo [10] proposed the well-balanced lattice
Boltzmann model (WB-LBM), which was later extended by
Zeng et al. [23] to the well-balanced discrete unified gas
kinetic scheme (WB-DUGKS). Compared to the existing
methods, their numerical tests showed that the spurious veloc-
ity for a stationary droplet can be completely eliminated with
the WB-DUGKS, whose superior ability to capture a moving
surface was also validated. This motivates us to apply this
approach to the present simulation. Since the technical details
of the WB-DUGKS are described in their paper, only a brief
introduction to the WB-DUGKS is provided below.

In the WB-DUGKS, the following discrete Boltzmann
model is solved:

∂ fα
∂t

+ ξα · ∇ fα = f eq
α − fα

τ
+ Fα, α = 0, . . . , Q − 1,

(53)

where fα ≡ f (x, ξα, t ) is the particle distribution function
with the discrete particle velocity ξα at the spatial location
x and time t . The subscript α denotes the discrete particle
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(a)

(b) (c)

FIG. 4. Comparison of the analytical solution and the double-well approximation with constant coefficients [β(ρl ), β(ρg), and βCH ].
The analytical solution as well as the coefficients β(ρg) and β(ρl ) are obtained from the vdW EOS. (a) Coefficient function β(ρ ) at fixed
temperature T . A: (ρg, β(ρg)); B: (ρl , β(ρl )). (b) Redefined bulk free energy density ψ (ρ ). (c) Thermodynamic pressure p0 as a function
of ρ−1.

velocity direction and Q is the total number of discrete particle
velocities used. τ is the relaxation time, which is related to the
kinematic viscosity ν through the relation ν = c2

s τ . cs = √
RT

is the speed of sound, R is the gas constant, and T is the
temperature.

The equilibrium distribution function f eq
α is designed as

f eq
α =

{
ρ − (1 − ω0)ρ0 + ω0ρs0(u), α = 0,

ωα[ρ0 + ρsα (u)], α 
= 0,
(54)

where ρ0 is a numerical constant, ωα (α = 0, . . . , Q − 1) are
the weighting factors, and sα (u) is given by

sα (u) = ξα · u
c2

s

+ (ξα · u)2

2c4
s

− u · u
2c2

s

. (55)

The choice of ρ0 may influence the stability of the numerical
scheme by ensuring the positivity of the equilibrium, but
does not influence the results. Following Zeng et al. [23],
we set ρ0 = 0 in the simulations. The well-known D2Q9
discrete particle velocity model is adopted (c2

s = RT , ω0 =
4/9, ω1,2,3,4 = 1/9, and ω5,6,7,8 = 1/36). Compared to the
Maxwellian distribution function, the second-order moment
of this new equilibrium distribution

∑Q−1
α=0 ξαξα f eq

α is equal to
ρuu instead of c2

s ρI + ρuu. Therefore, differently from the
standard lattice Boltzmann equation (LBE), −∇(c2

s ρ) does

not appear in the recovered hydrodynamic equations for the
present model. In addition, the mesoscopic forcing term Fα is
designed as

Fα = ωα

[
ξα · (−ρ∇μρ )

c2
s

+ u
( − ρ∇μρ + c2

s ∇ρ
)

:
(
ξαξα − c2

s I
)

c4
s

+ 1

2

(
ξ2
α

c2
s

− D

)
(u · ∇ρ)

]
, (56)

where D is the spatial dimension and D = 2 for the D2Q9
model.

Through the Chapman-Enskog analysis, Eqs. (5a) and (5b)
can be recovered from the present model at the continuum
limit, but the resulting viscous stress tensor � has a fixed
bulk-to-shear viscosity ratio μV /μ = (D + 2)/D [which cor-
responds to a term ρτc2

s (∇ · u)I]. However, combining the
Chapman-Enskog expansion and the Hermite expansion [37],
we find that this restriction on the ratio of bulk to shear viscos-
ity can be removed by adding another source term ωα

1
2 ( D+2

D −
μV

μ
)ρ∇ · u( ξ2

α

c2
s

− D) to the mesoscopic forcing term Fα .
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(a) (b)

(c) (d)

FIG. 5. Comparison between the analytical solution and the double-well approximations with constant coefficients [β(ρl ), β(ρg), and βCH ].
(a) Density ρ; (b) bulk free energy density ψ ; (c) thermodynamic pressure p0; (d) capillary stress −κρ(d2ρ/dx2).

B. Problem description

As illustrated in Fig. 6(a), a liquid droplet with the di-
ameter Dl centered at the location (x0, y0) = (Dl/2, 2Dl ) is
surrounded by the vapor, where (x, y) represent the vertical
and horizontal coordinates and the z axis is perpendicular to
the plane of the diagram. The droplet radius is denoted as
Rl = Dl/2.

The density field is initialized by

ρ(x, y) = ρlφ(x, y) + ρg[1 − φ(x, y)], (57)

with the shape function φ(x, y) given as

φ(x, y)

= 1

2

[
1 + tanh

(
2(Rl −

√
(x − x0)2 + (y − y0)2)

W

)]
,

(58)

where the saturated densities ρl and ρg are determined ac-
cording to the Maxwell equal-area rule [see Eq. (28)]. The
interfacial thickness parameter W is determined by the first
equation in (41) with known κ and β0. The second equation in
(41) gives an estimated surface tension coefficient σs. For the

(a) (b)

FIG. 6. (a) Sketch of the initial state of the droplet contacting with the wall. Dl is the droplet diameter and U0 represents the magnitude of
the initial impact velocity. (b) Droplet interface with background vorticity field at t∗ = 0.8. We = 85.7, and Re = 100.
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low-Mach number case, except for the density and viscosity
ratios, the two-phase flow system is mainly controlled by the
Weber number We and the Reynolds number Re:

We = ρlU 2
0 Dl

σs
, Re = ρlU0Dl

μl
. (59)

Therefore, for fixed Weber and Reynolds numbers, the ini-
tial velocity field u = (ux, uy) is ux(x, y) = −U0φ(x, y) and
uy(x, y) = 0, where U0 = (We σs/(ρlDl ))1/2 is a constant ve-
locity in the bulk region of the liquid phase. Then, the
relaxation time is evaluated through τ = U0Dl/(Re c2

s ).
Periodic boundary conditions are considered in the hor-

izontal y direction. In the vertical x direction, the on-wall
bounce back scheme is applied to the bottom wall while the
outflow boundary condition is used for the top boundary. The
geometrical wetting boundary condition (proposed by Ding
et al. [38], further applied by Liang et al. [17] and Yang et al.
[39]) is used to describe the wettability of the ideal solid wall
with a given contact angle θw, namely,

nw · ∇ρ = − tan

(
π

2
− θw

)
‖∇ρ − (nw · ∇ρ)nw‖, (60)

where nw is the unit normal vector pointing from the wall to
the fluid. Equation (60) is essentially a Neumann boundary
condition, which relates the wall-normal density gradient to
its tangential gradient at the wall. With the implementation of
Eq. (60), the second-order isotropic central schemes [17,26]
are used to compute ∇ρ and ∇2ρ at all the cell centers. In this
paper, a hydrophilic ideal wall with θw = π/3 is considered.

C. Simulations and discussions

Six simulations (Cases A–F) are carried out by using the
WB-DUGKS with the Weber number We = 85.7 and the
Reynolds number Re = 100. For all the simulated cases, the
density ratio is as ρl/ρg = 1.174 with ρl = 4.513 and ρg =
2.543 at T = 0.56, which is the same as that used for a flat
interface at equilibrium. The interfacial free energy coefficient
is κ = 0.02 for all the cases. Since the dynamic viscosity
is μ = ρν = ρc2

s τ , a constant relaxation time τ implies that
the ratio of the dynamic viscosity is μl/μg = 1.174 and that
the kinematic viscosity ratio is νl/νg = 1. The domain size is
Lx × Ly = 200�x × 400�x, where �x = 1 is the grid spac-
ing. The droplet diameter Dl is equal to 100�x.

For Case A, the double-well approximation with β0 =
β(ρl ) = 1.845 × 10−3 is used, which gives the interfacial
thickness W and the surface tension coefficient σs as W =
4.728 and σs = 0.01094, respectively. It is noted that the
empirical condition (W > 3�x = 3) for numerically sustain-
able interfacial thickness is satisfied. Then, the initial velocity
is computed as U0 = 0.0492, which implies a small Mach
number Ma = U0/

√
RT = 0.0658 that is compatible with

the isothermal assumption. Therefore, the resulting Knudsen
number is Kn ≡ Ma/Re = 7.676 × 10−4 so that the flow en-
tirely lies in the continuum regime. The ratio of the time step
�t to the relaxation time τ is �t/τ = 0.975 (�t = 0.1 and
τ = 0.1026). The parameters for Case B are the same as those
used in Case A except that the vdW EOS with a = 9/49,
b = 2/21, and R = 1 is applied.

Similarly, for Case C, we adopt the double-well ap-
proximation with β0 = β(ρg) = 2.074 × 10−3, which yields
slightly different parameters W = 4.459 and σs = 0.01160.
In order to retain consistent Weber and Reynolds numbers
(as used in Cases A and B), U0 and τ should be adjusted to
0.0507 and 0.1056, respectively. As a result, the Mach and
Knudsen numbers become Ma = 0.0677 and Kn = Ma/Re =
7.904 × 10−4 (continuum regime). The ratio of the time step
�t to the relaxation time τ is �t/τ = 0.947. Case D adopts
the same parameters as Case C with the vdW EOS. The
double-well approximation with β0 = βCH = 1.874 × 10−3 is
used for Case E, while the vdW EOS is applied for Case F
with other parameters kept the same as Case E.

Figure 6(b) displays the location of the droplet interface
at t∗ = 0.8 superposed on the normalized vorticity ω∗

z as the
background field. High-vorticity-magnitude regions are ob-
served near the bottom wall due to the strong shearing effects
during the spreading process. In addition, two counter-rotating
vortices are formed around the droplet interface due to the
outside downward flow near the centerline and the stretching
motion of the interface towards opposite directions. Figure 7
shows the evolution of the droplet morphology during droplet-
wall interaction for the four simulated cases. Due to the
large adhesive force between the droplet and the hydrophilic
wall, their contact area increases with time. The results for
different cases are in excellent agreement except for small
visible differences near the centerline, which indicates that the
double-well approximation provides a good approximation in
predicting the time evolution of the droplet morphology.

We also compare the distributions of different macroscopic
quantities at t∗ = 0.8. Figure 8 shows the distributions of
physical quantities at x∗ = 1 (a horizontal line outside the
droplet). As shown in Fig. 8(a), the normalized vertical ve-
locity component u∗

x exhibits distinct peak and valley regions
along this line. The high negative peak corresponds to the
downward flow near the centerline while the other two posi-
tive peaks representing the upwelling flow, which are induced
by the two counter-rotating vortices as marked in Fig. 6(b).
These features are also consistent with the distributions of
the normalized horizontal velocity component u∗

y shown in
Fig. 8(b). For u∗

x and u∗
y , we find that the results of Cases A

and E [double-well approximation with β0 = β(ρl ) and βCH ]
obviously deviate from those of Cases B–D and F especially
near the peak and valley points. Despite these discrepancies in
their magnitudes, all the results are qualitatively consistent.

Surprisingly, as illustrated in Fig. 8(c), the normalized
vorticity component values ω∗

z are in excellent agreement
among different cases, and are not evidently influenced by the
double-well approximations of the EOS. As for the normal-
ized density ρ∗ shown in Fig. 8(d), Cases B and D with vdW
EOS agree well with each other only with minor difference. In
contrast, the density distributions provided by the double-well
approximations (Cases A, C, and E) show obvious differences
especially near the two peak vorticity regions, where the den-
sity and velocity fields are more strongly coupled compared
to other common regions. However, the overall trend of the
density variation is correctly predicted by the double-well
approximations.

Moreover, Fig. 9 compares the distributions of physical
quantities at the left limiting position of the centerline, i.e.,
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FIG. 7. Comparison of droplet morphologies at different dimensionless time instants. The interface is defined as the isosurface with the
density ρI ≡ (ρl + ρg)/2. (a) t∗ = 0.2, (b) t∗ = 0.4, (c) t∗ = 0.8, and (d) t∗ = 1.2. We = 85.7 and Re = 100.

y∗ → 4 (a vertical line across the droplet). As shown in
Fig. 9(a), compared to the results of Cases B, D, and F with
vdW EOS, the double-well approximations (Cases A, C, and
E) yield some deviations in different portions of the curves,
while the overall trends of different cases are very similar and
acceptable. Figures 9(b) and 9(c) display the comparisons for
the normalized vertical velocity component u∗

y and the nor-
malized vorticity component ω∗

z , where excellent agreements
among different cases are achieved. As for the normalized
density ρ∗ in Fig. 9(d), the results of Cases A, B, and D–F
agree well with each other while Case C [with β0 = β(ρg)]
shows relatively lower liquid density inside the droplet. The
remaining portions of the density profiles remain consistent
for all the simulated cases. The normalized saturated densities
for a flat interface at equilibrium are also marked in Fig. 9(d)
for reference. It is observed that the densities of the spreading
droplet do not deviate much from these saturated ones in the
low-Mach-number limit.

We summarize as follows. For near-critical fluids (low-
density-ratio limit), we realize a direct comparison between
the double-well approximation with constant coefficient β0

[as determined by Eqs. (39) and (46a), (46b), originally de-
rived from a flat surface at equilibrium] and the vdW EOS
by using a recently proposed WB-DUGKS. On one hand, the
comparison indicates that, for unsteady complex interfacial
dynamics, the double-well approximation can yield satisfac-
tory results for important macroscopic quantities with small
discrepancies when compared to the given vdW EOS. On the
other hand, even for unsteady interfacial motion, the compar-
ison justifies the local equilibrium assumption of the density

distribution in the transition region, which can be well approx-
imated with a hyperbolic tangent solution asymptotically.

VIII. MEAN FIELD FORCE AND ITS SIMPLIFICATIONS

The above sections concentrate on the discussion of the
EOS and its double-well approximation. Another important
aspect of two-phase flow modeling is the simplification of the
mean field force, which includes both the pressure drop in the
EOS and the surface tension force caused by the long-range
molecular interaction.

Following the previous studies on kinetic theory of two-
phase flow [40–43], we consider identical spherical particles
with mass m that interact through the isotropic Sutherland’s
potential

V (r) =
{+∞, r < σ,

− φσ

m2

(
r
σ

)−γp
, r � σ,

(61)

where σ is the effective molecular diameter, m is the molecu-
lar mass, and r = x1 − x is the relative position vector of two
colliding particles at x and x1, respectively. r = ‖r‖ denotes
the magnitude of r. φσ/m2 denotes the depth of potential well
at r = σ . This potential can be viewed as the superposition of
a hard-sphere repulsive potential for r < σ and an attractive
soft potential tail for r � σ . The parameter γp is the order of
the power potential tail, which is used to control the range of
attractive interaction. The hard-sphere repulsive potential is
responsible for the phase separation while the attractive soft
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FIG. 8. Comparison of the normalized (a) vertical velocity component u∗
x ≡ ux/U , (b) horizontal velocity component u∗

y ≡ uy/U , (c) vor-
ticity component ω∗

z ≡ ωz/(U/R), and (d) density ρ∗ = ρ/ρI at x∗ = 1 along the horizontal direction. ρI ≡ (ρl + ρg)/2 is defined as the
interfacial density. We = 85.7 and Re = 100.

potential tail influences both the EOS and the surface tension
force.

For a fixed time t , we use Fm to denote the mean-field force
per unit mass acting on a molecule at the location x by all the
surrounding particles at the locations x1 out of the effective
spherical domain [43], namely,

Fm(x, t ) =
∫

‖x1−x‖>σ

dV

dr
(r)

x1 − x
‖x1 − x‖ρ(x1, t )dx1. (62)

Equivalently, by using the relative position vector r as the
integration variable, Eq. (62) can be rewritten as

Fm(x, t ) =
∫

r>σ

dV

dr
(r)

r
r
ρ(x + r, t )dr. (63)

Supposing that the density is a slowly varying variable, the
smooth density approximation can be applied to ρ(x + r) (the
variable t is omitted for simplicity) by performing the Taylor-
series expansion at the location x. Up to the third order, we
have

ρ(x + r) = ρ(x) + rk
∂ρ

∂xk
(x) + 1

2
r jrk

∂2ρ

∂x j∂xk
(x)

+ 1

6
rkrsrq

∂3ρ

∂xk∂xs∂xq
(x). (64)

Substituting Eq. (64) into Eq. (63) gives

(Fm) j =
[∫

r>σ

dV

dr

r jrk

r
dr

]
∂ρ

∂xk
(x)

+
[

1

6

∫
r>σ

dV

dr

r jrkrsrq

r
dr

]
∂3ρ

∂xk∂xs∂xq
(x). (65)

If γp > 3, the first coefficient on the right-hand side of
Eq. (65) converges, i.e.,

∫
r>σ

dV

dr

r jrk

r
dr = 4πσ 3

3

φσ

m2

γp

γp − 3
δ jk . (66)

If γp > 5, the second coefficient on the right-hand side of
Eq. (65) converges, which results in

1

6

∫
r>σ

dV

dr

r jrkrsrq

r
dr

= 2

45
πσ 5 φσ

m2

γp

γp − 5
(δ jsδkq + δ jkδsq + δ jqδsk ). (67)

Therefore, when the controlling parameter satisfies the re-
quirement γp > 5, Fm can be expressed as

Fm = −∇Vm, Vm = −2aρ − κ∇2ρ, (68)
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FIG. 9. Comparison of the normalized (a) vertical velocity component u∗
x ≡ ux/U , (b) horizontal velocity component u∗

y ≡ uy/U , (c) vor-
ticity component ω∗

z ≡ ωz/(U/R) and (d) density ρ∗ = ρ/ρI at y∗ = 4 along the horizontal direction. ρI ≡ (ρl + ρg)/2 is defined as the
interfacial density. We = 85.7 and Re = 100.

where Vm accounts for the attractive molecular interaction and
the density gradient. The two coefficients a and κ are given by

a = 2

3
πσ 3 φσ

m2

γp

γp − 3
, κ = 2

15
πσ 5 φσ

m2

γp

γp − 5
. (69)

We notice that the coefficients in Eq. (69) are the same as
those recently reported by Struchtrup and Frezzotti [44] and
by Frezzotti et al. [43]

The Chapman-Enskog expansion of the Enskog-Vlasov
equation shows that the thermodynamic pressure p0 can be
written in an unified form, which reads [28,29]

p0 = ρRT (1 + bρχ ) − aρ2, (70)

where b = 2πσ 3/3m, and χ (ρ) is a density-dependent pair
correlation function. Two new corrections exists in the pres-
sure when compared to the EOS of the ideal gas. The pressure
increment bρ2RT χ arises due to the short-range molecular
interaction dominated by the strong repulsive force, while the
pressure reduction −aρ2 is caused by the long-range attractive
molecular interaction. Different choice of χ (ρ) will lead to
different EOS. For example, the vdW EOS can be recov-
ered by choosing χ (ρ) = 1

1−bρ [28,29]. Similarly, if χ (ρ) =
1−bρ/8

(1−bρ/4)3 is used, the Carnahan-Starling (CS) EOS [45] is
recovered.

Combining Eqs. (6) and (70), one can obtain a natural
decomposition of the chemical potential force as follows:

−ρ∇μρ = −∇[ρRT (1 + bρχ )] − ρ∇Vm. (71)

Equation (71) indicates that the mean field force per unit vol-
ume −ρ∇Vm only serves as a portion of the chemical potential
gradient force. The remaining term −∇[ρRT (1 + bρχ )] orig-
inates from the Enskog correction for dense fluids.

However, He and Doolen [28] also reported an expression
of the mean field force similar to Eq. (68):

F ′
m = −∇V ′

m, V ′
m = −2a′ρ − κ ′∇2ρ, (72)

where the coefficients were given by

a′ = −1

2

∫
r>σ

V (r)dr, κ ′ = −1

6

∫
r>σ

r2V (r)dr. (73)

Then, if the Sutherland potential in Eq. (61) is applied to their
model, Eq. (73) will give

a′ = 2

γp
πσ 3 φσ

m2

γp

γp − 3
, κ ′ = 2

3γp
πσ 5 φσ

m2

γp

γp − 5
. (74)

Note that γp > 5 is still required to guarantee the convergence
of the integrals in Eq. (73). The corresponding thermody-
namic pressure is written as

p0 = ρRT (1 + b′ρχ ) − a′ρ2. (75)
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By comparing Eq. (69) with Eq. (74), we find that the coef-
ficients reported by Struchtrup and Frezzotti [44] are different
from those derived by He and Doolen [28], which are related
through

a′ = (3/γp)a < a and κ ′ = (5/γp)κ < κ, (76)

for fixed parameters σ , m, γp (>5), and φσ . In addition, it is
obvious that b′ = b due to fixed σ and m. As a result, this
difference will yield different EOSs as shown in Eqs. (70)
and (75). Take the vdW EOS as an example. Because of the
difference between Eqs. (69) and (74), the critical values of
Eq. (75) are ρ ′

c = ρc, T ′
c = (3/γp)Tc, p′

c = (3/γp)pc. In other
words, the difference of the coefficients a and b leads to
a lower critical temperature and critical pressure while the
critical density is not changed.

The reason for this difference in the coefficients can
be explained as follows. He and Doolen [28] derived their
mean field force expression by simplifying the integral G2,
which described the long-range attractive interaction in the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) theory.
To be consistent with their derivation, we follow the sym-
bols used in their paper for this short discussion, where
the two-particle distribution function is f (2)(ξ1, r1, ξ2, r2) ≈
f (ξ1, r1) f (ξ2, r2) in the integral domain {D2 : ‖r2 − r1‖ �
σ }. Here, r1 and r2 are the spatial locations of two colliding
particles, and ξ1 and ξ2 are their corresponding velocities. The
integral G2 is evaluated as

G2 =
∫
D2

∫
∂ f (2)

∂ξ1
· ∇r1V (r12)dξ2dr2

= ∂ f (ξ1, r1)

∂ξ1
·
∫
D2

∫
f (ξ2, r2)∇r1V (r12)dξ2dr2

= ∂ f (ξ1, r1)

∂ξ1
·
∫
D2

[∫
f (ξ2, r2)dξ2

]
∇r1V (r12)dr2

= ∂ f (ξ1, r1)

∂ξ1
·
∫
D2

ρ(r2)∇r1V (r12)dr2, (77)

where r12 = −r21 = r1 − r2 and r12 = r21 = ‖r1 − r2‖. By
applying the identity

∇r1V (r12) = dV (r12)

dr12

r1 − r2

r12
(78)

to the last equality in Eq. (77), we obtain

Fm(r1) =
∫
D2

dV (r12)

dr12

r21

r12
ρ(r2)dr2. (79)

After the substitution r1 ⇒ x and r2 ⇒ x1, Eq. (79) is consis-
tent with Eq. (62).

Since the integral domain D2 is explicitly dependent on
r1, the order of

∫
D2

and ∇r1 cannot be arbitrarily exchanged
mathematically. It is noted that He and Doolen [28] exchange
the order of

∫
D2

and ∇r1 (perhaps as a rough estimate), which
gives∫

D2

ρ(r2)∇r1V (r12)dr2 → ∇r1

[∫
D2

ρ(r2)V (r12)dr2

]
. (80)

Then, He and Doolen [28] introduce the intermolecular poten-
tial as

V ′
m(r1) =

∫
D2

ρ(r2)V (r12)dr2. (81)

After the substitution r1 ⇒ x and r2 ⇒ x1(recovering the no-
tations in this paper), Eq. (81) is recast to

V ′
m(x) =

∫
r>σ

ρ(x + r)V (r)dr. (82)

Performing the second-order Taylor-series expansion on the
density with respect to r gives

V ′
m(x) =

[∫
r>σ

V (r)dr
]
ρ(x)

+
[∫

r>σ

1

2
r jrkV (r)dr

]
∂2ρ

∂x j∂xk
(x)

=
[∫

r>σ

V (r)dr
]
ρ(x) +

[
1

6

∫
r>σ

r2V (r)dr
]
∇2ρ.

(83)

By comparing Eqs. (72) and (83), the coefficients in (73) are
obtained.

In summary, the inconsistency between the coefficients
provided by He and Doolen [28] and Struchtrup and Frezzotti
[44] is caused by the rough estimate introduced in Eq. (80).
Despite having this defect in deriving the coefficients, He
and Doolen correctly concluded that the long-range molecular
interaction could be modeled as a potential force, which was
formally consistent with the result in Eq. (68). For practical
applications, we have noticed that these two coefficients (a
and κ) are generally viewed as adjustable input parameters
instead of being evaluated through their definitions at the
molecular level. Therefore, the results of these simulations
will not be influenced by the inconsistency discussed here.

IX. CONCLUSIONS AND DISCUSSIONS

In this paper, relationships among fundamental physical
concepts involved in the diffuse interface modeling are dis-
cussed and examined for an isothermal single-component
liquid-vapor system.

First, by combining theoretical and numerical methods,
a flat surface at equilibrium is discussed as a canon-
ical problem from two different perspectives including
chemical equilibrium and force balance. In particular, the
Maxwell equal-area rule is naturally recovered as a direct
corollary. Although it is geometrically simple, the force
structure in the transition region between the two fluids
is clearly revealed, which demonstrates that the capillary
contributions due to the density gradients can suppress
the mechanical instability of the thermodynamic pressure
and therefore result in constant hydrodynamic pressure and
chemical potential.

Second, for a flat surface at equilibrium, we compare the
results obtained from the double-well approximation with
three constant coefficients [namely, β(ρl ), β(ρg), and βCH ]
and those obtained by using the vdW EOS. We show that
applying the double-well approximation to the bulk free
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energy density can provide qualitative predictions for rel-
atively high density ratio (ρl/ρg = 7.784) and satisfactory
results for relatively low density ratio (ρl/ρg = 1.774).

For ρl/ρg = 7.784, the results are sensitive to the choice
of the coefficient β0. We observe that the results with
both β0 = β(ρl ) and β0 = βCH [βCH was derived by Cahn
and Hilliard [34] in a small vicinity of the critical point
(ρc, Tc)] are close to the analytical solutions obtained from
the vdW EOS, while those with β0 = βCH show larger dis-
crepancies. In contrast, the results with β0 = β(ρg) exhibit
larger differences compared to those using β0 = β(ρl ) and
β0 = βCH . For ρl/ρg = 1.774, the results from β0 = βCH

are very close to the analytical solution, and show much
smaller discrepancies compared to those from β0 = β(ρl ) and
β(ρg). The main cause for this observation is attributed to
the nonlinear variation of the generalized coefficient func-
tion in the double-well formulation [Eq. (42)] at different
density ratios.

Then, in order to validate the applicability of the double-
well approximation to complex two-phase hydrodynamics for
near-critical fluids, we simulate a droplet impact on a hy-
drophilic wall by using a recently proposed well-balanced
discrete unified gas kinetic scheme (WB-DUGKS). The com-
parison indicates that the double-well approximation (derived
from a flat surface at equilibrium) can provide reliable pre-
diction for two-phase flow in the low-density-ratio limit. The
interfacial density structure of the EOS is well retained by the
double-well approximation.

Finally, the reason for the inconsistency between the co-
efficients a and κ in the mean-field force expressions of the
existing literature is revealed. Since the coefficients are usu-
ally treated as input parameters rather than being evaluated at
the molecular level, the inconsistency will not cause confusion
in the existing simulations.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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APPENDIX A: CODE VALIDATION

In order to validate the developed WB-DUGKS code, we
simulate the classical flat interface problem of Yang et al.
[24,32] The central difference-based reconstruction scheme
(CD-FRS) is used in the evaluation of the kinetic flux across
the cell interfaces. The computational domain is Ly × Lx =
40 × 200 unless otherwise stated. The liquid slab is placed
between the locations xL = 50 and xH = 150 with the remain-
ing space filled with vapor. Periodic boundary conditions are
employed at the four boundaries. The relaxation time is fixed
at τ = 0.3 and the Courant-Friedrichs-Lewy (CFL) number is
equal to 0.5. The density field is initialized by

ρ(x, y) = ρg + ρl − ρg

2

[
tanh

2(x − xL )

W
− tanh

2(x − xH )

W

]
,

(A1)

FIG. 10. Comparison of the coexisting densities predicted by the
WB-DUGKS and the theoretical values. The density ratios ρl/ρg are
marked for different temperatures.

where W = 5 is the interfacial thickness parameter, and ρl

and ρg denote the liquid and vapor densities at saturation,
respectively. The vdW EOS is considered with the parameters
given as a = 9/392, b = 2/21, and R = 1. The coefficient κ is
fixed as 0.02. The normalized temperature T/Tc ranges from
0.45 to 0.95.

When Nx = 200 uniform grid points are used in the x
direction (namely, �x = 1, Nx = 200, and Lx = 200), the
WB-DUGKS always works well for temperature ranging from
T/Tc = 0.95 (the density ratio ρl/ρg = 2.525) to T/Tc =
0.55 (ρ/ρc = 63.532) but fails at lower temperature T/Tc <

0.55 due to inaccurate evaluation of the interfacial force in
the transition region. The case T/Tc = 0.5 (the density ratio
ρl/ρg = 113.051) is successfully simulated with Nx = 400
uniform points in the x direction (namely, �x = 0.5 and
Lx = 200). It is found that the simulated density ratio could
be further increased with higher grid resolution. For example,
the case T/Tc = 0.45 (the density ratio ρl/ρg = 225.104) can
be simulated with Nx = 800 and �x = 0.25. As shown in
Fig. 10, the bulk densities produced by the WB-DUGKS are in
excellent agreement with the theoretical values obtained from
the solution of p0(ρl ) = p0(ρg) and μ0(ρl ) = μ0(ρg) (or the
Maxwell construction rule).

After having the coexisting densities in the bulk re-
gions, the analytical density distribution in the transition
region is solved as the solution of Eq. (16) with the con-
ditions ρ(−∞) = ρg, ρ(+∞) = ρl and ρ(0) = (ρl + ρg)/2.
Figure 11 compares the density profiles produced by the
WB-DUGKS and the analytical solution. It is observed that
excellent agreements are achieved for different temperatures,
which indicates that the interfacial structure in the transi-
tion region can be well predicted by the WB-DUGKS. The
comparison shown here could be viewed as a supplement to
the work of Yang et al. [24] where the interfacial structure
predicted by the WB-DUGKS was not directly compared with
the analytical solution.
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FIG. 11. Comparison of the density profiles produced by the WB-DUGKS and the analytical solution. (a) T/Tc = 0.9, ρl/ρg = 3.893.
(b) T/Tc = 0.55, ρl/ρg = 63.532. (c) T/Tc = 0.5, ρl/ρg = 113.051. (d) T/Tc = 0.45, ρl/ρg = 225.104.

APPENDIX B: L2 ERRORS BETWEEN ANALYTICAL
AND APPROXIMATE SOLUTIONS

The L2 error of the density field is usually defined as

ε ≡
√∑

x[ρap(x) − ρan(x)]2∑
x [ρan(x)]2 , (B1)

where ρan(x) and ρap(x) represent the analytical and approx-
imate solutions, respectively. It seems impossible to compute
the L2 errors by using the analytical and approximate solutions
obtained from Eq. (16). In order to perform the calculation, the
density interval [ρg, ρl ] should be uniformly divided and the
obtained solutions take the form x = x(ρ). Even for the same
division of [ρg, ρl ], the analytical and approximate solutions
will have different nonuniformly distributed x coordinates.
Under a given division of the x coordinate in a sufficiently
large domain, it is difficult to calculate ρ = ρ(x) from the
solution x = x(ρ) without applying some interpolation tech-
niques. Therefore, the L2 error defined in Eq. (B1) cannot be
directly evaluated with the raw data.

As validated in Appendix A, the numerical solution pro-
duced by the WB-DUGKS with sufficient grid resolution is in
excellent agreement with the analytical solution. Therefore,

the analytical and approximate solutions in Eq. (B1) can be
replaced by the corresponding numerical solutions of the WB-
DUGKS to calculate the L2-errors.

Figure 12(a) shows the L2 errors of the density between
the analytical and approximate solutions at different temper-
atures. It is found that the L2 error of the density is almost
linearly dependent on the normalized temperature T/Tc be-
tween 0.55 and 0.95. The L2 error of the density with β0 =
β(ρl ) is always lower than that with β0 = β(ρg) under the
same temperature. The maximum L2 error is about 3% for
β0 = β(ρg) and 0.5% for β0 = β(ρl ). It should be noticed that
although the global L2 error is not remarkable for the den-
sity distribution, the double-well approximation will greatly
influence the distributions of the bulk free energy density
ψ , the thermodynamic pressure p0, and the capillary stress
−κρ(d2ρ/dx2) inside the interfacial region for relatively
lower temperatures, which results in the L2 errors displayed
in Figs. 12(b), 12(c), and 12(d). These comparisons suggest
that (i) the double-well approximation with β0 = β(ρl ) can
always provide better prediction than β0 = β(ρg), and (ii)
the double-well approximation is only suitable for the near-
critical fluids with low density ratio whose interfacial structure
is not significantly changed by the approximation.
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FIG. 12. The L2 errors of (a) the density ρ, (b) the bulk free energy density ψ , (c) the thermodynamic pressure p0, and (d) the capillary
stress −κρ(d2ρ/dx2).

APPENDIX C: ON THE SPEED OF SOUND
AND INTERFACIAL COMPRESSIBILITY

For the double-well approximation with a constant coef-
ficient β0, Eq. (46) shows that the ratio of the sound speeds
in the liquid and vapor phases is cs(ρl )/cs(ρg) = √

ρl/ρg.
Figure 13 displays the ratio of the sound speeds for the vdW
EOS and the double-well approximation at different tempera-
tures. It is observed that the ratio of the sound speeds produced
by the double-well approximation is always higher than that of
the vdW EOS at a given temperature. The difference gradually
becomes prominent as the temperature decreases below the
critical temperature. For near-critical fluids with low density
ratio, the ratios of the sound speeds are very close to each
other. Therefore, the double-well approximation not only in-
fluences the density structure in the interfacial region but also
modifies the sound speeds in the bulk phases. Despite all
this these changes, the double-well approximation can realize
effective phase separation even for high-density-ratio fluids
without guaranteeing the maintenance of the original interfa-
cial structure [17,31,39,46].

For the isothermal two-phase fluid system, the weak
compressibility (characterized by the velocity divergence)
mainly concentrates inside the interfacial layer, which is ba-
sically proportional to the Laplacian of the chemical potential
(namely, the divergence of the chemical potential gradient).

In the bulk regions, the density variation is small, the chem-
ical potential is close to a constant, and the compressibility
can be neglected. It is worth mentioning that the slope

FIG. 13. Comparison of the ratio of the sound speeds in bulk
phases cs(ρl )/cs(ρg) with respect to the normalized temperature
T/Tc.
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∂ρ p0 could become negative in the interfacial region, which
is mechanically unstable. According to the existing studies
[47,48], the coupling between the negative slope and the weak

compressibility could cause pressure variation and trigger
isothermal evaporation and condensation in the interfacial
region.
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