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Atomic force microscopy bending tests of a suspended rod-shaped object:
Accounting for object fixing conditions

Alexander Ankudinov ,1,* Mikhail Dunaevskiy,1 Maksim Khalisov ,1,2 Ekaterina Khrapova,1 and Andrei Krasilin 1

1Ioffe Institute, St. Petersburg 194021, Russia
2Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg 199034, Russia

(Received 25 October 2022; accepted 9 February 2023; published 27 February 2023)

The technique of atomic force microscopy (AFM) bending tests of a suspended nano-object (scroll, tube,
rod) makes it possible to calculate the Young’s modulus of the material it is made of based on experimental data.
However, the calculation results involve a large error due to uncertain conditions (console or bridge) of fixing the
test object. One of the ways to reduce this error is based on the theoretical consideration of consoles or bridges
as beams with one or two ends resting on Winkler elastic foundations. The beam bending problems have been
solved in both cases using Krylov’s functions. This has allowed for developing an approach to the analytical
identification of fixing conditions and including them in the calculations. The application of the approach is
illustrated by AFM measurements of the Young’s modulus of MgNi2Si2O5(OH)4 nanoscrolls.
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I. INTRODUCTION

Atomic force microscopy (AFM) [1] is designed to
study surfaces using a nanometer-sharp probe. The probe is
mounted on a cantilever, the deformation of which is mea-
sured to control the force of interaction with the sample [2].
To keep the probe sharp, the force is maintained at a level
of ∼1 nN. By indenting the probe with this force into a soft
material of the sample (Young’s modulus E ∼ 1 GPa) and
determining the sample deformation, it is possible to map
changes in the value of E on its surface with nanoscale res-
olution [3].

The Young’s modulus of a solid material (E ∼100 GPa)
can be determined using the method of AFM bending tests
of the suspended object [4]. Quasi-one-dimensional objects
deposited from colloidal drops on substrates with grooves can
form consoles or bridges over the grooves [5–7]. By AFM-
aided measurement of the minimum stiffness of the suspended
object, kmin, one can calculate E using the theory of small
deflections of rods [8].

The main error of this technique arises due to the unknown
object fixing conditions [9–12]. For example, both clamped
and supported beams (“CB” and “SB,” respectively) corre-
spond to a bridge of a given minimum stiffness with the
Young’s moduli of the beams differing by a factor of 4,

ECB = kminl3

192I
= kminl3

3πd4
,

(1)

ESB = kminl3

48I
= 4ECB.

The bridge is characterized by the span length l and the
moment of inertia I (I = πd4/64 for a cylindrical rod of
diameter d).

It was proposed to reduce [9–11] and even completely
eliminate [12–14] the fourfold uncertainty by matching the
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measured bending of the object at the load point as a function
of load position with the model. The paper [12] proposed
a fitting curve that transforms from the CB to the SB case
when varying the dimensionless parameter λ ∈ [0,∞). A
continuous transition between the extremes gives a solution
of the problem of a beam on ring springs whose angular
stiffness depends on λ [Fig. 1(b)]. The value of λ with the best
possible fit to the experiment determines a correction factor
�1(λ) ∈ [1, 4] and the corrected Young’s modulus Ecorr =
�1ECB [12–14].

The paper [15] considered the problems of a console on
ring spring and a beam on Winkler elastic foundation with a
suspended console (models 1 and 2 in Fig. 1 and Table I ).
The console fixing conditions affect the shape of the fitting
curves ζ1 and ζ2 through the values of the parameters λ, βl ∈
[0,∞), respectively. The corrected Young’s modulus of the
console is calculated as Ecorr = �1(λ)E0 or Ecorr = �2(βl )E0.
In contrast to model 1 for a bridge, both correction factors
for the console can be arbitrarily large, �1,�2 ∈ [1,∞). The
value of E0 is calculated according to model 0,

E0 = kminl3

3I
= 64kminl3

3πd4
, (2)

for a cylindrical console of length l and diameter d . In contrast
to model 1, applying model 2 to the console produced a result
comparable to the Young’s modulus for bridges [15].

In the general case, both the object and the substrate are
deformed during testing. Taking this into account, the prob-
lem of a beam on the Winkler elastic foundation [16] was
considered in [7]. However, the authors of [7] did not provide
compact formulas for the console or bridge bending (or the
stiffness, inversely proportional to it) at the load point as
functions of the load position. This is done in the present
paper. Within the framework of the considered AFM method,
the present result and the paper [15] provide a comprehensive
set of tools to analytically identify and account for the fixing
conditions of the suspended object, as discussed below.
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FIG. 1. Model 0: console or bridge with clamped ends (a). Model
1: console or bridge mounted on ring springs (the torque EIzII cre-
ated by such a spring is proportional to the beam deflection angle zI)
(b). Model 2: console or bridge on Winkler elastic foundation with
Winklers coefficient kW and lengths L and R (c). The origin is located
on the left support edge, the console and bridge lengths are l , and the
force F is applied at x = Y .

II. MODELING

Figure 1 shows six model schemes with three options for
fixing the endpoints of the bridges and consoles on the sup-
ports. For each scheme, the derivation of the formula for the
bending profile of the entire suspended object loaded at the
point x = Y can be found in [8,12,15] and in the Appendix to
this paper. In the AFM bending tests described here, it is not
this profile that is measured but the dependence of the bending
z(Y ) on the load application position. The fitting curves for
experimental data are functions of the normalized bending
amplitude ζi = z(χ )/zMAX with dimensionless variable χ =
Y/l (l is the length of the suspended part of the object; see
Table I).

In model 1 with ring springs as supports (see also [12,15]),
both dependences ζ1 are related to the solution of the equa-
tion zIV = 0. For a console, the solution satisfies the boundary
conditions on the left support and at the load point, z(0)=0,
zII(0)=4zI(0)/(λl ) and zII(Y ) = 0, zIII(Y )= − F/EI . For a

bridge, the boundary conditions are added to the right support,
z(l ) = 0 and zII(l ) = −4zI(l )/(λl ).

The exact solution for a console in model 2 was obtained in
[15] using Krylov’s functions [17]. A more complicated case
of a bridge in the same model is considered in the Appendix to
this paper. A relatively compact solution is obtained only in
the asymptotic approximation. The asymptotes of the Krylov
functions can be applied under the conditions L 4

√
kW /4EI and

R 4
√

kW /4EI � 1, where kW relates the linear force and the
deflection of the Winkler elastic foundation, and L and R are
support lengths [see Fig. 1(c)]. Let us consider a rigid cylinder
of length L (a nanoscroll) indented by a force Fi into the
foundation (support) to depth zi. Then for the force per unit
length, we can write [18] Fi/L ≈ [πES/4(1 − ν2

S )]zi, where
ES and νS are Young’s modulus and Poisson’s ratio of the
foundation. Based on this, we have kW ≈ ES . If for I we take
the moment of inertia of a cylinder with diameter d , the condi-
tions are transformed to the form Ld−1(ES/E )1/4, Rd−1(ES/

E )1/4 � 1. The support length is usually much greater than
the object transverse dimensions, and the Young’s moduli of
the object and the support are comparable in value; therefore,
these conditions are met in AFM bending tests. The formulas
for ζ2 and �2 given in Table I for console and bridge are
obtained in asymptotic approximation.

III. AFM MEASUREMENTS

MgNi2Si2O5(OH)4 nanoscrolls grown by hydrothermal
synthesis were studied in [15,19]. Hydrosilicates with the
structures of chrysotile, pecoraite, and halloysite [20] fold
into long tubes and scrolls with outer and inner diameters
of 20–200 and 4–30 nm, respectively. Such shapes compen-
sate for the mechanical stresses of the mismatched crystal
lattices of the sublayers of the composite hydrosilicate bilayer
of metal-oxygen and silicon-oxygen [21]. Since hydrosilicate
nanoscrolls are promising for applications as adsorbents and
capsules [22–24], catalysts [25–29], and reinforcing additives
of composite materials [30–33], information on the Young’s
moduli of individual nanoscrolls is required.

TABLE I. Fitting curves and correction factors of three models for determining Young’s modulus based on AFM bending test data of
suspended objects. The parameters λ ∈ [0, ∞) and βl ∈ [0, ∞) as well as the variable χ ∈ [0, 1] are dimensionless. For console, Ecorr = �iE0

and for bridge, Ecorr = �iECB.

Model number i, object type ζi, fitting curve �i, correction factor

0: console χ 3 1
0: bridge 64(χ − χ 2)3 1

1: console
3λχ 2 + 4χ 3

3λ + 4
1 + 3λ

4

1: bridge 32
3λ(λ + 1)(χ − χ 2)2 + 2(λ + 2)(χ − χ 2)3

(2λ + 1)(3λ + 2)
1 + 3λ

λ + 2

2: console
3 + 6βlχ

3 + 6βl + 6β2
l + 2β3

l

+ 6β2
l χ 2 + 2β3

l χ 3

3 + 6βl + 6β2
l + 2β3

l

1 + 3 + 6βl + 6β2
l

2β3
l

2: bridge

32
3
(
6 + 12βl + 12β2

l + 6β3
l + β4

l

) + 6
(
3 + 4βl + β2

l

)
β3

l (χ − χ 2)

(2 + βl )
(
12 + 12βl + 6β2

l + β3
l

)(
24 + 12βl + 6β2

l + β3
l

)

+ 32
6
(
1 + 3βl + β2

l

)
β4

l (χ − χ 2)2 + 2(2 + βl )β6
l (χ − χ 2)3

(2 + βl )
(
12 + 12βl + 6β2

l + β3
l

)(
24 + 12βl + 6β2

l + β3
l

)
1 + 24 + 12βl + 6β2

l

β3
l
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FIG. 2. SEM images of the TGZ2 calibration grating with hydrosilicate nanoscrolls. The top row is a typical set of images used to facilitate
the optical positioning of an AFM probe near a suspended nanoscroll (the arrows indicate the location of the nanoscroll). The bottom row
shows images of suspended nanoscrolls.

Nanoscrolls were deposited on a TGZ2 calibration grating
(NT-MDT SI, Russia) with a period of 3 µm and a groove
depth of 110 nm. The bridges or consoles formed above the
grating grooves were determined (see Fig. 2) using a Quanta
200 scanning electron microscope (SEM; FEI, USA). This
considerably accelerated the subsequent search for such nano-
scrolls with a Z16 APO optical microscope (Leica, Germany)
combined with an atomic force microscope BioScope Cat-
alyst (Bruker, USA). AFM bending tests were carried out
in the PeakForce quantitative nanomechanics (QNM) mode
with automatic analysis of the force curves recorded when
the probe contacts the surface. We used FMG01 cantilevers
(NT-MDT SI, Russia), with the value of the spring constant
refined by the thermal-noise based method [34]. Scanning was
carried out with a peak force leading to a nanoscroll bending
of ∼10 nm. AFM signals of height, deformation, and peak
force errors were recorded [14,15]. They were used to correct
the deformation signal taking into account the contribution of
methodological factors, including slipping of the AFM probe
on inclined sections of the sample [14,35]. Two deformation
profiles along the nanoscroll were analyzed with different start
and end positions after correction. One profile corresponded
to the suspended part of the nanoscroll according to AFM
topography, and the length of the other one was determined
by the nonzero deformation domain. Young’s modulus was
calculated based on the best-fit profile with ζi, Table I. The
GWYDDION 2.55 software [36] was used to process the AFM
data.

Figure 3 shows the AFM bending test data for two
suspended nanoscrolls. The following parameters were de-

termined for bridge and console, respectively: l = 1530 nm,
385 nm; d = 49 nm, 51 nm; kmin = 2.4 N/m, 1.3 N/m;
ECB = 156 GPa, E0 = 75 GPa (model 0); λ = 0.05, 67 and
Ecorr = 167 GPa, 3.83 TPa (model 1); βl = 74, 2.4 and
Ecorr = 169 GPa, 216 GPa (model 2). In this example, the
values of Ecorr for console and bridge in model 1 differ by
23 times and for model 2, by 28%.

IV. RESULTS AND DISCUSSION

Let us consider the results of AFM bending tests for 31
bridges and 18 consoles. In the phase plane in Fig. 4(a),
suspended objects correspond to points. The abscissa of each
point is given by the dimensional parameter d4l−3 and the
ordinate, by the value of kmin for bridge or 64kmin for console.
In the log-log data scale, the E contours are straight lines of
unit slope. The bridge is larger than the grating groove width
(≈1.5 µm) and the console, on average, is almost an order
of magnitude shorter than the bridge. Therefore, in the phase
plane, the data points corresponding to the bridges are mainly
on the lower left, and those of the consoles are on the upper
right. According to model 0, the Young’s modulus of consoles
is 30% less than that of bridges (see Table II). Figure 4(a)
illustrates this clearly, as the cluster of points of all tested
objects is elongated at a flatter angle than the isolines of E .

After applying models 1 and 2, the corrected data points
of the tested objects changed their position on the phase plane
[see Figs. 4(b) and 4(c)]. The cluster slope became steeper in
both cases. According to model 1 applied to 13 consoles out
of 18, the value of E turned out to be four times greater than
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FIG. 3. AFM height images of TGZ2 grating surface with
MgNi2Si2O5(OH)4 nanoscrolls forming (a) bridge and (b) console
over a hollow in the substrate. AFM maps of corrected deformation
of bridge (c) and console (d). The normalized deformation profiles
ζ (χ ) of (e) bridge and (f) console: The solid black line is the
measurements, and the dashed pink and dotted blue lines are fittings
according to models 1 and 2. PeakForce QNM mode parameters are
as follows: The amplitude and frequency are 150 nm and 1 kHz, the
scan rate and setpoint are 0.2 Hz and 30 nN (bridge) and 0.3 Hz and
25 nN (console).

that of bridges (see Table II). We also note an increase in the
specific spread, σ (E )/E , by a factor of 2.3 (for consoles) and
1.4 (for bridges) relative to model 0. Conversely, correction
by model 2 equalizes the values of E for consoles and bridges
without changing σ (E )/E , Table II.

Applying model 2 and revealing the fixing conditions for
all tested objects, one can obtain almost identical values of E
for consoles and bridges. This is fully consistent with the iden-
tity of the material of the objects of both types. As a result, the
combined corrected data yield the average Young’s modulus
of E = 103 ± 76 GPa for MgNi2Si2O5(OH)4. High standard
deviation originated from individual structural features of
nanoscrolls [14], whereas the accuracy of the Young’s mod-
ulus determination for each nanoscroll was below 20–25%.

FIG. 4. Phase plane distribution of data points corresponding
to bridges (squares) and consoles (circles) from MgNi2Si2O5(OH)4

nanoscrolls: Initial AFM data (a); corrected data using model 1
(b) and 2 (c). The E contours are shown as straight dashed lines.
Due to the ability to determine the length of the suspended part of
an object in two ways, the abscissas of some points corresponding to
the same object on (a),(c) may not match. Filled red circles in (a) and
(c) indicate data on five consoles with �(λ) → ∞.

The value of E calculated by the density functional theory
method is approximately two times larger than the one just
mentioned [14]. One can reconcile the calculation with the
experiment assuming that the object deflection measured by
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TABLE II. Results of calculation of the Young’s modulus of
MgNi2Si2O5(OH)4 nanoscrolls using various models.

E ± σ (E ) (GPa)

Object type Model 0 Model 1 Model 2

Bridge 74 ± 49 (31) 129 ± 120 (31) 99 ± 79 (31)
Console 53 ± 48 (18) 481 ± 1014 (13) 109 ± 86 (18)
Both 66 ± 49 (49) 233 ± 569 (44) 103 ± 76 (49)

AFM consists of bending and shear deformations. Note that
under this assumption, the spreads of the measured Young’s
and shear moduli, σ (E ) and σ (G), are also related [14]. An
underrating of E by a factor of 2 corresponds to equal shear
and bending deformations. According to the bridge data (see
Fig. 3) one can estimate the shear modulus required for equal
deflections caused by bending and shear as G ∼ kminl/d2 ∼
1 GPa. Such a low value of G for layered nanotubular ma-
terials has been discussed, for example, in [6]. However, it
should be added that the accuracy of measuring E decreases
if the tested object has deviations in cylindricity of shape and
uniformity of composition. For example, a twofold underrat-
ing of E can be due to surface contaminants, which increase
the measured nanoscroll diameter by only 20%.

V. CONCLUSIONS

An approach has been developed to analytically determine
and take into account the fixing conditions in the method
of AFM bending tests of suspended objects (consoles and
bridges).

In the framework of the theory of small deflections of rods
and disregarding shear deformations, using Krylov’s func-
tions in the asymptotic approximation, the problem about
a beam partially resting on Winkler elastic foundations has
been solved. A compact dependence has been obtained for
the suspended beam span bending at the load point on the
position of this point on the span. In addition, in the asymp-
totic approximation of Krylov’s functions, a solution has been
derived for a beam on a Winkler elastic foundation with an
external console.

AFM-aided bending tests of bridges and consoles made of
chrysotile hydrosilicate MgNi2Si2O5(OH)4 nanoscrolls were
carried out. The convergence of the average values of the
Young’s modulus E of consoles and bridges was achieved us-
ing the developed approach for the analysis of AFM bending
tests. As a result, a value of E = 103 ± 76 GPa was obtained
for MgNi2Si2O5(OH)4.

FIG. 5. Model of a beam on a Winkler elastic foundation. Beam
sections from x = −L − Y to x = −Y and from x = X to x = R + X
rest on elastic foundations. The middle span of length l = Y + X
from x = −Y to x = X is suspended. The force F is applied at x = 0.

ACKNOWLEDGMENT

This work was supported by the Russian Science Founda-
tion, Project No. 19-13-00151.

APPENDIX: CALCULATION OF A BEAM ON A WINKLER
ELASTIC FOUNDATION

The deflection of the suspended span of the beam (see
Fig. 5) obeys the equation zIV = 0 [8] with a polynomial
solution of degree 3: z = ∑3

i=0 aixI. The side segments of the
beam lie on the elastic foundation (see Fig. 5); the deflec-
tion satisfies the equation EIzIV + kW z = 0 (E and I are the
Young’s modulus and moment of inertia of a beam of con-
stant section, and kW is the Winkler coefficient of the elastic
foundation). The solution to this equation is a linear combi-
nation of Krylov’s functions (Table III) z = ∑4

k=1 akYk (βx),
β = 4

√
kW /(4EI ) [8,16,17]. Let us express the deflections in

the four sections of the beam in general terms (see Fig. 5):
(1) Span, length L: zL=eLY1[β(L + Y + x)] + gLY2

[β(L+Y +x)] + fLY3[β(L + Y + x)] + hLY4[β(L + Y + x)].
(2) Console, length Y : zY = aY + bY x + cY x2 + dY x3.
(3) Console, length X : zX = aX + bX x + cX x2 + dX x3.
(4) Span, length R: zR = eRY1[β(R + X − x)] + gRY2

[β(R+X−x)] + fRY3[β(R + X − x)] + hRY4[β(R + X − x)].
Unknown coefficients are sought using five boundary con-

ditions:
(1) At the free left end, x = −L − Y : zII

L = zIII
L = 0.

(2) At the free right end, x = R + X : zII
R = zIII

R = 0.
(3) At the load point, x = 0: zY = zX , zI

Y = zI
X , zII

Y = zII
X ,

zIII
X − zIII

Y = F/(EI ).
(4) At x = −Y : zL = zY , zI

L = zI
Y , zII

L = zII
Y , zIII

L = zIII
Y .

(5) At x = X : zX = zR, zI
X = zI

R, zII
X = zII

R , zIII
X = zIII

R .
Applying the boundary conditions (1)–(3) and introducing

the dimensionless x = βx, L = βL, R = βR, βl = βl , X =
βX , and Y = βY and the coefficients a = aY = aX , β−1b =
bY = bX , β−2c = cY = cX , and β−3d = dX = dY + F/(6EI ),
we write

TABLE III. Krylov’s Y functions.

k Yk (x) Yk(0) dYk
dx

d2Yk
dx2 d d3Yk

dx3 Yk (x)|x�1

1 cosh x cos x 1 −4Y4 −4Y3 −4Y2
cos x

2 ex

2 1
2 (cosh x sin x + sinh x cos x) 0 Y1 −4Y4 −4Y3

sin x+cos x
4 ex

3 1
2 sinh x sin x 0 Y2 Y1 −4Y4

sin x
4 ex

4 1
4 (cosh x sin x − sinh x cos x) 0 Y3 Y2 Y1

sin x−cos x
8 ex
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(1) Span, length L: zL = eLY1(L + Y + x) + gLY2(L +
Y + x).

(2) Console, length Y : zY = a + bx + cx2 + [d − Fl3/

(6EIβ3
l )]x3.

(3) Console, length X : zX = a + bx + cx2 + dx3.

(4) Span, length R: zR = eRY1(R + X − x) +
gRY2(R + X − x).

Applying the boundary conditions (4) and (5), using the
properties of the Krylov functions, Table III, after algebraic
transformations, we obtain a system of equations for eight
unknowns a, b, c, d , eL, gL, eR, and gR,

Mv = b, v = (a, b, c, d, eL, gL, eR, gR)T ,

b = (0, 0, 0, 0,−Y 3,−3Y 2,−6Y,−6)T ;

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 X X 2 X 3 −Y1(R) −Y2(R) 0 0

0 1 2X 3X 2 −4Y4(R) Y1(R) 0 0

0 0 2 6X 4Y3(R) 4Y4(R) 0 0

0 0 0 6 −4Y2(R) −4Y3(R) 0 0

0 0 0 0 Y1(R) − 4Y4(R)βl − 2Y3(R)β2
l − 2Y2(R)β3

l /3 Y2(R) + Y1(R)βl − 2Y4(R)β2
l − 2Y3(R)β2

l − 2Y3(R)β3
l /3 −Y1(L) −Y2(L)

0 0 0 0 −4Y4(R) − 4Y3(R)βl − 2Y2(R)β2
l 4Y1(R) − 4Y4(R)βl − 2Y3(R)β2

l −4Y4(L) Y1(L)

0 0 0 0 −4Y3(R) − 4Y2(R)βl −4Y4(R) − 4Y3(R)βl 4Y3(L) 4Y4(L)

0 0 0 0 −4Y2(R) −4Y3(R) −4Y2(L) −4Y3(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A1)

Solution (A1) is sought by the Cramer method. That is, the coefficient a is calculated as the ratio of determinants, a = |M1|/
|M|. The matrix M1 is obtained by replacing column 1 in the matrix M with the vector b. Similarly, the vector b substituted into
columns 2, 3, and 4 in M yields the matrices M2, M3, and M4 in the calculations of b, c, and d .

Using the asymptotes of Krylov’s functions (see Table III), we obtain all coefficients of the cubic polynomial to describe the
bending profile of the suspended beam span loaded with the lumped force F,

a = Fl3

6EIβ3
l

3
(
6 + 12βl + 12β2

l + 6β3
l + β4

l

) + 6βl
(
3 + 4βl + β2

l

)
v + 6

(
1 + 3βl + β2

l

)
v2 + 2(2 + βl )v3

24 + 36βl + 24β2
l + 8β3

l + β4
l

,

b = Fl3

2EIβ3
l

(1 + Y )
[
β4

l (1 + Y ) + 4β3
l (Y 2 − 1) + β2

l (3 − 9Y − 9Y 2 + 5Y 3) − 2βlY (3 − 6Y 2 + Y 3) + 4(Y − 1)Y 3
]

24 + 36βl + 24β2
l + 8β3

l + β4
l

,

c = − Fl3

2EIβ3
l

2β3
l (1 + Y )2 + β2

l (9 + 12Y − 4Y 3) + 2βl (6 + 3Y − 6Y 2 − 4Y 3 + Y 4) + 2(3 − 3Y 2 + 2Y 4)

24 + 36βl + 24β2
l + 8β3

l + β4
l

,

d = Fl3

6EIβ3
l

3β2
l (1 + Y )2 + 2βl (6 + 9Y + 3Y 2 − Y 3) + 4(3 + 3Y − Y 3)

24 + 36βl + 24β2
l + 8β3

l + β4
l

,

v = Y (βl − Y ). (A2)

The bending at the load point is determined by the value of the coefficient a. It is maximum when the span midpoint is loaded,
Y = βl/2 (Y = l/2),

aMAX = Fl3

192EI

β3
l + 24 + 12βl + 6β2

l

β3
l

. (A3)

If βl → ∞ (kW /E → ∞), then the beam end points are clamped. In this case, we have

lim
βl →∞

aMAX = aCB = Fl3

192ECBI
. (A4)

The ratio aMAX/aCB is the factor �2,

�2 = 1 + 6
4 + 2βl + β2

l

β3
l

, Ecorr = �2ECB. (A5)

The ratio a/aMAX is the dependence ζ2 in Table I for bridge,

(A6)ζ2 =
3
(

6 + 12βl + 12β2
l + 6β3

l + β4
l

)
+ 6β3

l

(
3 + 4βl + β2

l

)
χ (1 − χ ) + 6β4

l

(
1 + 3βl + β2

l

)
χ2(1 − χ )2 + 2β6

l (2 + βl )χ3(1 − χ )3

(2 + βl )
(

12 + 12βl + 6β2
l + β3

l

)(
24 + 12βl + 6β2

l + β3
l

) 25,

where the normalized coordinate χ = Y/l is used, Fig. 1.
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Comparing the AFM bending test data with (A6), we seek
the optimum fitting parameter βl ; then E is calculated from
(A3)–(A5) and kW (βl = l 4

√
kW /4EI).

Let us write the asymptote of the coefficient a as l → ∞
for β = const,

lim
l→∞, β=const

a = F

6EI

3 + 6Y + 6Y 2 + 2Y 3

β3
. (A2a)

Substituting Y = βlχ into (A2a), we obtain a ratio a/aMAX

that coincides with the dependence ζ2 in Table I for console,

ζ2 = 3 + 6βlχ + 6β2
l χ2 + 2β3

l χ3

3 + 6βl + 6β2
l + 2β3

l

. (A6a)

TABLE IV. Krylov’s K functions.

k Kk (x) Kk (x)|x�1

1 1
2 (cosh x + cos x)

2 1
2 (sinh x + sin x) 1

4 ex

3 1
2 (cosh x − cos x)

4 1
2 (sinh x − sin x)

For reference, we give the exact fitting dependence for
console according to model 2 [15],

ζ2 = 3K4(2L) + 6K3(2L)(βlχ ) + 6K2(2L)(βlχ )2 + 2[K1(2L) − 1](βlχ )3

3K4(2L) + 6K3(2L)βl + 6K2(2L)β2
l + 2[K1(2L) − 1]β3

l

. (A6b)

The Krylov functions Kk (x) with the same asymptote are given in Table IV. Note that (A6b) tends to (A6a) for L � 1.
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