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Discrete-element-method model for frictional fibers
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We present a discrete-element-method algorithm for the simulation of elastic fibers in frictional contacts. The
fibers are modeled as chains of cylindrical segments connected to each other by springs taking into account
elongation, bending, and torsion forces. The frictional contacts between the cylinders are modeled using a
Cundall and Strack model routinely used in granular material simulations. The physical scales for simulations,
the determination and the tracking of contacts, and the algorithm are discussed. Tests on different situations
involving few or many contact points are presented and compared to experiments or to theoretical predictions.
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I. INTRODUCTION

The use of natural or artificial fibers allows one to design
materials with original mechanical properties. At the nano-
metric or micrometric scales, carbon nanotubes [1] or polymer
fibers [2] can be assembled into threads or networks. At the
micrometer and millimeter scales, the frictional forces act
with the elasticity of the fibers to produce a wide variety of
materials. The fibers can just be deposited without any special
preparation to form highly elastic media [3] such as cushions
or nonwoven fabrics [4]. Textile fibers can be twisted to pro-
duce yarns [5–7], which are then assembled into cords [8], as
well as woven [9] or knitted fabrics [9,10]. Cyclic mechanical
stresses can form very compact natural structures [11] and
birds also assemble fibers to build their nests [12,13]. The
contacts between fibers play a fundamental role in describing
the physics of knots, which is a subtle competition between
tension and friction [14,15], as well as eventual bending of
the fibers [16–19].

Several approaches have been proposed to numerically
simulate these structures. One approach is to use finite-
element algorithms to discretize the fibers [20]. This approach
allows a complete solution of the elasticity equations in com-
plex geometries such as nodes [18], but is only possible
for systems with small numbers of contacts. Another ap-
proach is to model the fibers as connected spheres [21] or
sphero-cylinders [22] and to use the discrete-element-method
algorithm widely used for the study of granular materials.
However, the periodic variations of diameter of such fiber
may induce very specific physical properties as interlocked
granular chains stiffening [23].

More realistic approaches are the simulations of fibers as
discrete [24] or continuous [25,26] cylindrical elastic chains
of circular cross sections. The noninterpenetration condition
between fibers and surfaces, or between fibers, is then treated
as constraints on the displacements. The introduction of fric-
tional tangential forces in such model has been proposed using
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methods for finding forces that match the Coulomb conditions
[25–27]. In those algorithms, the fibers are moved in order to
find the positions of the surfaces that match the nonpenetra-
tion of fibers, with forces verifying the Coulomb condition.
Those positions are found using an iterative procedure with
proper regularization of Coulomb law to ensure the conver-
gence towards one solution verifying the force balance. In the
case where many frictional contacts are present, the problem
becomes hyperstatic and the solution is not expected to be
unique. This is a well-known situation in granular material
[28] simulations, and the solutions selected by iterative algo-
rithms are not well controlled [28] and presumably depend
on the algorithm itself. Those drawbacks are, of course, of
minimal importance in situations where the indeterminacy in
contact forces is absent (hypo- or isostatic problem), such as
in knots with few contacts [29], or if qualitative simulations
are needed, as in the computer graphic community [30]. In
explicit methods, the forces are obtained directly from the
kinematic of the body in contacts. The selection of one so-
lution of the Coulomb friction forces among many others is
then ensured by the dynamics of the system. In counterpart,
the explicit algorithm is usually slower.

Chains of cylinders with frictional contacts were first in-
troduced in the discrete-element method by Chareyre et al.
These authors used them for the study of the mechanical
properties of granular materials reinforced with fibers [31,32],
with geotextiles [33], and for the behavior of suspensions of
frictional fibers in viscous flow [34].

This bibliography shows that the modeling of fibers in
chains of discrete elements has been the subject of many stud-
ies, but scattered in different fields. Moreover, the ability of
these different models to quantitatively reproduce the behav-
ior of fibers systems with many frictional contacts has never
been shown. Systems of fibers in frictional interactions are the
object of a growing interest of physicists and mechanics. The
object of this study is to propose to the community a simple
discrete-element method, easily reproducible, and founded
on the discrete-element-rod model, which includes frictional
contacts and whose capacity to reproduce the behavior of
various frictional fibers is clearly demonstrated.
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FIG. 1. (a) Ensemble of connected point forming the skeleton of
the fiber. (b) Cylinders and spheres forming the shell of the fibers.

We will base the model on the theory of elastic chains as
proposed by Bergou et al. [24]. We will keep a formulation
with independent elastic constants of torsion, bending, and
torsion, i.e., not linked by a cylindrical beam elasticity. This
will allow one to simulate various systems, such as arbitrarily
flexible wires. The contacts will be treated following an ap-
proach proposed by Chareyre et al. [31]. The ingredients of
the modeling, as well as the calculations, will be presented in
the simplest possible way so that this simulation can easily be
reproduced by physicists from various fields.

The manuscript is organized in the following way. In
Sec. II, we first describe the mechanical model of our
fibers, including internal elastic forces and contact forces.
The numerical resolution is then detailed in Sec. III, where
we insist on points that are specific compared to discrete-
element-method (DEM) simulations of frictional beads, i.e.,
the numerical scales that are used, the integration of displace-
ment, and the search of neighbors. In Sec. IV, we illustrate this
algorithm on various situations including static and dynamics,
with few and many contacts.

II. MECHANICAL MODEL OF FIBERS IN CONTACT

A. Description of the fiber

Following [24], we model a fiber as an ensemble of N
connected points [see Fig. 1(a)]. Let ri, with 0 � i � N − 1
be the position of the point, and ei = (ri+1 − ri )/‖ri+1 − ri‖,
with 0 � i � N − 2 the unit vector joining two successive
points. We note li = ‖ri+1 − ri‖. The segment joining two
successive points is the generatrix of a cylinder of circular
basis of diameter d . In addition, each point ri is the center
of a sphere of diameter d . So each fiber is a set of N spheres
connected by N − 1 cylindrical segments. A mass m0 is as-
signed to each node of the string, and a moment of inertia J is
assigned to each cylinder.

The kinematic of the deformation is the following. The
different nodes of one fiber may translate, allowing the bend-
ing and the stretching of the fiber. The cylinders joining the
different nodes remain straight cylinders and are not bent
when the fiber is deformed. The rectilinear shape allows one
to determine the contacts between fibers as contacts between
cylinders. The cylinders may rotate around their axis, allowing
the twist of the fibers. The kinematic of the chain is then de-
termined by the set of N node positions ri, and N − 1 cylinder
rotations θi. To those degrees of freedom, we associate forces
that act on nodes, and torques along the axis of cylinders.
Any system of forces or torques, such as contact forces or
elastic forces, acting on a cylinder will be decomposed as an
axial torque and forces on nodes. This decomposition will be
detailed below for elastic twist torques and contact forces.

B. Internal elastic forces

The internal elastic forces that we consider in the following
are elongation, flexion, and twist forces. The elongational
forces are modeled using springs of stiffness, k0, with dash-
pots of damping λ. The equilibrium length of the spring is l0,
and the elongation force exerted by point i + 1 on the mass
located at ri is

f (e)
i+1;i = [k0 (li − l0) + λ l̇i]ei. (1)

Each point i is submitted to forces from points i − 1 and i + 1
so that f (e)

i = f (e)
i+1;i + f (e)

i−1;i, except the first i = 0 and last i =
N − 1 points.

The flexion forces acting on the point i are obtained from
the elastic bending energy E (b) = ∫

s(B/2) κ2 ds, with B the
bending stiffness of the fiber and κ the curvature. The bending
energy of the discrete fiber is

E (b) = B l0
2

i=N−2∑
i=1

κ2
i , (2)

where κi is the curvature at node i, and the summation is ex-
tended to all nodes except ending ones. Writing the curvatures
κi as function of nodes positions ri, the flexion force f (b)

i = −
(∂E (b)/∂ri ) acting on nodes i is (see the Appendix A1)

f (b)
i = − B

l3
0

[ri−2 − 4ri−1 + 6ri − 4ri+1 + ri+2], (3)

for (N − 3) � i � 2. Expressions of the forces f (b)
i for

i < 2 and i > (N − 3) are given in the Appendix A1. The
calculation supposes that the fibers are weakly extended and
bent (see the Appendix A1).

The internal elastic torque is obtained from the twisting
energy [24]: E (t ) = ∫

s(C/2) τ 2 ds, with C the torsion modulus
of the fiber and τ the twist of the fiber. The twist may be
written as [35–37] τ = τint + τs. The internal twist τint is the
twist of the fiber if simply unbent, whereas τs is the torsion
of the fiber center line. Writing the internal twist at node i as
(θi − θi−1)/l0, and τs,i the torsion of the center line at node i,
we obtain the twist energy of the discrete fiber as

E (t ) = C l0
2

i=N−2∑
i=1

(θi − θi−1 + l0 τs,i )
2. (4)
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FIG. 2. Contact between two cylinders.

The twist moment acting on the segment joining nodes i
and i + 1 is obtained by differentiating (4) with respect to θi

(see the Appendix, Sec. A 2):

m(t )
i = C

l0
[(θi+1 − θi + l0 τs,i+1) ei+1

− (θi − θi−1 − l0 τs,i ) ei−1]. (5)

This elastic moment is split into one component m(t )
i =

m(t )
i · ei of the moment along the axis of the segment (i, i + 1),

and into forces acting on nodes (see the Appendix, Sec. A 2).

C. Contact forces

Contact between fibers may occur between segments of
cylinders or spheres belonging to identical or different fibers.
Figure 2 shows the contact between two sections of cylinders.
The contact point rC (t ) is located on the segment with ending
points r(1)

Hi
and r(2)

Hi
on axis cylinders, which minimizes the

distance between axes. This segment is unique if the axes
are not parallel. The determination of this segment will be
detailed in Sec. III C. Let d (t ) = ‖r(2)

Hi
− r(1)

Hi
‖ be this minimal

distance and n(t ) the normal unitary vector. We note δ(t ) =
(d1 + d2)/2 − d (t ) to be the interpenetration of the two cylin-
ders, and rC (t ) = r(1)

Hi
+ (r1 − δ/2) n the contact point. We

use the Cundall-Strack model for the contact force [38]. The
normal contact force exerted by cylinder 1 on cylinder 2 is
modeled as a spring-dashpot system,

f (c)
n = −[kn δ + λn δ̇]n, (6)

with kn the contact stiffness between the cylinders and λn the
contact damping. This contact law is a simplified version of
the elastic contact force between two cylinders [39] which
varies nonlinearly with the interpenetration f (c)

n ∼ δ3/2, and
which depends on the angle between the cylinder axes. The
tangential contact force is a Coulomb force,

f (c)
t = −Min[kt ut ; μknδ]

ut

ut
, (7)

where kt is the tangential stiffness, ut the tangential dis-
placement, and μ the microscopic friction coefficient. The
tangential displacement ut is initialized to 0 when the contact
is first formed and evolves with time in the following way.

First, since the tangential displacement is expressed in
the fixed frame, ut is first rotated to take into account the

rotation of the normal vector. Let dβ be the angle between
the normal at times t − dt and t : n(t − dt ) and n(t ), and
k = [n(t − dt ) × n(t )]/|n(t − dt ) × n(t )| the axis rotation.
We name urot

t (t − dt ) this rotated tangential displacement.
Then, the displacement is integrated as

ut (t ) = urot
t (t − dt ) + (v(2) − v(1) )dt, (8)

where v(1) (and similar for v(2)) is the velocity of the point
of the cylinder (1) coinciding with the contact point C. The
velocity is v(1) = ṙ(1)

i + �
(1)
i × (rC − r(1)

i ), with �
(1)
i the ro-

tational velocity of the segment i of fiber 1. The rotation
vector is separated into axial and nonaxial components as
�(1) = �

(1)
⊥ + θ̇iei, where the nonaxial component is �

(1)
i,⊥ =

1
li

ei × (ṙ(1)
i+1 − ṙ(1)

i ).
Finally, the normal component (ut · n) n is removed. If

kt ut > μknδ, then the tangential displacement is renormalized
such that ut = μknδ/kt .

The contact force f (c) is then expressed as a system of
forces f (c)

i and f (c)
i+1 applied on nodes i and i + 1, and a mo-

ment miei acting on the cylinder connecting those nodes. The
conservation of the resultant and of the moment of contact
force implies that

f (c)
i + f (c)

i+1 = f (c), (9a)

(ri+1 − ri ) × fi+1 + miei = (rC − ri ) × f (c). (9b)

A possible choice for forces and moment is (see the
Appendix, Sec. A 3)

m(c)
i = [(rC − ri ) × f (c) )] · ei, (10a)

f (c)
i = (1 − si )f (c) + R

li
(f (c) · ei )n, (10b)

f (c)
i+1 = sif (c) − R

li
(f (c) · ei )n. (10c)

It should be noticed that (9) does not set all the components
of f (c)

i and f (c)
i+1, and that supplementary conditions expressed

in the Appendix, Sec. A 3, must be added to obtain (10).
If the contact between two fibers involves one cylindrical

segment of the fiber and one sphere, or two spheres, the
contact point is calculated according to the type of the surfaces
in contact. The translation velocity of the sphere is the velocity
of the node. The rotation velocity of the sphere at node i is the
rotation velocity of the cylinder joining nodes i with i + 1.

D. Miscellaneous forces

In addition, miscellaneous extra forces may be added. A
global viscous damping force f (v)

i = −λv ṙi may be added.
It is useful to damp transverse motion of fibers. Indeed, our
mechanical model of fiber does not include any dissipation for
motion perpendicular to the fiber axis if there are no contacts.
Volumetric forces such as gravity forces f (g)

i = m0 g, with g
the gravity field, may also be added. Other external forces may
be applied to fibers such as pretension at the ends of the fibers.
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III. NUMERICAL IMPLEMENTATION

A. Integration of equation of motions

The dynamical equations of motions are written as

M0 r̈i = f (e)
i + f (b)

i + f (c)
i + f (v)

i + f (g)
i , (11a)

Jz θ̈i = m(t )
i + m(c)

i . (11b)

The second equation describes the rotation of the cylinder
segment around its axis. We did not consider in Eq. (11b) any
elastic torque due to torsion of the fiber, and the fiber is free to
rotate around node ri. The dynamical equations are integrated
using a standard second-order Verlet algorithm [40].

B. Physical parameters for simulations

1. Physical scales

We first define mass, length, and stiffness scale for the sim-
ulation. The mass scale m0 is the point mass of the nodes, the
length scale l0 is the equilibrium length of each segment, and
the stiffness scale k0 is the elongation stiffness of the spring.
If all the fibers do not have identical physical properties, those
scales are chosen from the fibers of the smallest radius. For
every physical quantity x, with a physical scale x0, we note
the nondimensional quantity as x∗ = x/x0.

The timescale is t0 = (m0/k0)1/2. For fibers of diameters
r = d/2 made of an elastic material (Young modulus E , Pois-
son coefficient ν) of density ρ, we have k0 = Eπr2/l0, m0 =
ρπr2l0, and then t0 = l0 (ρ/E )1/2. The timescale t0 is then
the time of propagation of the compression waves through
one segment of the fiber. The force scale f0 = k0 l0 = Eπr2

is the force that extends a hypothetical perfectly elastic fiber
by 100%.

2. Elastic forces and damping

When submitted to a traction force f , the relative expan-
sion of the fibers is f / f0 = f ∗. It follows that if we want to
stay in the limit of small extension, we should keep f ∗ � 1.
In practice, the simulations are done with f ∗ ∼ 10−5–10−3.
It should be noted that if f ∗ is too small, the propagation
of transverse waves is very slow when no bending forces are
present. Indeed, the velocity of transverse wave vt in a string
of linear density ρl under a tension f is vt = ( f /ρl )1/2. With
ρl = m0/l0, we have ρ∗

l = 1 and the nondimensional speed
of the transverse wave is v∗

t = ( f ∗/ρ∗
l )1/2 = ( f ∗)1/2 when no

bending stiffness is present.
The nondimensional bending stiffness is B∗ = B/k0l3

0 . For
an elastic fiber as consider in Sec. III B 1, we have B =
Eπr4/4, and then B∗ = (r∗)2/4. Similarly, the nondimen-
sional torsional modulus is C∗ = C/k0l3

0 . For an elastic fiber
of radius r, we have C = Eπr4/2(1 + ν), and then C∗ =
(r∗)2/2(1 + ν).

The longitudinal damping λ is chosen to avoid compres-
sion waves that travel continuously through the fibers, needing
a very long time to return to equilibrium. We take λ ∼
(k0m0)1/2, and then λ∗ ∼ 1 for this.

3. Contact force

The value of the contact stiffness is fixed from a lineariza-
tion of the Hertzian contact between two elastic cylinders.

If two cylinders of radius r with perpendicular axes are in
contact, the problem is equivalent to the the contact between
a sphere of radius r and a plane, and the normal force is
fn = (4/3) Eeff r1/2 δ3/2, with Eeff = E/(1 − ν2), and ν being
the Poisson ratio of the material. To do the linearization, we
arbitrarily set that the elastic energy of the Hertzian contact,
∼Eeff r1/2 δ5/2, is equal to the elastic energy knδ

2/2 of the
spring for a normal force f which is of the order of the traction
force that we applied on the fibers. Dropping the numerical
factor of the order of 1, we obtain kn = E2/3 f 1/3 r1/3. The
nondimensional stiffness may then be obtained as

k∗
n = ( f ∗)1/3

r∗ , (12)

where we again dropped the constant term. f ∗ is the typical
nondimensional force (i.e., the nondimensional traction ap-
plied to the fibers). This value of k∗

n is a reasonable choice
for modeling the contact, but evidently different values may
be set. In practice, since the tension is of the order of f ∗ ∼
10−5–10−3, and the typical radius is r∗ ∼ 10−1, we have
k∗

n ∼ 1. For the sake of simplicity, the tangential stiffness is
taken as k∗

t = k∗
n .

Some damping of the normal force, λn, may be introduced.
We took λ∗

n ∼ 1 for the rapid relaxation of the oscillating
motion of the contact.

4. Timescale for simulation

The time step dt for the simulation is chosen such that the
dynamic of the length relaxation and of the contact establish-
ment is correctly described. The length of the segment relaxes
on a timescale ∼(m0/k0)1/2 = t0, whereas the timescale for a
contact to establish is ∼(m0/kn)1/2 = t0 (k0/kn)1/2. The time
step is chosen as dt = Min[t0; t0 (k0/kn)1/2]/10, leading to

dt∗ = 1

10
Min[1; (k∗

n )−1/2], (13)

such that both relaxations occur on at least 10 time steps. In
practice, since k∗

n ∼ 1, we take dt∗ = 0.1. For a given set of
parameters, it is checked that results are unchanged if time
steps are divided by a factor 2.

C. Computation of contact points

The discrete-element method is mainly used in assemblies
of spherical particles. Due to the anisotropic shape of the
segments, our algorithm for the determination of the contact
points has some particularities compared to the sphere-sphere
contact that we discuss in this section.

1. Distance between fibers

The distance between fibers is calculated in the following
way. We first consider a segment as a set composed of a
sphere and a part of a cylinder, as shown in Fig. 3(a). We first
calculate the distance between the two parts of the cylinders
following the method described in the Appendix, Sec. A 4. If
contact does not occur along the two cylinders, contact be-
tween spheres and cylinders are searched, and finally between
the two spheres. The hull of the fiber is therefore composed
of the external surface of the cylinders and of the spheres,
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FIG. 3. (a) Two -dimensional (2D) view of two sets, composed of
one sphere and one cylinder. (b) Motions of external Cext and internal
Cint contact points at the junction between two cylinders.

as shown in Fig. 3(b). The start and the end of the fibers are
finished by spheres.

2. Integration of displacement of contact point

The contact point is followed continuously during the mo-
tion of the fibers. This may be done easily as long as the
contact point between one segment and one fiber is unique
as, for example, the contact point Cext in Fig. 3(b). In this
case, the displacement of the contact point is continuously
integrated along the motion. In some cases, two contact points
may exist simultaneously as the two points as, for example,
the contact points C(a)

int and C(b)
int in Fig. 3(b). When the contact

at point C(b)
int occurs, its tangential displacement is initially set

to 0 (as every new contact), and this lowers the tangential
force. Since the fibers weakly bend with r � l0, we expect
that the number of such contacts is very small compared to
the total number of contacts, producing very negligible errors.
A possible refinement may be to interpolate the two contact
points as a single one, allowing a continuous integration of
displacement.

3. Neighbor search method

The search for contacts between discrete objects can sig-
nificantly increase the computation time of DEM algorithms.
In our case, the algorithm for measuring the distance between
cylinders is slightly more complex than for spheres, further
increasing the computation time of the collisions. Several
strategies are possible to significantly improve the computa-
tion time of the collisions. They are based on the use of a
neighbor list (Verlet list) or on the partition of the system
in boxes (linked cell method). Here we discuss the problem
arising when using strongly anisotropic objects. In the linked
cell method, the particles are assigned in cells, and the list of
particles is each cell is updated periodically. The collisions
are searched only for particles within the same or the neigh-
boring cells. This strategy is very effective for approximately
monodisperse spheres. In the case of polydisperse spheres, the
size of the cell must be a multiple of the size of the largest
particles, so that the number of particles per box increases. As
a consequence, the computation time grows rapidly with the
polydispersity, as shown by Luding et al. [41]. The problem
is very similar for strongly anisotropic particles such as fibers
or segments of fibers. Figure 4(a) shows an assembly of fibers
with segments of size l0. If collisions between segments are

FIG. 4. Two possible choices for the size of the cells into which
collisions between fibers may be searched: (a) size of the cell scales
as the length of segments, (b) size of the cell scales as the radius of
segments. (c) Simplification arising from the fact that the segments
belonging to each fiber are connected.

searched within one or more neighboring cells, the size of
the cell should be ∼2 l0. For segments of section ∼4 r2, the
number of segments in each cell is ∼2 (l0/r)2 for a dense 3D
system. Since l0/r � 1, sorting particles in a cell of size ∼l0
is not efficient. A more convenient way to define the cell may
be considered. It consists, as shown in Fig. 4(b), of replacing
segments by fictitious spheres of radius r inside each segment
of length l0, and considering cells of size ∼4 r. In this case,
for a system of Nf fibers of N segments each, the total num-
bers of fictitious spheres is ∼Nf N (l0/2r). However, those two
methods do not use the fact that different segments of one fiber
are linked together. Taking advantage of this knowledge may
significantly speed up the search of neighboring. Figure 4(c)
shows two fibers, and we search the contact between segment
i of fiber 1 with fiber 2 by increasing j. For a segment j,
we calculate the distance d (i, j). If this distance is larger
than 2r, there is no contact and we are sure that there is no
contact between the two fibers for | j′ − j| � d (i, j) − 2r. So
the next segment where we need to search the contact verifies
j′ > j + d (i, j) − 2r.

The optimal strategy to find contacts is expected to be
dependent on the type of fiber being studied. In the case of
fibers with numerous segments, taking advantage of the con-
straint that the segments are linked, as depicted in Fig. 4(c), is
presumably better. In contrast, in the case of an assembly of
very short fibers, such as a packing of one-segment needles,
the use of the cell, as in Fig. 4(b), should be preferred. Further
study of such optimization is outside the scope of this study.

IV. ILLUSTRATION EXPERIMENTS

The program has been tested on various simple geometries
in order to check the consistency with the theory, verify the
numerical stability of the algorithm, and test the numerical

025003-5



JÉRÔME CRASSOUS PHYSICAL REVIEW E 107, 025003 (2023)

FIG. 5. Force applied to a beam as a function of its deflection.
(a) Geometry. (b) Symbols: simulation results. Solid line: theoretical
solution. Dashed line: force in the small deflection limit FL2/B =
3δ/L. (c) Convergence: δN is the end deflection for a beam with
N nodes [(N − 1) cylinders] and δth is the theoretical deflection.
Applied force is FL2/B = 10. Symbols are the relative error and the
dashed line is a N−2 decay.

precision. Those configurations were the rolling or sliding of
a cylinder on an inclined plane, the velocity of transverse
waves of a string, the static flexion of a fiber loaded at ex-
tremity by a point force, and the catenary shape of a massive
string under gravity. We present, in the following, four more
complex situations. If not otherwise specified, the simulation
parameters are the time step dt∗ = 0.1, internal damping λ∗ =
2.8, contact stiffness k∗

n = k∗
t = 1, contact damping λ∗

n = 1,
global viscous damping λ∗

v = 0.001, and inertia momentum
J∗ = m∗r∗2/2 (homogeneous cylinder).

A. Elastic rods without contacts

The elastic rod model has already been tested in miscella-
neous situations that do not involve frictional contacts [24].
The test examples presented here are just for checking the
approximations used in Secs. II B and V.

The first example is the deformation of a clamped elastic
rod (N = 100, B∗ = 0.1) submitted to a point force applied at
one end [see Fig. 5(a)]. The clamping is imposed by fixing the
first and second nodes of the rod. The free rod length L is then
the number of cylinders minus one, N − 1: L = N − 2 = 98.
Results for different values of the applied forces are shown in
Fig. 5(b). Those results may be compared to the deflection of
an nonextensible rod. At small deflections δ � L, FL2/B 	
3δ/L. At large deflections, δ ∼ L simulations agree well with
the analytical solution of Bisshopp et al. [42]. Simulations
with beams made with different N show that the solution ob-
tained with the discrete beam converges towards an analytical
solution as ∼N−2 [see Fig. 5(c)]. It may be noticed that since
the maximum force applied in those simulations are of the
order of F ∼ 10 B/L2, the maximum nondimensional force
F ∗ ∼ 10−4 << 1, so that the beam stretching is negligible.

The second example is the buckling of a rod submitted to a
compression and applied torque at its ends [see Fig. 6(a)]. A
numeric rod (B∗ = 0.1) is submitted to a torque Mt at its ends.
The displacement of the ends perpendicularly to the axis of
the rod is blocked, and no compression forces P are applied.
The torque is slowly increased until buckling of the beam

FIG. 6. Buckling of an elastic rod. (a) Geometry. (b) Torque
applied at ends at the torsional buckling threshold as a function
of the rod length. Symbol: simulation results with P = 0. Line:
M (b)

t = 2πB/L.

occurs. The buckling threshold is determined by measuring
the displacement of the ends along the axis of the rod. Those
displacements are initially negligible and suddenly increase as
buckling occurs. Figure 6(b) shows the buckling torque M (b)

t
as a function of the rod length. Stability analysis of the twisted
rods leads to [43] M (b)

t = 2πB/L. As shown in Fig. 6(b), the
numerical results are in correct agreement with this theoretical
law.

B. Static without flexion: Capstan

We simulate the tension along a string which is rolled up
around a cylinder. For this, we prepare an infinitely flexible
spring (B∗ = 0, N = 200, r∗ = 0.1) which makes five turns
around a cylinder (R∗ = 5). The cylinder had a huge mass
and moment of inertia to prevent any motion. The friction
coefficient is μ = 0.2. We first apply an equal tension T ∗

1 =
T ∗

2 = 0.01, with opposite directions, to the two ends of the
string. We let the system reach equilibrium. Then, we slowly
decrease T ∗

2 while keeping T ∗
1 = 0.01. For a threshold value

of T ∗
2 , the sliding of the string occurs. We measure the tension

in the string using (1) at the onset of sliding. Figure 7 shows
the decrease of the tension T ∗ along the string as a function of
θ = (s∗ − s∗

0 )/(R∗ + r∗), with s∗ the abscissa along the curve
and s∗

0 the abscissa of the first contact point. The solution of
the capstan problem with a finite thickness rod predicts that
[44] T ∗/T ∗

1 = exp(−μθ ), which is the observed behavior in
Fig. 7. The measured decay is μ = 0.198, in agreement with
the imposed value μ = 0.2.

C. Static with flexion: Elastic knots

We consider the mechanical response of an elastic rod with
an open knot. An elastic fiber of length L, with a circular
section of radius r and bending modulus B, is bent in an open
trefoil knot (31). We then apply a tension T to the ends of
the fibers. This experimental situation has been addressed by
Audoly et al. [16,17]. When the tension is weak, the loop
radius R is very large compared to r. In this limit, the authors
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FIG. 7. Tension in a rolled string around a cylinder: T ∗ is the
tension in the string and θ is the rolling angle. Circles are symbol;
solid line is an exponential fit. See text for simulation parameters.
Inset: Schematic of the experiment.

found analytical solutions for the shape of the knot, both in the
frictionless case and for weak friction μ � 1. This knot has
been simulated very recently by Choi et al. using a discrete
rod model with an implicit solver for the contact force [29].

We simulate numerically such knot by considering a flex-
ible spring r∗ = 0.1, B∗ = (r∗)2/4 = 2.5×10−3, N = 500,
λ∗

v = 4×10−4, as shown in Fig. 8(a). We first knot the fiber
by setting μ = 0 and applying a tension ± T ∗ez at the ends.
After this preparation stage, we set μ to its actual value, and

FIG. 8. (a) Snapshot of a (31) knot. For clarity, an illustration
is made with r∗ = 0.2. (b) Tension as a function of ε = √

r/R for
frictionless and frictional strings. Symbols are numerical data, and
lines are theoretical expressions given by Eq. (14).

we increase or decrease T ∗ depending on whether we tighten
or loosen the knot. When the knot begins to move, we measure
the radius of the curvature of the loop as R = 〈‖dti/ds‖−1〉,
where dti/ds = ei+1 − ei is the derivative of the tangent vec-
tor, and the average 〈 〉 is over all segments in the loop which
are at a distance of at least one segment from any contact
point. Following [16,17], we introduce ε = √

r/R. Figure 8(b)
shows the tension T ∗ as a function of ε for frictionless (μ = 0)
and frictional (μ = 0.1) loosening and opening of the knots.
The analytical solutions in the limits ε � 1 and μ � 1 are
[16,17]

Tr2

B
= ε4

2
± μσε3, (14)

where the sign ± depends on whether the knot is tightened
(+) or loosened (−), and σ is a numerical constant which
is σ 	 0.492 for the trefoil knot. As shown in Fig. 8(b),
the numerical data agree correctly with the analytical one.
In the frictionless case, we may observe deviations from the
scaling T ∼ ε4 when ε � 0.15. Two possible sources of the
deviations may be identified. First, Eq. (14) is obtained in
the limit ε � 1, and deviations may arise from high-order
ε terms in Eq. (14). Second, for ε � 0.15, we have R∗ =
R/l0 = r∗/ε2 ∼ 4, so that the discretization of the loop may
then be an issue. The discrete nature of the rod may be clearly
identified on numerical data from μ = 0.1 loosening, where
some steps in ε are visible. For the frictional case, the model
(14) slightly underestimates the role of friction compared to
the numerical simulations. It may be due to some departure
from the hypothesis μ � 1 which is used to obtain (14).

D. Impact: Falling chain

We consider the dynamics of the impact of a metallic
chain on a cylindrical obstacle. We restrict this analysis to
a qualitative analysis. A metallic chain (length L = 190 mm,
mass m = 8.5 g) is held at its extremities by hands. The chain
is released and its fall is recorded with a fast camera operating
at 200 fps. Figure 9(a) show some snapshots of the impact.
The chain is simulated as a infinitely flexible spring B∗ = 0.
We set the length scale to l0 = 2 mm, and N = 95, so that
L = N l0. The choice of the timescales may be done in the
following way. We want to simulate a nonextensible chain,
so we require that the nondimensional typical force is � 1.
The gravity force is Fg = Nm0g, with m0 the mass scale of
one segment and g the gravity. The nondimensional grav-
ity force is then F ∗

g = Fg/k0l0 = Ng/l0t−2
0 = Ng∗. We take

g∗ = 4.9×10−5 so that N g∗ 	 5×10−3 � 1. This sets the
timescale t0 = 0.1 ms. It should be noted that in the limit
of a nonextensible chain, the mass scale does not need to be
specified. Other parameters are dt∗ = 0.1, R∗ = 5, r∗ = 0.1,
μ = 0.1, k∗

n = k∗
t = 1. Figure 9(b) shows the results of the

simulations which qualitatively agree with the experiments.
We may remark that the behavior of the experimental chain is
not symmetric in compression and in extension (nearly infinite
stiffness in extension, zero stiffness in compression), whereas
the numerical chain is symmetric (same stiffness in compres-
sion and in extension). However, in the impact experiment, the
chain is always in tension and the lack of symmetry does not
have importance.
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FIG. 9. (a) Experimental snapshots of the impact of a metal-
lic chain on a fixed perpendicular cylinder of radius R = 10 mm.
The perimeter of the cylinder is underlined in red. Time t = 0 is
defined as the first contact time. Chain length L = 190 mm, mass
m = 8.5 g. (b) Simulated impact. See text for physical parameters of
the simulation.

E. Multiple fibers: A yarn model

In a recent study, Seguin et al. considered the situation of
a staple yarn made of twisted totally flexible fibers [7]. We
present in this section some numerical details about this simu-
lation. The yarn is made of an assembly of Nf identical fibers
of N segments initially parallel to an axis z [see Fig. 10(a)].
Their positions (xi; yi ) in the plane perpendicular to the z axis,
with 1 � i � Nf , are the positions of a packing of disks in 2D
obtained from a separate simulation.

In a first phase of the simulation, the fibers are twisted. The
fibers are submitted to a tension T ∗ = 10−4 along z, applied
at both ends. A torque C∗ez is applied to both ends of the
assembly of fibers. For this, each fiber i with 1 � i � Nf is
submitted at both ends j = 0 and j = N to an external shear
force,

τi( j) = ± C∗∑
i r2

i ( j)
[ez × ri( j)], (15)

where the sign is − for j = 0, and + for j = N ends. The
torque is gradually increased until it reaches its target value

FIG. 10. (a) Assembly of initially straight fibers. (b) Thread of
fiber after a torque is applied at the ends. (c) Separation of the
fibers due to applied forces. (d) Force ratio necessary to separate
the slivers as a function of the twist angles. Red disks: μ = 1; blue
triangles: μ = 0.5; green squares: μ = 0.2. Lines are for guidelines.
(e) Same data as (d) plotted as a function of H = μθ2R/L. Dotted
line is 0.75μθ2R/L. Simulation parameters are Nf = 20, N = 30,
r∗ = 0.1, B∗ = 0. For clarity, (a)–(c) are enlarged by a factor of 6
perpendicularly to the z axis.

and the shear forces are updated at each time step. Under
the action of this torque, the fibers twist and becomes ap-
proximately helicoidal, as shown in Fig. 10(b). During this
preparation, the friction coefficient is set to a low value, μ =
0.05. This is important in order to obtain a regular pitch along
the thread. Indeed, since the yarn is twisted by the application
of torques at the ends, the presence of an important friction
between fibers has the effect of concentrating the twist near
the ends, with a central zone of low twist. This behavior is
also observed experimentally [7] if the twist is not homoge-
nized along the yarn. The duration of this preparation stage
is t∗ = 5×105, and the total twist θ is measured at the end of
this phase.

In a second phase, the fibers are separated. The friction is
first set at its target value. The fibers are randomly partitioned
in two sets: up and down. The tension of the up-fibers is multi-
plied by a factor f > 1 at the up-extremities: Tup( j = 0) = T ∗
and Tup( j = N ) = f T ∗. Symmetrically, Tdown( j = 0) = f T ∗
and Tdown( j = N ) = T ∗. The factor is f = 1 at the begin-
ning of the separating stage and is increased at a fixed rate
(� f /�t∗) = 2×10−6. During this phase, the torque is kept
constant. The difference between the average positions of
the up and down fibers is measured. This difference stays
constant, until a threshold value of f where the two slivers
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of fiber separate [see Fig. 10(c)]. A mechanical model of this
problem developed in [7] shows that the force necessary to
separate the two slivers is ln(1 + f ) 	 0.75μθ2R/L, which is
the behavior that is observed in Fig. 10(e).

V. CONCLUSION

We have described a discrete-element mechanics algorithm
for the simulation of flexible and frictional fibers. This algo-
rithm is similar to the DEM-type algorithms widely used for
the study of granular materials. The difference arises from
the type of surfaces in contact (cylinders and not spheres)
and from the elastic forces between the cylinders which are
connected to form a fiber. The algorithm has been tested on
various configurations that can be compared to experiments
or to theoretical models.

The assumptions and approximations used to design this
algorithm are quite limited. The low bending assumption is
not very compelling for many applications, but could eventu-
ally be minimized by a finer discretization of the fiber. The
simplification of the Hertzian elastic contact law between the
cylindrical segments by a linear spring has probably a very
small impact on the modeling of real systems. An extension
to nonlinear contact laws should not be a problem. Finally,
the discretization of the fiber generates a discontinuity of the
displacement for some contact points at the passage between
successive segments of a fiber. A priori, the number of such
jumps is negligible compared to the total number of contacts
for thin and weakly bent fibers, and this should not be an issue
for simulations of real systems.

The main difference between this algorithm and those pre-
viously described to simulate elastic fibers lies in the level
of simplification of the mechanical problem. Simulations of
fibers with finite-element algorithms are certainly of high
accuracy, but can only simulate small systems. Implicit algo-
rithms are probably faster, but the indetermination of forces
in multicontact cases is not resolved by the dynamics of the
system. The use of a DEM algorithm is a compromise that
allows one to consider relatively complex assemblies of fibers
and that correctly handles the multiplicity of equilibrium so-
lutions.

The potential applications of this algorithm are obviously
multiple. The study of complex knots between fibers of ropes,
with or without bending energy, is possible. The mechanical
response of fiber clusters in nests, cushions, or in rigid needle
stacks is also possible. For these studies, the contact search
should be optimized according to the aspect ratio of the fibers
and the geometry of the packing. The simulation of knitted or
woven fabrics can also be considered. For this, large systems
can be simulated, but the introduction of periodic boundary
conditions should be more suitable. Finally, systems mixing
fibers and grains for the study of soils reinforced by fibers or
roots are also possible applications of this work.
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APPENDIX

1. Flexion forces

The curvature κi at a node N − 2 � i � 1 is first expressed
as a function of the positions of nodes ri−1, ri and ri+1. The
radius Ri = 1/κi of the circle joining those three points may
be expressed as a function of the surface Si and the perimeter
pi of the triangle with vertices (ri−1, ri, ri+1) using the Heron
formula. After elementary calculus, we obtain

κ2
i = 4

l2
i−1l2

i − (li−1 · li )2

l2
i−1 l2

i (li−1 + li )2
, (A1)

where we noted li = ri − ri−1. The bending energy is

E (b) = B l0
2

i=N−2∑
i=1

κ2
i . (A2)

The flexion force is then

f (b)
i = B l0

2

∂

∂ri

⎡
⎣i′=N−2∑

i′=1

κ2
i′

⎤
⎦. (A3)

First, we notice that for weakly bending fibers, li 	 li−1,
and for weakly extended fibers, li 	 l0. Then, the denominator
of (A1) is 	 4 l6

0 ,

∂κ2
i′

∂ri
	 1

l6
0

∂

∂ri

[
l2
i′−1l2

i′ − (li′−1 · li′ )2]. (A4)

Using li = ri − ri−1, we obtain

∂κ2
i−1

∂ri
	 1

l4
0

[2(li−1 − li−2)], (A5a)

∂κ2
i

∂ri
	 1

l4
0

[−4(li − li−1)], (A5b)

∂κ2
i+1

∂ri
	 1

l4
0

[2(li+1 − li )], (A5c)

and (∂κ2
j /∂ri ) = 0 if |i − j| > 1. We obtain, finally,

f (b)
i = B

l3
0

[−li−2 + 3li−1 − 3li + li+1] (A6)

= B

l3
0

[ri−2 − 4ri−1 + 6ri − 4ri+1 + ri+2], (A7)

for N − 3 � i � 2. Expressions of the forces for i < 2 and
i > N − 3 are obtained by noticing that the summation in (A3)
is for i′ = 1 to i′ = N − 2,

f (b)
0 = − B

l3
0

[r0 − 2r1 + r2], (A8a)

f (b)
1 = − B

l3
0

[−2r0 + 5r1 − 4r2 + r3], (A8b)

f (b)
N−2 = − B

l3
0

[rN−4 − 4rN−3 + 5rN−2 − 2rN−1], (A8c)

f (b)
N−1 = − B

l3
0

[rN−3 − 2rN−2 + rN−1]. (A8d)
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2. Twist moment and forces

The twist energy of the discrete rod is

E (t ) = C

2 l0

i=N−2∑
i=1

(θi − θi−1 + l0 τs,i )
2, (A9)

where τs,i is the torsion of the center line at node i, and (θi −
θi−1)/l0 is the internal twist. The torsion τs of the center line
is obtained from Frenet-Serret equations as τs = (dN/ds) · B,
where (T, N, B) are the tangent, normal, and binormal vectors
of the center line of the fiber. They are obtained by multiple
differentiation of tangent vector ei, with appropriate interpo-
lations depending upon if the derivatives are evaluated at the
nodes or at the cylinder,

m(t )
i−1;i = C

l0
(θi − θi−1 + l0 τs,i )ei−1. (A10)

Taking into account the torque acting from the segment
(i + 1; i + 2) on the segment (i; i + 1), the total elastic twist
torque acting on the segment (i; i + 1) is

m(t )
i = C

l0
[(θi+1 − θi + l0 τs,i+1) ei+1

− (θi − θi−1 − l0 τs,i ) ei−1]. (A11)

This torque is split into two components. The axial (colin-
ear to ei) component is

m(t )
i = m(t )

i · ei, (A12)

whereas the remaining perpendicular component m(t )
i − m(t )

i ei

is written as a system of two points forces f (t )
i and f (t )

i+1 acting
at points i and i + 1 such that

f (t )
i + f (t )

i+1 = 0, (A13a)

(ri+1 − ri ) × f (t )
i+1 = m(t )

i − m(t )
i ei, (A13b)

f (t )
i · ei = 0. (A13c)

Equation (A13a) ensures that the system of two point
forces is a torque, Eq. (A13b) assigns the moment, and
Eq. (A13c) ensures that those forces do not stretch the rod.
Using (ri+1 − ri ) = liei, we finally obtain the two forces act-
ing on the nodes,

f (t )
i+1 = −f (t )

i = (m(t )
i /li ) × ei. (A14)

3. Contact forces distribution

Let us take a contact force f (c) acting at point rC . We are
looking for two point forces f (c)

i (f (c)
i+1) acting at point ri (ri+1)

and a moment miei such that

f (c)
i + f (c)

i+1 = f (c), (A15a)

(ri+1 − ri ) × f (c)
i+1 + m(c)

i ei = (rC − ri ) × f (c). (A15b)

The scalar product of Eq. (A15b) with ei gives

m(c)
i = [(rC − ri ) × f (c)] · ei, (A16)

and the cross product of Eq. (A15b) with ei gives

lif
(c)
i+1 − li

[
f (c)
i+1 · ei

]
ei

= f (c)[ei · (rC − ri )] − (rC − ri )[ei · f (c)]. (A17)

FIG. 11. Distance between two points located on two segments
of the line.

Defining the parallel and perpendicular components of a
force f with respect to the cylinder axis as

f‖ = [f · ei]ei, (A18a)

f⊥ = f − f‖, (A18b)

we obtain

f (c),⊥
i+1 = sif (c),⊥ − R

li
f (c),‖n. (A19)

Equation (A19) determines only the components of f (c)
i+1 which

are perpendicular to the axis. The parallel component of f (c)
i+1

is obtained in the following way. Consider the cylinder of
length li made of an elastic material, and let k be the stiffness
of the corresponding compressing spring. This cylinder may
be viewed as the reunion of one cylinder of length sili with
stiffness k/si, and one cylinder of length (1 − si)li with stiff-
ness k/(1 − si). Let a force f (c),‖ be applied at the junction
between the cylinders. This force moves the junction on a
distance δ = ‖f (c),‖‖/[k/si + k/(1 − si )]. This displacement
deforms the part of length (1 − si )li and generates a force
f (c),‖
i+1 = [k/si]δ = si f (c),‖ on this spring. Inserting this equa-

tion in Eq. (A19), we finally obtain

f (c)
i+1 = sif (c) − R

li
[ f (c) · ei]n. (A20)

4. Distance

We consider two segments 1 and 2, whose axes are drawn
in Fig. 11. On each axis are located an abscissa s = 0, a sphere
of rayon r, and a segment of cylinder of radius r for 0�s�1.
The distance between the two points at abscissa s1 and s2 is

d2(s1, s2) = (a + s1 l1 + s2 l2)2. (A21)

The distance is minimal for s∗
1 and s∗

2, which verifies

(
∂d2(s1, s2)

∂s1

)
(s∗

1, s∗
2 ) =

(
∂d2(s1, s2)

∂s1

)
(s∗

1, s∗
2 ) = 0. (A22)

Equation (A22) is solved to obtain (s∗
1, s∗

2 ), and the min-
imal distance d (s∗

1, s∗
2 ) is obtained. If d (s∗

1, s∗
2 ) < 2r, with
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0 � s∗
1 � 1 and 0 � s∗

2 � 1, the contact is found between the
two cylinders.

If not, the contact is checked between the sphere located
at s1 = 0 and cylinder 2. For this, the minimal distance is
obtained for s∗

2, verifying(
∂d2(0, s2)

∂s2

)
(0, s∗

2 ) = 0. (A23)

Equation (A23) is solved to obtain s∗
2, and the minimal dis-

tance d (0, s∗
2 ) is obtained. If d (0, s∗

2 ) < 2r, with 0 � s∗
2 � 1,

the contact is found between the sphere (1) and the cylinder
(2).

The contact between sphere (2) and cylinder (1) is searched
in a similar way. If not, we check for a contact between the two
spheres.
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