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Inelastic rotations and pseudoturbulent plastic avalanches in crystals
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Plastic deformations in crystals produce microstructures with randomly oriented patches of unstressed lattice
forming complex textures. We use a mesoscopic Landau-type tensorial model of crystal plasticity to show that
in such textures rotations can originate from crystallographically exact microslips which self organize in the
form of laminates of a pseudotwin type. The formation of such laminates can be viewed as an effective internal
“wrinkling” of the crystal lattice. While such “wrinkling” disguises itself as an elastically neutral rotation, behind
it is inherently dissipative, dislocation-mediated process. Our numerical experiments reveal pseudoturbulent
effective rotations with power-law distributed spatial correlations which suggests that the process of dislocational
self-organization is inherently unstable and points toward the necessity of a probabilistic description of crystal
plasticity.
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I. INTRODUCTION

The emerging experimental evidence of intermittent
avalanches and scale-free dislocation patterns triggered a
shift from macro- to microscale modeling efforts in crystal
plasticity [1–3]. The recorded temporal and spatial correla-
tions were interpreted as evidence of complex cooperative
dynamics at subcontinuum scales [4–6]. Most strikingly, the
observed hierarchically organized deformation fields were
likened to scale-free turbulent flows [7–12]. Since fluid tur-
bulence largely relies on vortices, the question arises whether
large rotations play a similarly crucial role in crystal plasticity
[13–17].

A. Inelastic rotations

When crystalline specimens are deformed plastically, both
elastic and inelastic rotations are revealed through the emer-
gence of deformation-induced crystallographic textures. They
have been understood as a strain-accommodation strategy,
allowing the crystal to ensure lattice compatibility without
accumulation of considerable elastic stresses [18,19]. Ener-
getically neutral rotations are also behind the localization
of dislocations in wall structures which separate misorien-
tated lattice patches [20–25]. While the formulation of an
adequate description of texture development is commonly
recognized as one of the most challenging tasks for theories of
crystal plasticity, the microscopic mechanisms of particularly
large rotations involved in textures formation remain obscure
[18,19,26–30].

Plastic rotations in crystals mainly occur by slip, however
other dislocation mediated modes of inelastic deformation
may also contribute to changes in crystallographic texture
[22,31–33]. Thus, recent molecular dynamic simulations

of single-crystal plasticity suggested that, at least in the
case of the discontinuous yield of defect-free crystals, the
patchy local reorientation of the crystal lattice is due to
deformation-induced micro- or nano-twinning [34–38]; in
physical experiments similar effects were as well observed
[39,40]. In this paper, we corroborate the idea of large inelastic
rotations by microtwinning theoretically while emphasizing
the point that such twinning ultimately relies on dislocation
glide. More specifically, we conduct numerical experiments
showing explicitly how crystallographically specific inelastic
deformations of twinning type can disguise themselves as
large crystal rotations.

B. Previous work

Considerable efforts have been recently devoted to the task
of small-scale modeling of crystal plasticity at a reasonable
computational cost. A fully detailed description of plastic
flows in crystals is possible only by molecular dynamics
(MD) or molecular statics (MS) approaches [41–43], which
accurately represent micromechanisms of plastic response
while relying minimally on phenomenology. However, in
most applications, such an approach is prohibitively computa-
tionally expensive, even if one deals with ultrashort timescales
and ultrasmall samples. Partial averaging of atomistic MD
has emerged in the form of a continuum phase-field crystal
method (PFC) [44,45]; however, the resulting microscopically
detailed description of lattices still remains too demanding in
terms of computer time, at least in the case of developed plas-
tic flows with a realistic number of interacting dislocations.

The discrete dislocation dynamics (DDD) approach was
created to overcome the short-scale focus of atomistic meth-
ods and inform various classical continuum models. The DDD
modeling is very powerful, allowing one, for instance, to
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model the organization of dislocations into cell structures
[46–48]. However, the DDD models contain many parameters
since the processes of dislocation nucleation, interaction with
defects, self-locking, climbing, etc., have to be prescribed
phenomenologically through specific local rules coming from
independent phenomenological constructs. Other major chal-
lenges in the DDD framework include accounting for large
plastic distortions and incorporating the effects of anisotropic
elasticity [49]. Coarse graining of DDD has been attempted
in the mesoscopic stochastic continuum dislocation dynamics
(CDD) where dislocation microstructures are modeled by var-
ious continuum dislocation density fields [50]. While various
phenomenological closure relations have been proposed to
model the evolution of such fields, the systematic develop-
ment of this approach is hindered by the fact that rigorous
statistical averaging in the ensemble of strongly interacting
dynamic defects is still a tough challenge [51–53].

In search of a micro-macro compromise, a multiscale
quasicontinuum (QC) approach was developed based on the
observation that a fully atomistic resolution is necessary only
in small spatial regions, while in the rest of the computational
domain, where the deformation fields change slowly, the clas-
sical continuum theory can be still used [54]. The necessity of
patching the continuum and discrete subdomains poses, how-
ever, a complex problem. Also, the necessity to resolve all the
scales fully adequately makes this method hardly applicable
to the description of collective dislocation processes.

A powerful mesoscale approach to crystal plasticity, which
involves averaging over small scales and therefore allows one
to treat dislocations in a continuum framework, is the phase
field dislocation dynamics (PFDD) [55,56]. In this approach,
lattice slips are described by scalar order parameters, while
the energy wells correspond to lattice invariant shears. The
main problem of this approach is that lattice invariant shears
are resolved by scalar order parameters only approximately
even if PFDD is extended to finite strains [57].

C. Mesoscopic tensorial model

All these computational platforms are successful in ad-
dressing particular time and length scales, with higher-scale
models (more coarse-grained) relying on input from lower-
scale models (less coarse-grained). However, as we have seen
above, each one of them has its limitations.

To achieve a compromise between more and less coarse-
grained models we adopt in our numerical experiments an
approach [58,59] which is both versatile and synthetic in
the above sense. Known as the mesoscopic tensorial model
(MTM), it represents a crystal as a collection of homoge-
neously deforming elastic elements whose nonlinear elastic
response is governed by globally periodic potential defined in
the space of metric tensors. The potential is designed to re-
spect the geometrically nonlinear kinematics of the lattice, as
originally envisioned in Refs. [60–67]. From the perspective
of the ensuing Landau-type model, the potential has an infinite
number of equivalent energy wells, and therefore plastically
deformed crystals can be viewed as coherent mixtures of
equivalent “phases” [59,68].

To follow the response of the system one can use the
real physical space or the configurational space of metric

tensors where individual mesoscopic elements are represented
by configurational points. As long as the affine configuration
remains stable, the points, representing different elastic ele-
ments in the configurational space are all superimposed and
follow together the prescribed loading path. After the instabil-
ity, the configurational points spread around the configuration
space with different equivalent energy wells getting unequally
populated. During such configurational spreading the crystal
is deforming plastically as the elastic energy is lost irre-
versibly. In particular, plastic yield of a pristine crystal can be
interpreted as a massive escape of the configurational points
from the reference energy well while plastic “mechanisms”
can be linked to the configuirational “flows” along low-barrier
valleys in the energy landscape. Friction-type dissipation,
controlling dynamics in continuum crystal plasticity, emerges
in such a theory as a result of a homogenized description of
overdamped athermal dynamics in a rugged energy landscape
which takes the form of a succession of the discontinuous
branch switching events [69].

The MTM-based computational approach to crystal plas-
ticity bears some resemblance to the local version of the
quasicontinuum model [70–72] and also has features in com-
mon with tensorial generalizations of phase-field approaches
to dislocational plasticity [57,73–76]. Its main advantage is
the geometrically adequate account for both large strains and
large rotations. Another important benefit is the possibility to
model both short and long-range interactions of dislocations
without any macroscopic phenomenological assumptions. For
instance, dislocation nucleation, dislocation annihilation, and
dislocation locking emerge naturally from this modeling
framework, moreover no ad-hoc rules are needed for speci-
fying the activated slip planes.

We reiterate that the most important assumption behind
MTM is that the crystal admits a pseudocontinuum strain
energy density whose invariance is dictated by the global
symmetry group of simple lattices, known as GL(3,Z) [77].
From this point of view, the MTM can be considered as a
multidimensional, finite-strain generalization of the Peierls-
Nabarro [78,79] and Frenkel-Kontorova [80] one-dimensional
models which also operate with globally periodic energies.
However, in contrast to these purely prototypical models, the
MTM potentials, constructed using ab initio methods, allow
one to make fully quantitative predictions for crystals with
particular crystallographic symmetries.

D. Benchmark test

As a proof of principle, we develop in this paper a MTM
description of a single plastic avalanche resulting from a
brittle-like yield of a homogeneously deformed pristine crys-
tal. Our study was inspired by the recent fully atomistic
simulations of bulk single-crystal plasticity in the uniaxially
compressed body-centered cubic metal tantalum [34]. In the
reported numerical experiments a defect-free, perfect crystal
yielded discontinuously after reaching critical stress. Analysis
of crystal configurations attained under strain revealed that the
perfect metal yielded largely by deformation twinning—that
is, by sudden strain-induced reorientation of the crystal lattice
within bounded volumes of the material. To rationalize these
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observations we conducted our own numerical experiments
using the MTM approach.

In our numerical experiments we used quasistatic hard
loading device (strain-controlled) and the response was ob-
tained by incremental minimization of the total energy of
the collection of coupled elastic elements. As we have al-
ready mentioned in such apparently pseudoelastic approach
the energy dissipation is taking place during discontinuous
branch switching events [69]. In the language of crystal plas-
ticity the branch switching can be associated with dislocation
avalanches which involve collective nucleation, annihilation,
and reorganization of dislocations.

If a pristine crystal is loaded quasistatically, the very first
avalanche of this type, signaling the catastrophic, brittle-like
transition from affine to nonaffine configuration, takes the
form of a massive system-size dislocation nucleation. As we
show, during such an event, multiple dislocations appear col-
lectively while the lattice rearranges itself into almost fully
relaxed domains (or patches) with different orientations. Our
numerical experiments provide a compelling evidence that
in most of such domains, the apparent rigid rotations are
achieved through coordinated, spatially distributed lattice in-
variant shears, resulting in the formation of highly specific
microtwinned laminates.

The importance of energy-minimizing macroscale lami-
nates has been already realized in continuum crystal plasticity
[81,82]. In such macroscopic framework lamination was
shown to result from the nonconvexity of the effective en-
ergy functional induced by geometric softening and/or latent
hardening. Here we focus on the consequences of the micro-
scopic energy nonconvexity associated with the presence of
lattice invariant shears. We show that it can indeed lead to
the formation of crystallographically specific laminates at the
microscale. Moreover, we provide a compelling evidence that
the corresponding oscillatory bandlike microstructures (repre-
senting alternating crystal orientations), can be interpreted as
microtwinning.

E. Main results

In contrast to physical experiments, the MTM modeling
allows one to track the deformation history of individual elas-
tic elements. Using this capability of MTM, we were able
to trace how exactly the microtwin laminate form and how
they self-organize to present themselves macroscopically as
pseudorigid rotations. The dissipative, dislocation-mediated
nature of such self-organization suggests that at least some
of the macroscale textures, sometimes naively associated with
purely elastic or even rigid rotations, emerge from the col-
lective motion of dislocations. Using MTM we could study
the transient process of avalanche unfolding in full detail and
show that the modulated structure of a microtwin results from
the propagation of an interface between the unstable homoge-
neous configuration and the stable oscillatory configuration.

Furthermore, our numerical experiments focused on
transient dynamics revealed that the formation of disori-
ented patches of the unstressed lattice during discontinuous
avalanches is inherently unstable even though the sizes and the
misorientations of the individual patches end up being highly
correlated. The quantitative statistical analysis of the emerg-

ing spatial correlations suggests that the underlying process
of dislocational self-organization indeed resembles fluid tur-
bulence. All this points toward the necessity of a probabilistic
description of crystal plasticity, at least if the study of plastic
fluctuations is at stake.

F. Organization of the paper

The rest of the paper is structured as follows. In Sec. II we
formulate the MTM approach, and introduce the atomistically
informed energy density accounting for the global symmetry
of a square lattice. The numerical set up and the outcomes of
our numerical experiments are presented in Sec. III. In Sec. IV
we reveal the mechanism of rigid rotations recorded in our
numerical experiments and link them to microtwinning. In
Sec. V we present the analysis of the two simplified models
whose aim is to elucidate in the most transparent form the
kinetic mechanism of dislocation driven microtwinning dis-
guised as rotation. The pseudoturbulent analogy is discussed
in Sec. VI. Finally, in the last Sec. VII we summarize the
results and present our conclusions.

II. THE MODEL

In this paper we limit our analysis to the simplest non-
trivial 2D problem while assuming that a model crystal can
be represented by a collection of N × N mesoscopic trian-
gular discrete elements organized in a square lattice filling
the macroscopic domain �0. The internal scale of order
N−1 is then viewed as a physical parameter defining the
(Kolmogorov-type) cutoff beyond which the deformation is
considered homogeneous. To describe the deformation of dis-
crete elements we introduce the piecewise smooth mapping
y = y(x), where y are their actual and x their reference coor-
dinates. We then associate with each element an elastic energy
density φ which depends on the metric tensor C = FT F,
where F = ∇y is the deformation gradient.

A. Configurational space

All deformations that map a Bravais lattice into itself will
be accounted of if we require that φ(C) = φ(mT Cm) for
any m from an infinite discrete group GL(2,Z) = {m, mIJ ∈
Z, det(m) = ±1}. To explain why such group must in-
deed include all invertible matrices with integral entries and
determinant ±1, we need to recall that each 2D simple (Bra-
vais) lattice is described by two linearly independent vectors
{eI}, I = 1, 2, representing the lattice basis. Infinite number
of basis vectors exist describing the same lattice structure; two
bases e0

I and ēI corresponding to the same lattice are related
through e0

J = mIJ ēI with mIJ ∈ Z a unimodular matrix with
integer entries. Therefore, it is exactly the symmetry group
GL(2,Z) which accounts for the lattice invariant deforma-
tions.

It can be shown [83] that GL(2,Z) constitutes the finite
strain extension of the crystallographic point group P(eI )
which describes material symmetries in classical continuum
elasticity [84,85]. In the presence of GL(2,Z) symmetry, the
space of metric tensors C partitions into periodicity domains,
each one containing an energy well equivalent to the reference
one [62,66]. Therefore, if we know the structure of the energy
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FIG. 1. (a) The configurational space of metric tensors with
det C = 1 (Poincaré disk). Infinite families of equivalent square and
triangular lattices are shown by squares S and triangles T, respec-
tively; D is the minimal periodicity domain; (b) the energy landscape
obtained using an interatomic potential from [87]; a cutoff was ap-
plied to improve the visibility of the low-energy valleys. Blue circles:
simple shears paths F(α, 0) (continuous) and F(α, π/2) (dashed).
Dotted straight line: pure shear path F (α). The dark oval in panel
(b) represents the effective yield surface. Coordinate axes are defined
in Eq. (1).

φ in one of such domains, then we can use the GL(2,Z)
symmetry to find its value in any other point of the con-
figurational space of metric tensors C described by its three
significant components C11,C22, and C12. Since the GL(2,Z)
invariance does not concern lattices with different volumes, it
is sufficient to focus on the 2D subspace of the configurational
space described by the condition det C = C22C11 − C2

12 = 1
[67,86].

To visualize the implied tensorial periodicity of the func-
tion φ(C), it is convenient to stereo-graphically project the
hyperbolic surface det C = 1 on a 2D disk of unit radius
(Poincaré disk). In this mapping the point (x̂, ŷ) on the disk
represents the point ((C11 − C22)/2,C12, (C11 + C22)/2) on
the hyperbolic surface with

x̂ =
(C12

C22

)2 + (
1

C22

)2 − 1(C12
C22

)2 + [(
1

C22

) + 1
]2 , ŷ = 2

(C12
C22

)
(C12

C22

)2 + [(
1

C22

) + 1
]2 . (1)

In such relations, once C22 and C12 are given, the component
C11 is determined by the condition C11C22 − C2

12 = 1.
We illustrate the GL(2,Z)-induced tessellation of the

configurational surface in Fig. 1(a). The subdomain D =
{0 < C11 � C22, 0 � C12 � C11/2}, highlighted in gray in
Fig. 1(a), contains metric tensors forming the “minimal” pe-
riodicity domain. It corresponds to the “minimal” choice for
the lattice vectors ẽ1, ẽ2, selected according to the algorithm
[86]: (step 1) ẽ1 is the shortest lattice vector; (step 2) ẽ2 is
the shortest lattice vector not colinear with ẽ1 and for which
the sign is chosen in such a way that the angle between
the two is acute. The ensuing basis is known as having the
“reduced form of Lagrange.” It is related to the original basis
through the relation ẽb = mabea from which the matrix m
is identified. The algorithm of Lagrange reduction, can be
also recast directly in term of metric tensors C: (step 1) if
C12 < 0, change sign to C12; (step 2) if C22 < C11, swap the
two components; (step 3) if 2C12 > C11 set C12 = C12 − C11

and C22 = C22 + C11 − 2C12. For a generic metric C, such

FIG. 2. (a) Schematic representation of the triangulated macro-
scopic domain �0 where the mesoscopic Landau energy is defined on
each of the triangles; (b) the atomistic domain �A which represents
the response of each of the macroscopic triangles and where the
summation in Eq. (2) is performed; here the blue balls represent the
actual atoms.

iterative scheme produces the “minimal” equivalent metric
C̃ ∈ D.

Note that in Fig. 1(a) we marked by small black squares
the points corresponding to the location of equivalent lattice
configurations with square symmetry. The equivalent lattice
configuration with hexagonal symmetry (corresponding to tri-
angular lattices) are marked by small red triangles. Simple
and centered rectangular lattices form one parametric families
and are marked by lines. For the graph theory representation
of the relation among equivalent metrics which also reveals
additional crystallographic aspects of the underlying energy
wells structure, we refer to Refs. [75,88]. It is also instructive
to compare the geometrically exact, finite strain, fully tenso-
rial periodicity of the configurational space described above,
with an approximate one, generated by theories which rely on
linearized strains; see, for instance, Refs. [89–92] and more
about it below.

B. Energy landscape

The multiwell (periodic) Landau potential φ(C) can be
computed from a microscale theory using the Cauchy-Born
rule [93]. Suppose, for instance, that the atomic interac-
tions are pairwise and that the interatomic potential V (r) =
V (r), where r is the distance between the atoms, is known.
Suppose then that material points in a representative vol-
ume �A undergo an affine deformation; see Fig. 2. We can
write it as Yi(X ) = Xi + ui(X ), where X and Y are the co-
ordinates of atoms in the undeformed and deformed states,
respectively, and ui(X ) is the displacement vector. The vec-
tors connecting two atoms in the reference configuration
are Ri = Xi − X ′

i and in the deformed configuration are ri =
Yi − Y ′

i . If the deformation is affine, then we can write ri =
Fi jR j where the deformation gradient is Fi j = ∂Yi/∂Xj =
δi j + ∂ui/∂Xj . To compute the energy density φ(C) we need
to account for the deformation of each atomic bond and
then average over the domain �A. Given that in the 2D
case one can express the interatomic potential in the form
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V (
√

R2
1C11 + 2R1R2C12 + R2

2C22), we can write

φ(C) = 1

2�A

∑
X

∑
X ′∈N (X )

V (
√

RiCi jR j ), (2)

where Ci j = FkiFk j and the internal summations involves all
points X ′ belonging to the cutoff neighborhood N (X ). The
periodic energy landscape used in subsequent numerical ex-
periments, was constructed using the above algorithm and is
based on a particular interatomic potential,

V (r) = −2/e−8(−1.425+r)2 − 2/e−8(−1+r)2 + 2/r12, (3)

constructed in Ref. [87] to ensure that the ground state is a
square lattice. To perform the sum in Eq. (2), we used the
reference square lattice composed of 8 × 8 atoms with the
lattice distance r0 = 1.0658. It is clear that with representative
volume �A growing to infinity, the function φ(C) develops
the periodic pattern consistent with the symmetry of lattice
invariant shears, e.g., Refs. [94,95]. The choice of the cutoff
scale, limiting the volume of volume �A, is dictated in each
problem by the required range of (almost) periodicity of the
configurational energy landscape. In view of the global sym-
metry of the energy, it is sufficient to construct the potential
φ(C) using Eq. (2) only inside the minimal periodicity domain
D, even if approximately, using a finite rather than an infinite
representative volume. Then, as we have seen above, for an
arbitrary metric tensor C one can produce the appropriate
symmetry transformation m and use the mapping C̃ = mT Cm
into D to compute φ(C̃) = φ(C). The ensuing energy land-
scape is illustrated in Fig. 1(b).

Note first that as a result of the imposed invariance, en-
ergy is periodic along simple shears of the type F(α, θ ) =
I + αR(θ )e1 ⊗ R(θ )e2, where ei is the orthonormal basis of
the reference lattice, R(θ ) is counterclockwise rotation by
the angle θ , and α is the magnitude of the shear. In par-
ticular, conventional plastic mechanisms for a square lattice
correspond to simple shears with θ = 0, π/2. Such shears are
aligned with the two main close packed crystallographic (slip)
planes and therefore correspond to low energy valleys in the
configurational landscape shown in Fig. 1(b).

Note also that the loading paths F(α, θ ) with θ = 0, π/2
go through all square wells. In particular, the matrices F(α, 0)
and F(α, π/2) with integer entries mark the bottoms of the
equivalent energy wells and correspond to lattice invariant
shears. The energy barriers, separating adjacent wells are
relatively low which qualifies the corresponding tensorial di-
rections as “soft.” On the Poincaré disk such periodically
modulated “low-energy valleys” are described by circular tra-
jectories; see Fig. 1(b).

C. Geometrical linearization

Here it is appropriate to remark that the geometrically
nonlinear focus of MTM is not redundant and instead has a
crucial effect on the outcome of the numerical experiments vis
a vis the results obtained in geometrically linearized models
[89–92]. Indeed, consider again the two symmetry related
shears describing our “soft” loading directions F(α, 0) and
F(α, π/2). In a geometrically linearized description, the com-

ponents of the infinitesimal strain tensor ε = 1
2 (∇uT + ∇u)

are the same for both paths:

ε = 1

2

[
0 α

α 0

]
. (4)

Instead, in the geometrically nonlinear theory these two
configurational directions are energetically equivalent but dif-
ferent. For instance, the associated nonlinear strains tensors
E = 1

2 (∇uT + ∇u + ∇uT ∇u) = (1/2)(C − I) are different
at the second order in α:

E0 = 1

2

[
0 α

α α2

]
, Eπ/2 = 1

2

[
α2 α

α 0

]
. (5)

Note that the nonlinear terms (∝ α2) appear along the diago-
nal entries E11 and E22, which describe the stretch along the
initial lattice vectors e1 and e2. In the small strain limit these
vectors do not stretch and the constant volume requirement
reduces to the condition that the trace of the linearized strain
is zero. Therefore, the linearized states of strain are located
on the configurational plane tr(C) = 2, which is tangent to
the configurational hyperboloid of the geometrically nonlinear
theory det C = 1 and therefore agrees with it only locally.
On this plane the two paths with θ = 0, π/2, corresponding
physically to the activation of two different slip systems,
merge into one and the two geometrically distinct lattice
configurations F(α = 1, θ = 0) and F(α = −1, θ = π/2) are
represented by a single point. This causes a well known de-
generacy in the geometrically linear theory where one cannot
distinguish between the two different slip systems and have
to make additional phenomenological assumptions to resolve
the degeneracy [96].

III. NUMERICAL EXPERIMENTS

In our numerical experiments a pristine crystal was rep-
resented by a homogeneous square domain �0 divided
(triangularized) into 600 × 600 × 2 elements aligned with
coordinate axes. This sample was loaded quasistatically in
a hard device by applying on the boundary an incremental
affine deformation F parametrized by a scalar parameter α.
The response of the system is represented by the deformation
of the elements described by the functions y(x; α).

A. Loading path

To ensure that the response is generic, instead of the “soft”
loading directions given by F(α, θ ) with θ = 0, π/2, we used
the “hard” loading path corresponding to pure shear

F (α) =
[

cosh
(

α
2

) − sinh
(

α
2

)
0

0 cosh
(

α
2

) + sinh
(

α
2

)
]
.

(6)

The mapping (6) transforms squares into rectangles and
we use here a natural parametrization α = 2 log(λ), where
(λ, λ−1) are the two principal stretches [97]; the correspond-
ing path in the configurational space is shown by the dashed
line in Fig. 1(b). At each step of such loading, parametrized by
α, we perform incremental energy minimization. Effectively,
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we use continuation method and search for a one parametric
family of equilibrium configurations.

B. Numerical method

We reiterate that in the numerical code, the reference body
�0 was divided into triangular finite elements. Therefore, we
traced the response y(x; α) through the deformation of the
2D network of discrete nodes. The nodes x can be identified
using integer-valued coordinates i j and with each node we
associated a cell defined by the basis vectors ea(x), where a =
1, 2. We then treated each triangular cell as a finite element
with linear shape functions Ni j (x). This allowed us to write
the discrete displacement field in the form u(x) = ui jNi j (x),
where ui j denote the values of displacement at node i j. The
discrete deformation gradient is then ∇y = 1 + ui j ⊗ ∇Ni j .

We recall that the elastic energy of a cell φ(C) associated
with node x, is a function of the metric tensor C = ∇yT ∇y.
To minimize the energy functional W = ∫

�0
φd�0 we used

a variant of conjugate gradient optimization known as the
L-BFGS algorithm [98]. It finds solutions of the equilib-
rium equations ∂W/∂ui j = ∫

�0
P∇Ni jd�0 = 0, where P =

∂φ/∂∇y, that are reachable through algorithmically defined,
effectively overdamped dynamics. In view of the hard device
loading, the positions of surface nodes were set to satisfy
y = F (α)x.

The simulations were performed on a fixed computational
grid and we did not seek any grid refinement because, due
to the particular structure of the nonconvexity of φ, our solid
system degenerates and behaves mechanically as a liquid in
continuum limit [99]. To avoid this unphysical behavior, we
interpreted the mesh/grid size h ∼ N−1 as a regularizing (cut-
off) parameter of physical nature.

As we have already mentioned, in physical terms this pa-
rameter is the mesoscopic length at which the deformation
can be considered homogeneous. It is also a length scale at
which the ab initio Cauchy-Born energy of a homogeneously
deforming elastic element can be considered periodic in the
range of strain which captures all the relevant energy wells.

C. Stress-strain response

In Fig. 3, we present the numerically generated quasistatic
stress-strain response of a perfect crystal loaded in a hard
device along the path F (α). We observe that first the crys-
tal deforms elastically as the affine mapping F (α) simply
transforms squares into rectangles. The homogeneous elastic
branch exhibiting small hardening becomes unstable at α =
αc when the branch switching event (dislocation avalanche)
takes place. It is a system size collective dislocation nucleation
forcing the stress to drop precipitously to an almost zero level.
Such an extreme relaxation of the accumulated elastic stress
through a catastrophic avalanche suggests that most of the
nucleated dislocations end up topologically compensated and
therefore effectively screened. The ensuing defect microstruc-
ture is then mostly composed of “statistically stored” (rather
than “geometrically necessary”) dislocations [100–102].

FIG. 3. Quasistatic stress-strain response along the path F (α).
The stress is projected on the loading direction and averaged over
the sample: τ(α) = ∫

�0
P : (dF (α)/dα)d�0. The initial nonlinear

elastic branch (in blue) corresponds to affine response. The stress
drop (in red) corresponds to system size dislocation avalanche at
α = αc.

D. Effective yield surface

The value of the critical loading parameter αc can be an-
ticipated using the macroscopic Legendre-Hadamard (strong
ellipticity) criterion [71,103–107]

Qik (N ) = NJAiJkLNL > 0, (7)

where the acoustic tensor Qik , is given by Qik = NJAiJkLNL,
while N is a vector defined in the Lagrangian (undeformed)
configuration. Here AiJkL is the tensor of elastic moduli:

AiJkL = ∂2φ

∂FiJ∂FkL
. (8)

A rigorous analysis shows that the weak local stability of a
homogeneous equilibrium in a hard device is lost when the
inequality (7) is no longer strict [108]. At the critical value
of the loading parameter the equality emerges in Eq. (7) for
some nontrivial N representing the orientation of the incipient
unstable mode.

Note that the instability condition (7) can be also fully
projected into the Eulerian space. To this end we need to in-
troduce the Eulerian moduli ai jkl = FjRFlSAiRkS. The Eulerian
version of the acoustic tensor can be then written in the form
qik (n) = n jnkai jkl , which produces the stability criterion:

det[q(n)] > 0. (9)

Applying the condition det q = 0 to our loading path F (α)
we verified that the numerically obtained value of the insta-
bility threshold αc ≈ 0.176 is in excellent agreement with the
theoretical prediction.

We similarly applied the condition (9) to a large family of
loading trajectories. By interpolating the resulting instability
(spinodal) thresholds, we reconstructed the boundary of the
affine response, which is illustrated in black in Fig. 1(b). It
can be viewed as representing an apparent “yield surface”
since an ideal crystal loaded in a hard device will deform
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FIG. 4. (a) A fragment of the post-avalanche pattern in real space. The balls represent the nodes of mesoscopic finite elements; colors
indicate the level of energy. (b) The distribution of elements in the configurational space for the whole post-avalanche pattern obtained by
counting the number of elements inside individual configurational bins. The dark ovals in panel (b) show the effective yield surfaces around
the equivalent energy wells (pristine crystal and its four copies obtained by the smallest lattice invariant shears).

homogeneously following the imposed loading path as long as
the loading trajectory is contained within such stability region.
Note, however, that in a generically loaded inhomogeneous
state, the configurational elements can become unstable in
a broad area adjacent to this sharp stability boundary, as it
is evidenced, for instance, by the studies of dislocation nu-
cleation during highly heterogeneous microindentation tests
[109,110].

E. Catastrophic avalanche

We now turn to the description of the system-size insta-
bility experienced by a perfect, defectless crystal at α = αc.
As we have already mentioned, the breakdown of the affine
(elastic) state y = F (α)x takes the form of an abrupt drop
of both stress and energy, apparently signaling an almost
pristine-to pristine transition. In reality, the instability causes
the originally homogeneous crystal to rearrange its configura-
tion between the neighboring equivalent energy wells which
proceeds through collective generation and self-organization
of mutually neutralized dislocations of both signs.

We observe that, as long as the affine configuration remains
stable, the points, representing different elastic elements in
the configurational space are all superimposed (have the same
value of C) and follow together the prescribed loading path.
After the instability, the configurational points spread around
the configuration space with several equivalent energy wells
getting populated. During such configurational spreading the
crystal is deforming plastically as the elastic energy is slipping
away irreversibly. It is assumed to be lost (dissipated) by either
mechanical radiation or through thermalization and eventual
heat conduction.

In the physical space, as a result of such catastrophic
system-size avalanche, the homogeneously deformed lattice
is replaced by a complex texture of variously oriented patches
of the unstressed lattice. A fragment of the post-avalanche pat-
tern is shown in Fig 4(a). The balls represent mesoscopic finite
elements; colors indicate the level of energy. In Figs. 5(a), 5(b)

and 5(c) we show the snapshots of the evolving element lattice
during the avalanche using fast numerical time.

The histogram illustrating the distribution of elements in
the configurational space for the whole post-avalanche pattern
is shown in Fig. 4(b). It is obtained by counting the number
of elements inside individual configurational bins. The dark
ovals in Fig. 4(b). show the effective yield surfaces around the
equivalent energy wells (original lattice and its four copies
obtained by the smallest lattice invariant shears).

FIG. 5. The unfolding of a dislocation avalanche: [(a)–(c)] in real
space (colors indicate the level of strain energy density), [(d)–(f)]
in the configurational space of metric tensors. Large red/yellow
region in panel (a) corresponds to elastically stressed homogeneous
rectangular configuration of the original lattice. Large blue cells
in panel (c) correspond to symmetry related versions of unstressed
square lattices. White dots in panels [(d)–(f)] show the progressive
spreading of the configurational points representing individual elastic
elements. The dark ovals show the effective yield surfaces around the
energy well corresponding to pristine crystal.
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The spreading of the corresponding cloud in configura-
tional space (Poincaré disk) is illustrated in Figs. 5(d), 5(e)
and 5(f). In particular, Fig. 5(f) shows the post-avalanche dis-
tribution of the deformed elements. One can see that after the
instability, most of the homogeneously stretched (rectangular)
elements snap back to the reference energy well S. How-
ever, a significant percentage of elements also spreads right
away over the two symmetric energy wells S0

1 = F(1, 0) and
S0

−1 = F(−1, 0), which corresponds to the activation of single
slip plasticity. The other two symmetric energy wells Sπ/2

1 =
F(1, π/2) and Sπ/2

−1 = F(−1, π/2) get populated eventually,
but only at the end of the avalanche. This indicates that the
second main slip system is activated as well. Finally, some
elements appear to be locked in the shallow local minima
T and T0

−1 describing the triangular lattice with hexagonal
symmetry; such elements appear mostly as the components
of Shockley-type partials [111]. The limited occupation by
the elastic elements of spaces outside the energy wells reflects
the presence of dislocation cores and, more generally, highly
heterogeneous defect structures.

We illustrate the gradual unfolding of the system size
avalanche in our two movies (presented in the Supplemen-
tal Material [112]), which reveal the transient “computa-
tional dynamics” hidden behind the apparently discontinuous
avalanche. In particular, our movie S1 [112] shows the fast-
time evolution of the field y(x) (coloring shows the level
of the nondiagonal component of Cauchy stress, red-high,
blue-low). The complementary movie S2 [112] presents the
same fast-time evolution but now of the nonaffine compo-
nent of the field u(x) = y(x) − F (αc)x represented by blue
arrows.

As we see in these movies, the massive dislocation nu-
cleation starts heterogeneously at the vertical boundaries of
the body which play the role of effective lattice defects. It
first proceeds in the form of two slowly propagating fronts,
originating on these boundaries and separating the remaining
affine from the growing nonaffine configuration. Eventually,
these fronts get destabilized by the separate nonaffinity origi-
nating on the horizontal parts of the boundary which leads to
the fast development of considerable spatial complexity. The
avalanche ends with another slow stage where the emerging
pattern goes through a maturation stage.

Note that if we interpret our “computational dynamics”
as a flow of the material, then we may say that as the
avalanche unfolds, a relatively “laminar” flow is replaced by
distinctly “turbulent” vortex dynamics. However, this spur of
activity is only transient and eventually its intensity decays,
leaving behind a complex and manifestly multiscale spatial
pattern. Similar, correlated nonaffine transient fluctuations
during plastic avalanches have been extensively documented
in (quasistatic) experiments on granular solids and even in-
terpreted as “granulence”; see, for instance, Refs. [10,113–
116]. Turbulent-like displacement fields have been also found
to accompany plastic avalanches in amorphous materials.
The underlying manifestly non-Gaussian fluctuations have
been sometimes associated with a correlated endogenous
“noise,” e.g., Refs. [117–119]. We discuss the appropriate-
ness of the use of such metaphors for the description of
plastic avalanches, observed in our numerical experiments, in
Sec. VI.

F. Post avalanche pattern

The detailed post-avalanche pattern in the physical space
is shown in Fig. 6(a). Upon magnification we see a complex
arrangement of apparently randomly rotated unstressed square
lattice patches circumscribed by energy carrying boundaries,
see Figs. 6(b)–6(d). A salient feature of this pattern is the
ubiquitous presence of the lattice patches rotated at π/2 with
respect to the undeformed reference state; see more about this
below. We also see the ubiquitous presence of the fragments
of triangular lattice, like the one shown in the inset in Fig. 6,
which serve as elements of the stacking fault-type interfaces
and also contribute to the structure of at least some dislocation
cores. In fact, a detailed study of the deformation of individual
elements reveals the presence of both, isolated dislocations
and the dislocational-rich extended lattice defects where dis-
locations interact strongly and their cores may be distorted;
see Fig. 7 (1, 2). In particular, the observed high-energy
boundaries which separate the extended rotated patches, can
be viewed as composed of interacting dislocations locked in
stable, wall-type configurations, see Fig. 7 (2). In general, the
identification of particular lattice defects and extracting their
core structures in mesoscopic computations, where we operate
with atomically blurred images, is an even more challenging
task than in the case of molecular dynamics [37,120–122]. In
this sense our reference to particular lattice defects emerging
in mesoscopic simulations can be viewed only as suggestive.

G. Molecular statics

The natural question is then: how realistic is the observed
picture? To corroborate the predictions of the MTM-base nu-
merical experiments, we performed a set of parallel molecular
statics (MS) simulations employing the same interatomic po-
tential (3). The role of elastic elements in such simulations
was played by individual atoms, in other words, we identified
for simplicity our regularization length scale with interatomic
cut-off distance distance. It is clear that in this case only quali-
tative agreement between the micro- and mesoscopic pictures
can be expected.

In our MS numerical experiments the positions of the
atoms for the given boundary conditions were determined by
minimizing the energy of a system composed of NA atoms.
It can be written in the form 
 = 1

2

∑NA
α

∑NA
β,β �=α V (rαβ ),

where rαβ is the distance between the atoms α and β. As
we have already mentioned, the interatomic potential V (rαβ )
was taken from Eq. (3). The positions of the atoms were
found by solving the equilibrium equations d
/drλ = 0,
where λ = 1, . . . , NA. To solve these equations we used the
L-BFGS algorithm [98] which builds a positive definite linear
approximation of these equations allowing one to make a
quasi-Newton step lowering the energy 
. To impose the hard
device type boundary conditions we applied affine displace-
ments [of a pure shear type F (α)] to the atoms within the
boundary layer of a small thickness. The amplitude of the
loading was incrementally increased and kept fixed during
each relaxation step.

As in MTM, in our MS tests the pristine crystal was de-
forming homogeneously till the critical value of the loading
parameter α was reached. At the critical level of strain, which
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FIG. 6. Post-avalanche pattern shown at different scales. Colors indicate the level of energy. Insets (1–3): relative rotation of unstressed
square patches. Inset (4): a fragment of a metastable triangular lattice.

is close to the theoretical prediction, the system size plastic
avalanche took place. In Fig. 8, we present a fragment of the
post avalanche configuration. It shows the anticipated grain
structure. One can see that the misoriented low energy patches
of original lattice are practically unloaded. The energy is again
localized on the highly dislocated intergrain boundaries. The
inset shows a magnified version of the π/2 rotation of one of
the patches relative to the orientation of the original square
lattice. Other differently oriented patches are visible as well
forming collectively a complex crystallographic texture. The
overall picture is similar to the one obtained in our MTM-
based experiments which corroborates its basic conclusions.
In this paper we do not perform quantitative comparison that
would require, in particular, the discussion of the delicate role

FIG. 7. A fragment of the post-avalanche pattern in physical
space extracted from Fig. 6(a); colors indicate the level of the non-
diagonal component of Cauchy stress. The zoom into the fragment
(1) shows a single dislocation inside a rotated grain; the open cir-
cuit around it indicates the corresponding Burgers vector is nonzero
with the length equal to the lattice spacing, see the yellow arrow.
The zoom into the fragment (2) shows the boundary between the
rotated patches whose dislocational structure reveals the �5 type
grain boundary.

of the internal scales in the two models; the corresponding
analysis will be presented in a separate paper.

IV. INELASTIC ROTATIONS

In the previous section, we have seen that the MTM
approach allows one to trace the emergence of complex
multigrain textures and study the formation of the supporting
dislocation patterns. In this section, we show that MTM also
offers a suitable framework for a deeper theoretical under-
standing of the observed misorientations angles between the
ensuing grains.

The microscopic nature of large rotations in Fig. 6 can
be understood if we follow the deformation of the individual
elements. Thus, the elemental triangulation of the coexisting
patches of types 1–3 in Fig. 6 reveals that an apparent rigid

FIG. 8. Final positions of the atoms in our parallel MS study
of a system size plastic avalanche showing a fragment of the post-
avalanche pattern. Atoms are colored according to the level of
their potential energy: red-high, blue-low. The magnification on the
right shows an example of an inelastically rotated (microtwinned)
domain; numbers have the same meaning as in Fig. 6. Such low-
energy domains are separated by high-energy dislocation-rich grain
boundaries.
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FIG. 9. A detail of the crystal structure deformed along the rect-
angular path, before and after the instability. The apparently rotated
square lattice is obtained by a combination of microscopically com-
patible sheared configurations.

rotation at the macroscale is, in fact, a disguised microtwin
mixture of the elements of the types R(π/2)S0

1 and S0
−1.

The zoom on the two configurations, before and after the
instability, is shown in Fig. 9. It affirms that inside the ro-
tated patch the (loaded) rectangular lattice is transformed into
the (unloaded) square lattice which turns out to be a crys-
tallographically exact mixture of microscopically compatible
sheared square lattice configurations.

In Figs. 10 and 11, we show in more detail two representa-
tive fragments of the distorted network of our elastic elements
illustrating two different types of interfaces between mis-
aligned patches of the original lattice. The fragment, presented
in Figs. 10(a), 10(b) and 10(c), details the rotation mechanism
shown in Fig. 9 but now in the context of an actual decompo-
sition pattern from Fig. 6. The observed microstructures can
be predicted based on the macroscaopic strain compatibility
requirement.

A. Geometric compatibility

Indeed, consider the deformation field y(x) whose defor-
mation gradients F = ∇y+ and G = ∇y− are discontinuous
on the surface �. For the deformation itself to remain contin-
uous on the surface �, the matrices F, and G must be rank-one
connected which constitutes the kinematic (Hadamard) com-
patibility condition

RF = G + a ⊗ n∗ = G(I + a∗ ⊗ n∗) = (I + a ⊗ n)G,

(10)
where R ∈ SO(2) is a rotation.

The Eulerian vector n (normal to the discontinuity plane)
and covector a, defining the amplitude of the shear, must sat-
isfy a · n = 0; their Lagrangian counterparts are a∗ = G−1a
and n∗ = GT n. If we assume further that det F = det G = 1
and exclude reflections, then the deformation gradients sat-
isfying Eq. (10) form a mechanical twin. If, in addition, the
rotation R belongs to the point group of the lattice, then
such a twinning structure produces the undistorted zero en-
ergy configuration. The resulting microtwinned laminates are
sometimes referred to as pseudotwins [77].

B. Twinning equation

Equation (10) was studied extensively; see, for instance,
Refs. [123,124]. It was shown that Eq. (10) admits either no
solutions or two solutions. More specifically, the two solutions
exist when the matrix G−T FT FG−1 �= I and its ordered eigen-
values μ1 < μ2 are such that μ1μ2 = 1. In that case, the two
solutions are given explicitly by the formulas

a = ρ

⎛
⎝

√
μ2(1 − μ1)

μ2 − μ1
v1 + κ

√
μ1(μ2 − 1)

μ2 − μ1
v2

⎞
⎠, (11)

n = 1

ρ

(√
μ2 − √

μ1√
μ2 − μ1

)
(−

√
1 − μ1v1 + κ

√
μ2 − 1v2),

(12)

where v̂1 and v̂2 are the normalized eigenvectors of
G−T FT FG−1, ρ > 0 is a constant ensuring that |n| = 1 and

FIG. 10. A magnified fragment of the post-avalanche pattern from Fig. 6 showing the nodal coordinates in panel (a) and the actual affine
distortions of individual finite elements in panel (b). The fragment is chosen to emphasize the coexistence of rotated patches of types 1 and
3 and the microtwin laminate structure of rotation in the patches of type 3. In panel (b) the finite element triangles are colored according to
the level of their strain-energy but only when it is above a certain threshold: uncolored elements have very low energy; (c) illustration of the
solution of the compatibility equation describing the laminate structure of the rotated patches of type 3.
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FIG. 11. A magnified fragment of the post-avalanche pattern from Fig. 6 showing the nodal coordinates in panel (a) and the actual affine
distortions of individual finite elements in panel (b). The fragment is chosen to show the coexistence of patches of the type 1 and 2. Finite
element triangles in panel (b) are colored according to the level of their strain-energy but only when it exceeds a certain threshold: uncolored
traungles have low energy; (c) illustration of the corresponding solution of the compatibility equation.

κ = ±1. Once a and n are known, the rotation R can be
obtained directly from Eq. (10).

Here, we are interested in the special case of compatibility
between two GL(2,Z) related deformation gradients, in other
words, for the case when G and F are two equivalent minima
of the strain-energy φ.

Consider first pseudotwins shown in Fig. 9 and Figs. 10(a)
and 10(b), where F is in S0

1 and G is in S0
−1. For this case the

condition G−T FT FG−1 �= I is satisfied and the solution corre-
sponding to κ = 1 is the one observed in our post-instability
patchy pattern. It is characterized by the parameters aT =
{−√

2,
√

2}, nT = {cos ζ , sin ζ }, ζ = π/4 with R a counter-
clockwise rotation of ψ = 2ζ = π/2, see our Figs. 10(c)
and 12(a). For κ = −1, the solution is aT = {−2, 0}, nT =
{cos ζ , sin ζ }, ζ = −π/2 with R(ψ = 0). The corresponding
microtwins, see Fig. 12(b), can be seen, for instance, in
Fig. 10(b) in the bottom left “triangle” between the rotated
patches of types 1 and 3. Note that such grain boundaries
are neither microscopically nor macroscopically compatible
as the corresponding habit planes do not exist in this system.
The study of their dislocational structure will be presented
separately. A more conventional case of misoriented coex-
isting patches of the original lattice (patches of types 1 and 2)
is shown in Figs. 11(a) and 11(b). Here the deformation gradi-
ents G and F correspond to the bottoms of the energy wells S0

and S0
1, respectively. The two solutions of the twinning equa-

tion are: aT = {− sin ζ , cos ζ }, nT = {cos ζ , sin ζ }, R(ψ =
2ζ ), ζ = arctan(1/2), for κ = 1, and aT = {1, 0}, nT =
{cos ζ , sin ζ }, R(ψ = 0), ζ = −π/2, for κ = −1. The so-

FIG. 12. The two solutions of the twinning equation (10) for the
deformation gradients F = S0

1 and G = S0
−1.

lution corresponding to κ = 1 was observed in our post-
avalanche patchy pattern, see our Fig. 11(b), but not as a
microscopically compatible microtwin laminate but, instead,
as a macroscopically compatible but microscopically semi-
coherent low-energy interface known as �5 grain boundary
[125]; see Figs. 11(c) and 13(a). The solution corresponding
to κ = −1, Fig. 13(b), was not observed as a macroscopic
grain boundary even though the associated configuration was
effectively developing each time a dislocation was crossing
the crystal.

Note that despite the full stress relaxation inside the two
types of rotated patches shown in Figs. 10 and 11, the as-
sociated rotations are neither elastic nor rigid. Instead, they
are achieved through distributed crystallographically exact
shear. They are therefore slip-induced and fully dissipative,
see also Ref. [126] for related experimental observations. In
the next section, we elucidate the mechanism of such inelastic
rotations by simulating analogous phenomena in the specially
designed prototypical models.

V. PROTOTYPICAL MODELS

To accentuate the mechanism of “rotation by microtwin-
ning,” shown Figs. 10(a) and 10(b), we consider below a
prototypical energy density, specially designed to ensure that
only one slip mechanism, involving the energy wells S0

1 and
S0

−1, is activated.

FIG. 13. The two solutions of the twinning equation (10) for the
deformation gradients F = S0

1 and G = S0 = I.
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FIG. 14. The unfolding of the dislocation avalanche in the single-slip-biased version of the model. (a) Energy landscape showing the
post-avalanche spreading of configurational points; (b) the structure of the moving front separating the initially stretched rectangular lattice
and the growing microtwinned (rotated) square lattice (colors indicate the level of energy); (c) the distribution of the shear strain C12 across the
transformation front shown in panel (b); (d) propagating front of lamination in the one dimensional toy model with parameters β = 3 × 10−6,
η = 0.0017, γ = 10−6, A = −0.001.

A. 2D prototypical model

The required bias can be achieved if, the volumetric distor-
tions are strongly penalized. The prototypical energy density
can be then taken in the additive form

φ(C) = φv (det C) + φs(C̃), (13)

where C̃ = C/(det C)1/2. The volumetric part φv (s) will be
chosen in the form μ[s − log(s)] with stiff bulk modulus μ =
25 which precludes (physically likely) softening in tension
while still banning configurations with infinite compression.

The volume preserving shear energy φs needs to be spec-
ified only inside a single domain of periodicity and then
extended by global symmetry. The convenient choice is the
lowest-order polynomial which ensures the continuity of the
elastic moduli [66]. A minimal expression of this type was
proposed in Ref. [67] and we adopted it in our simulations. It
has the form

φs(C̃) = βψ1(C̃) + ψ2(C̃), (14)

where ψ1 = I1
4 I2 − 41 I2

3/99 + 7 I1 I2 I3/66 + I3
2/1056 and

ψ2 = 4 I2
3/11 + I1

3 I3 − 8 I1 I2 I3/11 + 17 I3
2/528. Here we

used the (hexagonal) invariant functions of the (normal-
ized) metric tensor: I1 = 1

3 (C̃11 + C̃22 − C̃12), I2 = 1
4 (C̃11 −

C̃22)2 + 1
12 (C̃11 + C̃22 − 4C̃12)2, and I3 = (C̃11 − C̃22)2(C̃11 +

C̃22 − 4C̃12) − 1
9 (C̃11 + C̃22 − 4C̃12)3. The choice β = −1/4

enforces the square symmetry on the reference state.
In Fig. 14(a) we show that under our loading protocol such

choice of the energy density indeed biases the system toward
activating only one slip system. The important here is not the
particular structure of the function φs, which is largely con-

trolled by the GL(2,Z) symmetry, but rather the structure of
the function φv which is responsible for the highly elongated
shape of the apparent “yield surface”; see Fig. 14(a). With this
configuration of the “yield surface,” the loading in pure shear
F (α), (which means moving left from the origin along the
horizontal path on the Poincare disk) leads to the breakdown
in the immediate vicinity of the energy wells S0

1 and S0
−1. In

Fig. 14(b) we show that during the avalanche in such system,
a transition front forms separating the (rectangular) stressed
configuration S and the unstressed stable laminate involving
the states R(π/2)S0

1 and S0
−1. This laminate takes the form of

an apparently rigid π/4 rotation which develops behind the
propagating front.

The corresponding transient “computational dynamics” in-
side the avalanche is illustrated in a movie presented in the
Supplemental Material [112]. More specifically, our movie S3
[112] shows the fast time evolution of the deformation field
y(x) when we use in the numerical experiments the polyno-
mial strain-energy density described above. Compared to what
we saw in movies S1 and S2 [112], here we observe a much
more organized evolution that remains effectively “laminar”
throughout the whole avalanche. Once again the two fronts,
separating affine and nonaffine dynamics, start to propagate
from the vertical boundaries of the body, however, in this
artificially designed model they remain stable and the fast time
“computational flow” never develops any “vortices.” Instead,
we observe the fast side (transversal) motion of dislocations
which is highly organized as it leaves behind a new homo-
geneous state. In other words, a nonaffine transient evolution
results in an affine final configuration (modulo a single resid-
ual defect resulting from a computational noise). Since the
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lattice scale microtwinning which is disguised here as rigid
rotation is accomplished through the motion of dislocations,
the resulting deformation is inelastic and the corresponding
rotation should be qualified as dissipative.

B. One-dimensional prototypical model

An even more schematic, 1D prototypical description of
the propagating transition front, imitating the one shown in
Fig. 14(b), can be obtained if we neglect the transversal mo-
tion of dislocations and focus instead on the development of a
laminate stabilized by competing interactions. To this end we
need to introduce a scalar potential,

f (ε) = (A/2)ε2 − (1/4)ε4 + (1/6)ε6, (15)

where ε = ux and u(x) is a scalar displacement field. The
energy density (15) may have up to three wells with the
higher-symmetry state playing the role of the deformed con-
figuration S, and the two lower-symmetry states representing
the symmetric variants S0

1 and S0
−1.

Consider next on the finite domain 0 � x � 1 a continuum
1D system with the energy

E =
∫ 1

0

[
f (ux ) + β

2
u2

xx + γ

2
u2

]
dx. (16)

Here the higher-order second term u2
xx represents the strain

gradient regularization and brings an internal length scale. The
lower order term u2 represents the energy of the constraining
elastic environment and also brings a (competing) length scale
into the problem. Introducing the Rayleigh-type dissipation
[127],

R = (η/2)
∫ 1

0
u̇2

xdx, (17)

where η is the effective viscosity coefficient, we obtain the
dynamic equation

ηuxxt = − f ′′(ux )uxx + βuxxxx + γ u, (18)

whose role is to imitate the overdamped “computational dy-
namics” operative inside the duration of the avalanche.

To solve Eq. (18) numerically, we first approximate spatial
derivatives by finite differences using a fixed grid with size �h
and utilize semi-implicit forward Euler discretization in time
with a time step �t . The resulting discrete set of equations in
Fourier space takes the form

ût+�t (q) = ηM̂3(q)ût (q) − �tM̂1(q) f̂ ′(q)

ηM̂3(q) − dt (βM̂2(q) + γ )
, (19)

where M̂1(q) = i sin(q)/(2�h), M̂2(q) = 16 sin(q)4/(�h)4

and, M̂3(q) = (2 cos(q) − 2)/(�h)2. The discrete Fourier
transform on a unit grid is defined as û(q) = N−1 ∑

i uie−iqx

with x = i and q = 2πk/N , where i = 0, 1, ..., N − 1 and
k = 0, 1, ..., N − 1. The nonlinear function f ′ = ∂ f /∂ux is

first evaluated in real space and then Fourier transformed to
obtain f̂ ′(q). The Fourier image of the corresponding dis-
placement field is computed as û(q) = ε̂(q)/M̂1(q) for q �=
0. In our simulations, we used the parameter values: η =
0.0017, γ = 10−6, A = −10−3, β = 3 × 10−6, �h = 0.04,
N = 8192, and �t = 0.004. The initial data were chosen
in the form a localized strain increment ε(x) = 0.5e−(x−xm )2

centered around xm = 0.5. Similar processes of growth of
a stable microlaminate at the expense of an unstable ho-
mogeneous state have been studied before in many other
settings [128–130].

The numerical solution of Eq. (18) is compared in
Figs. 14(c) and 14(d) with the corresponding interavalanche
dynamics in the single-slip prototypical version of our 2D
model. The snapshots of the time evolution of the strain field
ε(x, t ) are shown in Fig. 15. The actual dynamic development
of the microtwin pattern can be also followed in a movie
presented in the Supplemental Material [112].

More specifically, our movie S4 [112] illustrates the dy-
namic growth of a laminate from a homogeneous state in front
of it. One can see that the pattern formation emerges as an in-
vasion process, in which a piecewise smooth inhomogeneous
state, which is stable, takes over a marginally unstable ho-
mogeneous state. We observe that the initial perturbation first
grows in amplitude and then spreads in a form of a spatially
periodic pattern. The ensuing growth of a laminate appears
macroscopically as a front, traveling with a constant veloc-
ity, and apparently winning over the growth of bulk modes.
The comparison of the propagating patterns in Figs. 14(c)
and 14(d) suggests that despite drastic simplifications, the 1D
model captures the essential features of the corresponding
dynamic process in 2D.

VI. PSEUDOTURBULENCE

We have seen that, in contrast to the intentionally over-
simplified scenario described above, the actual 2D problem
exhibits much higher complexity of the post-avalanche tex-
ture. The access in such a problem to a broad variety of
low energy configurations, enabled by inelastic rotations,
foments the development of imperfection-sensitive and there-
fore necessarily complex grain structure. The post-instability
“fluidity” of the system, associated with the sudden dramatic
“opening” of the energy landscape, makes the system-size
plastic avalanche inherently unstable. However, the system re-
mains under control of elastic interactions and the necessity to
minimize elastic energy leads to self-organization. The latter
is manifested by the development of long-range correlations
[131,132].

To emphasize the intermittent nature of the evolution
of the interavalanche deformation, we follow a similar
analysis of the granular system [10], and generate a displace-
ment field connecting the dislocation-free state “before” the
avalanche and the dislocation-rich state “immediately after”
the avalanche. More specifically, we compute the fluctuating
part of the total nodal displacements u(x) = y(x) − F (αc)x.
It is shown in Fig. 16 with a zoom on two correlated turbulent-
type “eddies.”

Furthermore, in Fig. 17(a) we show the power spectral
density (PSD) of the field u(x), illustrating the presence of
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FIG. 15. Evolution of the strain field ε(x) at times t = 390, 480, 580, 760, 970, 1350 × dt . The system ultimately evolves to the fully
transformed state, which is a mixture of ε(x) ≈ ±1.

a hierarchy of scales and revealing the collective nature of the
implied self-organization process. We recall that the PSD of
a field u(r) is a Fourier transform of the correlation function,
C(q) = F[

∫
u(r0)u(r0 + r)dr0] and since it depends on wave

number and orientation, we performed the radial averaging
over orientations to obtain the function C(q), with q = |q|,
shown Fig. 17(a).

Observe that outside the small wave-number threshold this
function exhibits a power law asymptotics C(q)/q ∼ q−2H−2.
Our model produced the noninteger values for the Hurst ex-
ponent H ≈ 0.75 and for the fractal dimension D = 3 − H ≈
2.25, independently of the choice of the component. Such
scaling indicates the self-affine (rough) nature of the surfaces
representing the displacement field and is indicative of hier-
archical organization [133–136]. Moreover, similar to what
is known about fluid turbulence, our Fig. 17(b) also shows

that the probability distribution function for at least one of
the displacement derivatives is also characterized by robust
algebraic tails.

Based on these observations, one can argue that the
spatial correlations displayed by our MTM-based numeri-
cal tests display scaling characteristics that are indicative
of turbulent-type dynamic rearrangements. Temporal corre-
lations, associated with plastic yield, are also known to be
of self-affine nature and to exhibit power-law correlations as
they were captured by even the simplest scalar version of the
MTM [6,58]. Similar analogies with fluid turbulence have
been drawn in the analysis of several other complex disor-
dered systems with domineering long-range interactions that
are subjected to quasistatic driving, from brittle cracking to ac-
tive evolution of tissues [137–142]. In particular, simulations
and experiments recording plastic avalanches in a collection
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FIG. 16. Pseudoturbulent structure of the deformation field re-
sulting from a dislocation avalanche. The displacement vectors
connect pre- and post-avalanche positions of the individual nodes.

of sheared granular particles reveal nonaffine displacement
fields exhibiting the probability distribution functions with
much wider tails than Gaussian [10,114,115,117,143,144].
For related observations in crystal plasticity simulations in-
volving experiments and non-MTM modeling techniques, see
Refs. [142,145–148].

One may question the analogy between plastic avalanches
and fluid turbulence based on the fact that in the former
case we compare two static states, “before” and “after” the
instability, while in the latter, the motion is continuous both in
space and in time. Moreover in fluid turbulence the emerging
scale invariance is related to a balance between the energy that
is continuously injected at large length scales and removed at
small length scales while in plastic avalanches such energy
cascades are not apparent.

To substantiate the analogy, however, it is helpful to inter-
pret a plastic avalanche as a dynamic process that converts the
potential energy accumulated in the metastable state “before,”
into either acoustic radiation or heat, as the system transforms
into a stable state “after.” Such a transformation process starts

FIG. 17. (a) Fourier transform of auto-correlation function (power spectrum density) of the horizontal u and vertical v components of the
displacement field; we interpret both components as surfaces which due to averaging are transitionally invariant and isotropic; the dashed lines
show the power-law fit; insets show probability distributions p(u) and p(v). (b) Probability distribution p(∂v/∂x) of the horizontal derivative
of the displacement field exhibiting non-Gaussian wide tails.

indeed from a static configuration but then it reaches a dy-
namic stage. As the initially stored energy is exhausted, the
dynamics itself experiences a decay, so eventually the system
reaches a new static configuration. In this picture, the dynamic
stage is clearly present, as well the energy cascade from large
scales (stored elastic energy) to small scales (acoustic radia-
tion and heat). Although the associated dynamic process is not
inertial, as in fluid turbulence, it can still generate self-induced
complexity due to severe nonlinearity and the dominance of
long-range interactions.

It is interesting that, while the physical nature of the
“pseudoturbulence” in our overdamped solid system is clearly
different from the classical inertial turbulence in fluids, the
complexity-generating nonlinearity may be similarly geomet-
ric, meaning universal. Thus, the first source of nonlinearity in
MTM is simply quadratic, as it is associated with the necessity
to use finite strains in the description of deformations. This
type of geometric nonlinearity is unavoidable if one wishes
to capture correctly large crystal rotations [149–151]. While
the second source of nonlinearity is of constitutive nature
(multiwell Landau potential), it can be also considered as
geometric. Indeed, it is related to the geometrical location
of the energy wells which is fully controlled by the struc-
ture of lattice invariant shears. The energy wells themselves
can be simply parabolic as we have previously shown using
the scalar version of the MTM [58,152]. Moreover, similar
to the case of high Reynolds fluid turbulence, the evolution
generated by MTM is fully conservative outside intermit-
tent avalanches. Furthermore, due to the quasistatic nature
of the loading, the avalanches themselves remain dissipative
even as the microscopic viscosity (encapsulated in numeri-
cal energy minimization) tends to zero [69]. Finally, as in
fluid turbulence, the governing equations of the MTM be-
come scale-free in the limit when the cut-off length tends to
zero which ultimately explains the emergence of scale-free
behavior.
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VII. CONCLUSIONS

Plastic deformations in crystals originate from the avail-
ability of soft deformation modes which are usually rep-
resented as combinations of lattice-specific slips and rigid
rotations. Above certain level of stress, elastic deformations
are comperatively disfavored due to their high energetic cost.
As a result, plastically deforming crystals typically form
cell-based textures with elastic energy localized only on the
boundaries separating randomly oriented patches or grains
that are rotated relative to each other while being effectively
unstressed.

In this paper, we used a mesoscopic tensorial model
(MTM) to show that even large lattice rotations constituting
such textures, can originate from a highly coordinated in-
elastic slip at the microscale. More specifically, we presented
numerical evidence that behind such rotations may be crystal-
lographically exact microslip laminates of a pseudotwin type.

The formation of such laminates can be viewed as an ef-
fective internal “wrinkling” of the crystal lattice and since a
lattice independent internal scale is missing, the laminate mi-
crostructure forms at the scale of individual elastic elements.
While the microlaminates disguise themselves as elastically
neutral rotations, our numerical experiments reveal that the
process of their formation is inherently dissipative. By study-
ing the dynamic mechanisms leading to such rotations, we
showed that they emerge from dislocation-mediated processes
at the microscale.

The new insights were obtained due to the ability of
the MTM approach to capture not only dislocation motion
but also the dynamics of individual slips. An important
finding revealed by our numerical experiments is that dis-
location avalanches, resulting in the formation of rotated
patches, involve pseudoturbulent rearrangements and lead to
deformation fields exhibiting power-law distributed spatial
correlations.

Being mesoscopic, the MTM approach is necessarily a
result of coarse-graining of an atomistic model, but at a much
finer scale than the classical continuum theory. Therefore,

in MTM the fully nonlocal atom-by-atom interactions are
inevitably lost and, for instance, dislocation core structures
appear as blurred. However, as we have shown in our study,
the MTM is capable to represent adequately not only the
long-range but also the short-range interactions of dislocations
which are essential for the description of dislocation nucle-
ation and annihilation as well as the formation of their stable
interlocked configurations.

The MTM approach should be developed further to ad-
dress some puzzling problems in materials science and crystal
physics. One of them is to rationalize the size dependence
of the mechanical response of submicron structural elements,
in particular, to explain their enhanced strength, the erratic
nature of their stress-strain curves, and their propensity to
discontinuous yield and brittle failure. A related challenge is
to move from the study of single avalanches to numerical ex-
periments addressing temporal intermittency in steady plastic
flows. The goal here is to obtain fundamental insights into the
origin of scale-free correlations in plastic fluctuations and to
learn how to identify and interpret their statistical structure.

To simulate realistic crystalline structures, such as FCC,
BCC, and HCP, it will be necessary to extend the MTM ap-
proach from 2D to 3D which should start with the construction
of an appropriate GL(3,Z)-invariant energy. The 3D exten-
sion of MTM can be used to advance from basic modeling to
actual engineering applications, in particular, for calibrating
the augmented engineering continuum models accounting for
microscopic effects [3]. In particular, such development will
equip engineering models with the tools to adequately repro-
duce intermittent mechanical noise and will open them to the
development of fluctuation-based nondestructive diagnostic
techniques.
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