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Learning to self-fold at a bifurcation
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Disordered mechanical systems can deform along a network of pathways that branch and recombine at
special configurations called bifurcation points. Multiple pathways are accessible from these bifurcation points;
consequently, computer-aided design algorithms have been sought to achieve a specific structure of pathways
at bifurcations by rationally designing the geometry and material properties of these systems. Here, we explore
an alternative physical training framework in which the topology of folding pathways in a disordered sheet
is changed in a desired manner due to changes in crease stiffnesses induced by prior folding. We study the
quality and robustness of such training for different “learning rules,” that is, different quantitative ways in which
local strain changes the local folding stiffness. We experimentally demonstrate these ideas using sheets with
epoxy-filled creases whose stiffnesses change due to folding before the epoxy sets. Our work shows how specific
forms of plasticity in materials enable them to learn nonlinear behaviors through their prior deformation history
in a robust manner.
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I. INTRODUCTION

Metamaterials [1,2] and smart materials [3] are often de-
signed to show specific behaviors. For example, mechanical
topological insulators localize the response to forces [4,5]
while elastic networks with allostery communicate deforma-
tions over a long range [6–8]. More complex mechanical
structures can show a specific deformation, e.g., a smile-
shaped deformation, in response to a spatially textured pattern
of forces [9]. Most commonly, mechanical systems are ratio-
nally designed to show such behaviors by searching parameter
space on a computer [10,11]. However, an alternate approach
explored recently is that of physical learning [12–20]: During
a period of training, the material is shown examples of the de-
sired behavior, prompting autonomous changes in the material
parameters that promote the desired behavior. No computers
are involved in optimizing the properties of such a system
[21–23].

Physical learning is a more constrained way of exploring
parameter space than optimization on a computer. However,
an autonomous physical learning process offers the advantage
of learning from real examples of stimuli and response [24]
(as opposed to a theoretical specification of the problem)
and does not rely on an accurate model of the material [25].
Physical learning might also allow for continual learning of
new functionalities in situ, as requirements change [14]. A
major open question is what kinds of local adaptive pro-
cesses available in real systems constrain physical learning
[12,19]. Recent work has shown that natural processes within
an ethylene–vinyl acetate (EVA) foam network can train the
network for an auxetic response by simply aging the material
in different configurations [13]. Broader questions remain:
What is the impact of different kinds of local learning dynam-
ics on the feasibility and quality of learning?

Here, we explore how the quality of physical learning
depends on local adaptive processes (which we call “learn-
ing rules”) through theoretical analyses and an experimental
demonstration. We focus on training a fundamentally non-
linear feature in marginal mechanical systems, a bifurcation
point [26–31]. Mechanical bifurcations occur at degenerate
configurations from which multiple nonlinear zero modes
are accessible. Bifurcations cannot be described by a linear
approximation even for small deformations since the energy
vanishes to two leading orders; they correspond to singulari-
ties of the energy function with an excess of linearized zero
modes and self-stress states that disappear at next-to-leading
order.

Bifurcation points can potentially be exploited to create
multifunctional systems [15] and have been studied in the
context of mechanical linkages [32–34] for robotics and topo-
logical metamaterials [30]. However, bifurcations can also
make the system hard to control [35]. For example, folding
outcomes at these singularities can be unpredictable and de-
pend on the precise spatial pattern of forces used [31,36–
38]. While generic mechanical systems show bifurcations in
some parts of configuration space [39–41], bifurcations are
especially a problem for thin creased sheets because the flat
state configuration is necessarily degenerate [31,36,42]. In
particular, creased thin sheets with nominally one degree of
freedom (according to Maxwell counting), often called “self-
folding origami,” always have a bifurcation at the flat state
(henceforth referred to as a “flat state bifurcation”) that is the
meeting point of an exponentially large number of distinct
folding modes. Consequently, such “self-folding” sheets are
hard to control at the flat state (despite the name) since the
precise spatial pattern of forces applied will determine the
folding geometry.
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FIG. 1. The topology of folding pathways at a bifurcation can be
changed through a physical training protocol. (a) Thin creased sheets
can fold along distinct folding pathways that bifurcate from the flat
state with outcomes determined by the spatial force pattern. (b) A 2D
schematic representation of high-dimensional attractors in the space
of force patterns. Each shaded region represents one of the discrete
folding outcomes that is realized for all force patterns represented by
that region. Specific attractors can be enlarged, shrunk, or eliminated
by changing crease stiffnesses through design or physical learning.
(c) and (d) We model a physical learning process that changes a
crease i’s stiffness κi (about the flat state) based on its folding
strain ρi.

We focus on the training of such creased thin sheets
[43–45] to manipulate the bifurcation point in configuration
space [Fig. 1(a)]; in particular, we seek to increase the fraction
of all force patterns that result in one folding pathway [i.e.,
attractor size; Fig. 1(b)] through a physical learning rule:
crease softening due to folding [Figs. 1(c) and 1(d)]. We
find that successful training relies on creating heterogeneity
in stiffnesses across the sheet. However, this heterogeneity
can rapidly diminish with further training for some classes of
learning rules while other classes of learning rules, threshold-

like in strain, are more robust. We test some of these ideas
with an experimental prototype in which a sheet with epoxy-
filled creases is folded back and forth along one pathway at
a bifurcation. Such folding during the “training period” (i.e.,
before the epoxy sets) extrudes epoxy to different extents in
different creases, creating a heterogeneous system. We test the
trained sheet by applying different forces and find successful
training in systems with four and seven creases.

II. RESULTS

A. Training and stiffness heterogeneity

We begin with a theoretical study of crease patterns made
of four-valent vertices (4-vertices) as shown in Fig. 1(a).
Maxwell constraint counting gives this system one degree
of freedom, but in reality this structure has two nonlinear
one-degree-of-freedom pathways that meet at a bifurcation at
the flat state [46]. As a toy model of energy near a generic
bifurcation, consider E (x, y) = λx2y2, where x, y parametrize
deformations of a mechanical system. Motions along x = 0
and y = 0 are true zero-energy pathways, staying at zero
energy for large deformations. However, a linearized analy-
sis at (x, y) = (0, 0) suggests a two-dimensional (2D) vector
space of zero modes (along with a self-stress state if we had
a mechanistic model); furthermore, any small deformation
along x = 0 or y = 0 will reduce the zero-mode space to
one dimension (and eliminate the self-stress mode). Thus any
linearized analysis will fail to identify the true zero modes
x = 0 and y = 0. On the other hand, any spatial pattern of
forces applied to a 4-vertex [31] in its unfolded flat state will
result in folding along one of the two zero-energy folding
pathways.

The nonlinear force-response relationship of disordered
mechanical systems at such bifurcations can be summa-
rized by an “attractor diagram,” shown schematically in
Fig. 1(b). The space is a 2D schematic representation of
high-dimensional space of spatial force patterns. Each shaded
region represents one of the discrete folding outcomes that
is realized for all force patterns represented by that region.
Earlier work has shown that this attractor structure can be
changed by changing the geometry [31,36], prebiasing pre-
ferred directions [47–49] of the sheet, or controlling the
relative stiffness of different creases [50].

Typically, solving the inverse problem for attractors re-
quires a complex computer algorithm; for example, linear or
quadratic programming algorithms on a computer [50] can
determine crease stiffnesses that eliminate all but a chosen
pathway in a saddle-node bifurcation: a local bifurcation in
the energy landscape of a dynamical system, where minima
collide with adjacent maxima and both disappear as the pa-
rameters of the dynamical system are changed (in this case,
changing the stiffnesses of the origami creases). After the
insertion of these calculated crease stiffnesses, the origami
sheet folds only along a chosen desired pathway. Every other
folding pathway, hitherto accessible, is now eliminated; as the
energy minima eliminated correspond to the myriad folded
modes accessible from the rest or unfolded state. Here, we
investigate whether this same inverse problem can be solved
by the sheet itself through a natural physical process, with no
computers involved.
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Throughout this paper, each crease i has a “crease stiff-
ness” κi which refers to the stiffness for the folding strain
(or folding angle) about the flat state (i.e., unstrained or un-
folded state) with rest angle maintained at zero; that is, each
crease i has a folding energy (1/2)κiρ

2
i for folding strain

ρi [see Fig. 1(d)] and crease stiffness κi. Thus this stiffness
does not prefer any folding orientation (ρ → −ρ, which is
known as mountain-valley symmetry) and only depends on
the magnitude of the folding strain or angle of the creases,
ρ2

i . In contrast, a creased sheet of paper develops nonzero
rest angles at each crease that breaks the mountain-valley
symmetry (ρ → −ρ) at creases and maintains the sheet away
from the flat state bifurcation, without actually reshaping the
bifurcation itself [50]. In this paper, we focus on the non-
trivial problem of shaping bifurcations, while maintaining
mountain-valley symmetry at each crease, so the trained sheet
can still be completely flattened to its unfolded or rest state.
Consequently, our trained sheet can symmetrically access ei-
ther the positive or negative components of a given folding
pathway.

As a first pass, we considered learning rules of the type
shown in Figs. 1(c) and 1(d) that soften different creases based
on the current folding strain:

dκi/dt = −λρ2
i κi, (1)

where λ, the “learning rate,” sets the learning timescale.
We have chosen to study these crease-softening learning

rules because they are the behavior expected of most materi-
als. While there are materials that harden when strained, these
require deformations in the plasticity region and far away from
the rest state, invalidating the linear-spring folding energy
assumption: (1/2)κiρ

2
i .

As a case study, we begin by applying the above learning
rule to the 4-vertex shown in Fig. 2(a); the 4-vertex generically
has two distinct folding branches that meet at the flat state
bifurcation [46]. We simulated a training process in which the
vertex initially has creases of equal stiffness κ0

i ; the sheet is
folded repeatedly (using a spatial pattern of forces) along the
positive and negative components of one of the two pathways
at the bifurcation. The sheet is folded into a configuration of
finite strain, and the parameters κi are updated according to
the learning rule above for a time interval τ . The sheet is then
relaxed back to the flat state and refolded with the negative
of the same pattern of forces, and the learning process is con-
tinued. See Appendix A for parameters. We test the attractor
size of each pathway throughout training; the attractor size
is determined by applying a library of 500 randomly chosen
spatial patterns of folding torques to the creases and counting
the fraction of folding torques that result in the chosen fold-
ing pathway. We assume that testing does not cause further
changes in the stiffnesses κi in our simulations (though a real
system would continue changing due to testing).

We find that during training, different creases fold to differ-
ent extents ρi in specific ratios characteristic of the branch we
fold along. Consequently, the learning rule in Eq. (1) creates
heterogeneity in the initially homogeneous crease stiffnesses
κi. When crease stiffnesses are relatively heterogeneous, the
attractor size of the chosen pathway increases from an initial
value of 0.50 to nearly 1, i.e., nearly all spatial patterns of
forces result in the chosen folding pathway; see Fig. 2(b).

(a)

(b)

(c)

FIG. 2. Eliminating a select folding pathway for a 4-vertex
through physical training. (a) A single 4-vertex has two distinct
folding modes (referred to as the light-gray mode or pathway and the
dark-gray mode or pathway). (b) The dark-gray pathway’s attractor
size during a training process in which the 4-vertex is folded by a
fixed force pattern repeatedly. The stiffnesses κi of each crease i
are represented by four horizontal lines at each time point during
training; all κi start at the same stiffness and decrease according to
Eq. (1). κi are in units of the bulk modulus of the stiff faces. Crease
stiffnesses κi become heterogeneous during training, before becom-
ing homogeneous again upon overtraining. (c) Energy landscape of
a sheet at different points during training (φ is an angular coordinate
in two-dimensional null space; see Appendix A for details). The
landscape before training (circles) and after overtraining (pentagons)
shows two distinct minima, but when attractor size ∼1 (squares), the
light-gray pathway’s minimum is eliminated via a saddle-node bifur-
cation. Note that in the undertrained regime (triangles) the attractor
size is below 1 but well above the initial value of 0.50.
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However, further training reduces the heterogeneity in creases
as all stiffnesses approach zero. In this “overtrained” regime,
the attractor size of the desired pathway drops down to 0.50
again, no bigger than for the initial untrained sheet; see
Fig. 2(b).

To illustrate the phenomenon of saddle-node bifurcation,
we computed the energy of the origami sheet in different
folded configurations, while its crease stiffnesses κi were
evolved by the learning rule in Eq. (1). We studied folded
configurations within the null space of the origami’s potential
at the flat state. The origami’s potential is defined by three
nonlinear constraint equations for each vertex. The sum of
squares of the residue of these constraint equations for a given
folded configuration gives the energy of the origami associ-
ated with only the vertex of the origami (energy of crease
stiffness is not included). To study folding just away from the
flat or unfolded state, we can linearize these three constraint
equations around the flat state into a 3 · V × M matrix H ,
where M is the number of creases in the origami pattern and V
is the number of vertices in the origami pattern. However, in
the flat state, two of the three constraint equations become de-
generate, thus reducing H to a 2 · V × M matrix. The kernel of
this 2 · V × M, H matrix defines the null space of the origami
potential at the flat state. For a single vertex with four creases,
applying the rank-nullity theorem, we see that the null space
is two dimensional [50]. We parametrize this null space with
the variables r and φ. We selected a circle (defined as r = 0.5)
in this null space and computed the energies of various folded
configurations represented by points on the circumference of
this circle. Since this is a null space of the origami potential at
the flat state, the only nonzero energy component left is the en-
ergy resulting from the stiffnesses of the origami creases. An
energy minimum in this energy plot [Fig. 2(c)] corresponds to
the existence of a stable folded configuration. For untrained
sheets, we see two minima corresponding to the two true
nonlinear folding modes. During training (i.e., the evolution of
the crease stiffnesses by the chosen learning rule), the attractor
size of one of these true nonlinear folding modes is reduced
to zero, as the mode is destroyed in a saddle-node bifurcation.
This is illustrated in Fig. 2(c) (see vertical light-gray line), as
the local minimum on the left gradually transforms into a local
maximum in the course of training. In the overtrained regime,
the eliminated mode (local minimum on the left) reappears,
and we find that both pathways are accessible in response to
some spatial patterns of forces [see images of the two modes
at the top of Fig. 2(c)].

Hence we find that training can solve an inverse problem
for nonlinear behavior, namely, that of eliminating one select
branch in a saddle-node bifurcation and thus changing the
topology of pathways. Furthermore, successful training is cor-
related with the development of stiffness heterogeneity [see
Fig. 2(b)]: This observation is an example of a larger principle
that disordered systems can learn because the information
must be stored in the trained degrees of freedom; homoge-
neous creases cannot store such information. Finally, we find
that this particular training rule is prone to overtraining and
homogenization of creases if training is carried on for too long
[see Fig. 2(b)].

We have found that heterogeneity in the crease stiffnesses
stores the learned information about the desired pathway but

the learning rule that created the desired heterogeneity also
erases that information upon further training. Similar erasure
of the trained response was observed in systems such as cycli-
cally sheared Brownian suspensions and charge-density wave
conductors [51].

B. Robustness of different learning rules

Qualitatively, many real materials soften with strain as
captured by the learning rule in Eq. (1) but might differ quanti-
tatively. Different materials will have different learning rules;
some might soften proportionally to their strain or to higher
powers of their strain, and yet others might be even more
sensitive, softening only for strains above a specific threshold.
Other nonequilibrium systems can show more complex learn-
ing, where synaptic weights or learning degrees of freedom
can both strengthen or soften over time; we do not investigate
those cases.

We investigated whether such quantitative differences in
material properties might have a qualitative effect on the qual-
ity and robustness of learning. We considered families of rules
of the type

dκi/dt = −λ f (ρi )κi. (2)

The first family we considered were different polynomial
forms f (ρi ) ∼ ρN

i . Note that Eq. (1) is the case where N = 2
[see Fig. 3(a)]. The second family, defined by a Hill coefficient
M, f (ρi ) ∼ ρM

i /(ρM
i + T M ), corresponds to the sigmoidal

dependence often seen in real systems: Small strains do not
cause significant aging or change in stiffness, but strains above
a characteristic threshold T cause stiffness changes; further-
more, the precise amount of strain does not matter beyond this
threshold T [see Fig. 3(a)].

We trained a larger disordered creased sheet with 13
creases and four vertices [see Fig. 3(b)]; this sheet had 16
nonlinear modes meeting at the flat state bifurcation. We used
the same training protocol as for the single vertex (4-vertex)
in Fig. 2: We selected one pathway as the desired pathway and
applied the learning rule as the structure was folded repeatedly
into the positive and negative components of the selected
pathway. As earlier, we quantified successful learning by the
attractor size of the desired pathway, i.e., folding the sheet
with a library of 500 random force patterns and computing
the fraction of force patterns that result in a specific folded
mode. We assume that stiffnesses do not change during such
testing.

Among polynomial learning rules f (ρi ) ∼ ρN
i , we found

that training rules with higher-order polynomials (higher N)
resulted in better training in large origami patterns. We found
a higher attractor amplitude (i.e., peak attractor size) and
a greater training time robustness: Learning quality stayed
higher for longer [see Fig. 3(c)]. However, all polynomial
learning rules were still susceptible to overtraining, dur-
ing which the crease stiffness heterogeneity was lost [see
Figs. 3(d) and 3(e)]. With thresholdlike learning rules, the
overtraining problem was nearly eliminated [see Fig. 3(f)]. We
found that creases that fold less than the threshold T do not
soften at all and hence the learned heterogeneity in stiffness
is maintained over time. However, there is a trade-off; the
threshold T of the learning rule needs to be within the range
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(a) (b) (d)

(c) (e) (g)

(f)

FIG. 3. Quality and robustness of learning depend on the learning rule. (a) and (b) For the sheet with 13 creases shown, we model a family
of “training rules” with crease stiffnesses κi that change with strain ρi (which has been normalized and thus ranges from 0 to 1) in a polynomial
f (ρi ) ∼ ρN

i or threshold f (ρi ) ∼ ρM
i /(ρM

i + T M ) manner. (c) Learning quality [peak attractor size; see (d) and (f)] and robustness (length of
training time over which attractor size >0.70; see (d) and (f)] for different learning rules are explored. (d) With f (ρi ) ∼ ρN

i rules, the attractor
size of the desired pathway rises to a peak before falling. The peak attractor size (quality of learning) increases with N . (e) The stiffnesses of
each of the 13 creases, i, of the origami are represented by the 13 horizontal lines. The creases all start out with the same stiffness, and the
stiffnesses decrease according to the different polynomial learning rules indicated by the line type (solid lines, dashed lines, or lines composed
of two stars). κi are in units of the bulk modulus of the stiff faces. The polynomial rules also show a regime of overtraining where the stiffnesses
κi become homogeneous again as all κi go to zero. The horizontal lines representing the crease stiffnesses for the different polynomial learning
rules are plotted at select times, so as to prevent the lines of the different polynomial learning rules from overlapping. (f) Attractor size vs
training time for threshold learning rules. (g) The stiffnesses of each of the 13 creases, i, of the origami are represented by the 13 horizontal
lines. The creases all start out with the same stiffness, and the stiffnesses decrease according to the different threshold learning rules indicated
by the line type. κi are in units of the bulk modulus of the stiff faces. Crease heterogeneity grows with training and does not decrease (no
overtraining) with continued training for some of the threshold learning rules (lines composed of two stars). The horizontal lines representing
the crease stiffnesses for the different threshold learning rules are plotted at select times, so as to prevent the lines of the different threshold
learning rules from overlapping.

of strains experienced during training. If T is too large, no
training will occur. If T is too small, training will fail to create
sufficient heterogeneity in stiffnesses κi to encode information
about the desired mode [see Fig. 3(g)].

Moreover, the heterogeneity of crease stiffnesses arrived
via the threshold learning protocol (where some creases are
untrained while others are trained during the training proto-
col, resulting in creases with stiffnesses and others without
stiffnesses), suggesting the concept of “critical creases,” i.e.,
that a desired folding pathway can be defined by a specific set
of creases having stiffnesses and others without stiffnesses, a
binomial kind of distribution (1s and 0s).

C. Experimental demonstration

With these theoretical results in place, we demonstrated
these ideas with an experimental prototype. While many pre-
vious works have implemented creased sheets in systems
ranging from graphene on the nanoscale [52] to Mylar and
cardboard on the mesoscale [53] to solar panels on satellites
[54], these works generally have fixed stiffness in different
creases and thus an inability to learn folding behaviors. We
note that paper and cardboard are affected by folding; how-
ever, they typically develop a nonzero rest angle upon folding
and are thus likely to fold in the same way again. However, as
noted earlier, such a displacement from the bifurcation does
not reshape the bifurcation which still exists if the sheet is

forced into the flat state. Here, we create a prototype that
maintains ρ → −ρ symmetry at each crease and hence can
still be laid flat after training.

We created a sheet with gullies at creases by sandwich-
ing a Tyvek sheet between acrylic pieces that were laser
cut to serve as stiff faces of a crease pattern. See Fig. 4(a).
Consequently, the creases correspond to gullies of width w

(set by the gap between adjacent acrylic pieces) and depth h
(set by the thickness of acrylic) on both sides of the sheet.
A slow setting epoxy solution is created from a mixture
of epoxy resin and a curing agent in the ratio 1 : 2. The
creases are filled with epoxy on both sides of the sheet; the
epoxy takes ∼60 min to set. See Appendix B for details.
During this setting time (the “training phase”), the crease is
manually folded to an angle +ρ, flattened to the rest state
(i.e., when all crease fold angles = 0), and then folded to
angle −ρ in the other direction. Such folding will extrude
an amount of epoxy h(|ρi|) from the crease gully that de-
pends on the magnitude of folding |ρi|. Only epoxy remaining
inside the crease determines the stiffness of that crease at
the end of the training phase. Thus the amount of epoxy
extruded h(|ρi|) determines the change in stiffness �κ during
training and thus determines the form of the learning rule in
Eq. (2). By folding in both directions (±ρ) during training,
we maintain mountain-valley symmetry and zero rest angles
at the crease in its flat or rest state; consequently, the trained
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(a)

(b)

(c)

FIG. 4. Experimental realization of training through epoxy ex-
trusion. (a) Schematic: We created creased sheets by sandwiching a
thin membrane between thick acrylic sheets that serve as stiff faces;
the resulting creases of width w and height h are filled with epoxy
(black lines on creases). Folding by angles ρi before the epoxy sets
(the training period) will extrude epoxy; creases with larger ρi will
extrude more epoxy, resulting in lower stiffness κ after the epoxy
sets. (b) A four-crease vertex with epoxy-filled creases was trained by
repeatedly folding along one of the two pathways during the setting
period; folding is repeated along positive and negative components
of the chosen pathway to avoid any directional folding bias in the
creases. (c) Testing: Folding outcomes are determined for folding
forces applied at different locations. The untrained sheet folds along
two distinct pathways depending on the location of the applied force
(light-gray and dark-gray dots). The trained sheet folds along only
one pathway for all folding forces (dark-gray dots), demonstrating
an increased attractor for the dark-gray pathway.

sheet can still be laid flat. The training protocol is illustrated
in Fig. 4(b).

We constructed a vertex with four creases (studied theoret-
ically in Fig. 1), resulting in two folding modes (the light-gray
mode or pathway and the dark-gray mode or pathway) shown
in Fig. 4(c). Initially, before any epoxy is added, all creases
are free-folding. We tested the response of this free-folding
vertex to forces applied at different points along the boundary
of one of the sectors. We found that forces at three of seven
locations lead to the dark-gray folding mode while forces at
the four locations result in the light-gray folding mode [see
Fig. 4(c)]. Forces applied to all points in the other sectors
lead to either the dark-gray or the light-gray mode. We then

FIG. 5. Learning to expand a select attractor in a complex sheet.
A sheet with seven creases and two vertices has four distinct folding
pathways (shown at the bottom). (a) Before training, three pathways
are accessible by forces applied to the different locations shown
(circles) or by torques applied to specific creases (stars). (b) The
creases were filled with epoxy and folded back and forth along
the dark-gray pathway as the epoxy set (the training period). After
training, the sheet was “tested” with the same forces and torques
used in (a). All test forces and torques now result in the dark-gray
pathway, indicating an expanded attractor size for that pathway.

filled the creases with slow setting epoxy, marking the start
of the training phase. We manually folded the vertex into a
selected mode (dark-gray mode) with characteristic folding
angles ρdark

i at each crease, reverted to the flat state, and folded
along the negative component −ρdark

i of the same dark-gray
pathway. We folded until the largest folded crease could not be
folded further; in this way, the magnitude of folding is approx-
imately the same along the positive and negative components
of the pathway and over multiple instances of folding during
training. Throughout this training, the vertex was clamped in
a vertical configuration but was rotated periodically to prevent
epoxy from flowing out of the creases due to gravity. We re-
peated this folding process for 60 min, folding back and forth
along the positive and negative components of the dark-gray
mode. See Appendix B for details of the experiment.

After the epoxy set, we found that forces at all seven test
locations now lead to the dark-gray mode as illustrated in
Fig. 4(c), showing that the training procedure had modified the
flat state bifurcation, presumably by eliminating the light-gray
mode branch at a saddle-node bifurcation away from the flat
state [50]. Using a fresh sample, we also successfully repeated
the training process above to retain the light-gray mode and
eliminate the dark-gray mode instead.

To see whether the principles behind this simple demon-
stration are robust enough to work in more complex disor-
dered systems, we attempted training on a sheet with seven
creases, two vertices, and thus four distinct pathways at the
bifurcation; see Fig. 1(a). As shown in Fig. 5(a), the untrained
sheet folds along three of those four pathways for test forces
applied to the center of different faces with one face held
clamped. (The fourth pathway requires torques at specific
creases that cannot be realized by forces at a single face in
the clamped configuration we used.) We filled the creases
with epoxy and trained with the same protocol as earlier,
manually folding along a select pathway (the dark-gray path-
way), flattening the sheet, folding along the negative branch
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of that pathway, and repeating the process for 60 min. After
the training process was completed and the epoxy had set,
we tested the sheet with the same test forces applied to the
faces when it was untrained; we now find that all forces lead
to folding along the target dark-gray pathway as illustrated in
Fig. 5(b). Thus the flat state bifurcation has been successfully
trained to eliminate the other pathways, presumably through
saddle-node bifurcations away from the flat state.

III. DISCUSSION

The study of bifurcations in mechanical systems has
attracted attention from mathematicians [55], roboticists
[56,57], and physicists [31,36,50]. Most work has focused on
changing the structure of bifurcations by rationally changing
parameters such as lengths of the elements. Our work here
shows that at least some versions of this design problem can
be solved by changing the stiffness of joints through a physical
training protocol. Our work further suggests that bifurcations
might be physically trainable in mechanical linkages where
the lengths of elements change according to learning rules;
changes in length have been used as a basis for physical
training in other contexts [13,16,58,59].

The experimental demonstration here illustrates how
a generic physical process—the extrusion of material at
creases—can naturally implement “learning rules” that confer
specific functionality on the system. Other materials naturally
show softening with strain [13], possibly allowing for the
implementation of different functional forms of our learning
rules.

The locality of physical learning in mechanical systems
contrasts with the global nature of most machine-learning
algorithms, where learning parameters are nonlocally updated
(gradient descent protocols). The training rules are local,
softening each crease in response to strain in that crease.
Furthermore, even at the end of training, the learned stiffness
in any one crease does not immediately favor one folding
pathway over another. However, creases that meet at a vertex
[53] have nonlinear interactions that constrain their relative
folding; such interacting creases are able to collectively learn
and encode information about a desired pathway even if each
individual crease does not select a pathway by itself.

While we trained for one attractor to grow and occupy most
of the force pattern space, one can also train a system for
multiple attractors [15]. Such training can create a mechanical
pattern recognizer, folding into one configuration in response
to one set of force patterns and a distinct configuration in
response to a different set of force patterns. Unlike similar
responsive materials designed on a computer, the learning
paradigm here lets structures learn in situ from real examples
of force patterns [13].
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APPENDIX A: THEORY

1. Theoretical modeling of self-folding sheets

We model creased sheets using energy-based models de-
veloped in previous work [43,53,60]. We assume that creases
have a stiffness modeled by torsional spring elements on
each crease [15,31,50]. We briefly review the elements of this
model as we build upon this work to simulate the physical
learning of desired folding pathways of self-folding origami
sheets.

The energy of thin-sheet origami is dominated by face
bending governed by mechanical constraints at the origami
vertices. Each vertex contributes three constraints on the fold-
ing angles of creases around it [60]. Take a vertex surrounded
by N creases denoted with an index i and each folded to an
angle ρi. At the flat state, all ρi = 0, which trivially satisfies all
mechanical constraints. One can write down an expansion for
these three nonlinear constraints Ta(ρi ) [31]. The energy of the
folded origami is taken as the sum of squares of the residues
of these constraints Evertex ∼ ∑

a T 2
a , which is independently

summed over different vertices [50]. The energy due to the
stiffness in the creases is Ecrease,i = 1

2κiρ
2
i as discussed in the

main text. Thus the total energy of a folded sheet is the sum
of vertex and stiff-crease energies

Esheet(ρi ) =
∑

v∈vertices

3∑

a=1

T 2
va + 1

2

∑

i∈creases

κiρ
2
i . (A1)

In the learning protocol presented in this paper, the crease
geometry is fixed and so are the vertex constraints Tva. The
change in the energy of a folded configuration ρi during train-
ing stems directly from the change in the individual crease
stiffness values

dE

dt
= ∂E

∂κi

dκi

dt
= 1

2
ρ2

i

dκi

dt
. (A2)

2. Simulated sheet folding

Using the energy model described previously, we sim-
ulated the folding of the self-folding origami via several
numerical folding methods [50].

Origami sheets are numerically folded in a way similar to
that described in Ref. [15]. The folded sheet’s configurations
are initialized at

ρi0 = ρ
τi

||τi||
by a set of external folding torques τi on the creases with ρ ≡
||ρi||, the folding magnitude, chosen to be ρ = 0.5. However,
this initialization point is typically not an energy minimum
on the surface of the hypersphere of radius ρ. Thus we nu-
merically relax the sheet to a local minimum of Eq. (A1)
using MATLAB, subject to a constraint that fixes the folding
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magnitude ρ:

minimize
ρi

Esheet(ρi )

subject to ||ρi|| = ρ.
(A3)

This protocol mimics the experimental fast folding of
origami sheets, and the clamping of one crease at a specific
folded dihedral angle. It was tested and validated in Ref. [50].
The results of this folding protocol are similar to torque-based
folding of sheets using Newtonian methods.

3. Simulation of sculpting folding pathways through physical
learning

Starting with Eq. (A2) above, we see that the evolution
of the energy landscape and, thus, the folding pathway is
driven by dκi

dt . Physical learning is introduced by the dynamic
specification of dκi

dt defined by various physical learning rules,
which are functions of the fold angles of the mode ρ teacher

i ,
whose attractor size we desire to expand:

dκi/dt = −λ f (|ρ teacher
i |)κi, (A4)

where λ, the “learning rate,” sets the learning timescale and
ρ teacher

i is a vector defining the fold angles of the creases of
the desired mode whose attractor size we want to increase.
Note that ρ teacher

i is obtained by folding the creases of the
origami with an external torque, F teacher

i , as described above.
We generated the components of F teacher

i by first randomly
selecting a number from a normal distribution. Next we nor-
malized this vector and used it to fold the creases of the
origami as described above. We checked whether the scalar
product of the normalized vector and the resulting normalized
folded mode was greater than 0.99. If it was not, we generated
another F teacher

i by selecting another random set of numbers
for its components and checked whether the new vector and
its resulting folded mode had a scalar product greater than
0.99. If the scalar product was greater than 0.99, then the final
resulting folded mode was then normalized and assigned to
F teacher

i . The learning rule is specified by f (ρ teacher
i ), which

can be a linear, quadratic, or a threshold function of ρ teacher
i .

We simulated a physical learning process in which the creases
initially had a uniform stiffness κ0

i = 0.05 (for single-vertex
origami) and κ0

i = 0.02 (for double-vertex origami). A unit of
stiffness represents the bending modulus of the stiff faces of
the origami. The crease stiffnesses are evolved with a learning
rate λ = 0.01 per training round. Thus we have specified not
just a teacher for the physical learning process, F teacher

i , but
also a curriculum or learning rule, f (ρ teacher

i ), for the physical
learning process.

4. Simulation of testing protocol

After each round of training via physical learning as
described above, the attractor size of the desired mode is
computed. To calculate the attractor size, a set of an array of
test torques, the “test torque set,” is created. Each element of
the test torque set is defined by a vector F ext

i , whose com-
ponents, F ext

i, j , represent the magnitude of the torque applied
to each crease. Each vector F ext

i is normalized and used to
fold the creases of the self-folding origami sheet as described

above. Folding with each external torque, F ext
i , results in a

folded mode ρfolded
i . Note that the folded-mode vector, ρfolded

i ,
is normalized as well. This folded mode, ρfolded

i , is compared
with the desired mode, ρ teacher

i , whose attractor size we seek
to increase.

To compare the folded mode, ρfolded
i , with the desired

mode, ρ teacher
i , we take the scalar product of the two vectors.

If the scalar product of the two vectors is above 0.9, then we
consider the two modes as similar, and one and the same. We
count the number of external torques, F ext

i , in the test torque
set, whose folded modes, ρfolded

i , are considered similar to
ρ teacher

i . We then express this count number as a fraction of
the cardinality of the test torque set. This fraction defines the
attractor size of the desired mode.

5. Quality of learning

Two agents drive the physical learning process: the teacher,
F teacher

i , and the curriculum or learning rule, f (ρ teacher
i ). We

found that the kind of teacher selected does not affect the qual-
ity of the physical learning as long as it results in the desired
folded mode. Hence the quality of learning is determined by
the kind of learning rule selected. We quantify the quality of
learning for various learning rules with two parameters: the
peak attractor size attainable and the time robustness of the
learning rule. The peak attractor size compares the maximum
attractor sizes achieved for a desired mode for the different
learning rules. Meanwhile, the time robustness measures the
percentage of the training round for which the self-folding
origami is optimally trained (i.e., the attractor size is above
0.70). The time robustness is a measure of the training proto-
col’s resilience against overtraining.

6. Calculation of energy landscape for single-vertex (4-vertex)
origami

To illustrate the mechanism by which physical learning
alters the energy landscape of the self-folding origami via
a saddle-node bifurcation, we plotted the energy, Eq. (A1),
of the different folded configurations at several points
during the training of the origami. After each round of train-
ing, the stiffnesses in the creases of the single vertex (4-vertex)
change, and the energy landscape of the folded configuration
space is recomputed. This time-energy landscape plot shows
the elimination of the unwanted folding pathway (mode) via
a saddle-node bifurcation, and the preservation of the desired
folding pathway (mode) after several rounds of training. Fur-
ther training results in a recovery of the previously eliminated
mode.

APPENDIX B: EXPERIMENTS

1. Acrylic sheet setup

To create a system naturally capable of learning, we ex-
ploited an origami system with fresh epoxy totally filled into
the crease pattern of the origami. This epoxy is extruded
from the creases during the folding of the origami during the
training protocol. This results in a final stiffness (after the
epoxy sets) that depends on the amount of folding of each
of the creases. We laser-cut origami patterns in acrylic sheets
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of thickness 1.5 mm; crease lines were designed to have a gap
(or width) of 30 mm. Test holes of 10 mm diameter are laser
cut on the acrylic sheet at various strategic positions [along the
circumference of the 90◦ plate for the single vertex (4-vertex)
and on the center of each plate of the double vertex]. Two
copies of such acrylic patterns were each glued to both sides
of a sheet of Tyvek. The corresponding plates of the origami
patterns on each side of the sheet of Tyvek are lined up with
each other before the glue sets. After the glue is set, holes
for applying testing forces on the faces of the origami plates
are perforated. The resulting setup has stiff faces (bending
stiffness set by acrylic) and soft creases (stiffness set by the
Tyvek sheet). Origami patterns studied were for a single ver-
tex (4-vertex) and double vertex. The single vertex (4-vertex)
has four creases radiating from a single vertex at the center of
the pattern. The creases of this single-vertex (4-vertex) pattern
form sector angles 150◦, 60◦, 90◦, and 60◦. The double-vertex
pattern with a total of seven creases consists of two internal
vertices; one vertex has sector angles 107◦, 123◦, 82◦, and 48◦,
while the second vertex is surrounded by sector angles 82◦,
54◦, 99◦, and 125◦. The two vertices are connected by a com-
mon crease. This connecting crease serves as the boundary
dividing the 82◦ sector plate from the 48◦ sector plate of the
first vertex, and the 82◦ sector plate from the 54◦ sector plate
of the second vertex. The sector angles, crease lengths, and
position of the vertices for both the single vertex and double
vertex are specified in the Supplemental Material in a pdf file
which can be used to laser-cut these patterns [61].

2. Epoxy and training

a. Epoxy mixture

An epoxy solution is made by mixing epoxy resin with its
curing agent in the ratio 1 : 2. This mixture is stirred for about
5 min and poured into the creases of the origami pattern on
both sides of the assembly. Note that if the epoxy had been
mixed in the ratio 1 : 1, upon curing, it would be so stiff
that the origami assembly would be difficult to fold, without
destroying the assembly; such epoxy when hardened is also
brittle and would fracture under a bending moment attempting
to fold the origami assembly. Hence we mix epoxy resin and
curing agent in the ratio 1 : 2, allowing for crease folding
upon curing of the epoxy mixture, without disintegration of
the origami assembly.

b. Folding of origami assembly

The origami assembly filled with watery epoxy in its
creases is manually folded into the desired configuration that
is to be trained for. The origami assembly is trained by manu-
ally folding the assembly back and forth along the positive and
negative components of a desired folding pathway. This cyclic
manual folding between the positive and negative components
of the desired mode is repeated for an hour, during which the

epoxy solution begins to cure and is no longer watery. A sim-
ple folding protocol is utilized to fold the origami assembly
into the desired configuration: One of the plates of the origami
assembly is fixed while pushing or pulling on any of the other
plates of the origami assembly with a normal force or a turning
torque exerted at a single contact point on any of the nonfixed
origami plates.

c. Training under gravity

Since the epoxy is still watery during origami training, it
needs to be trained on a rotating platform to prevent epoxy
from flowing out of the creases due to the influence of grav-
ity. The rotating platform consists of two standing laboratory
clamps screwed to the optical table and situated 600 mm
apart. A rod is horizontally supported by the claws of the two
standing laboratory clamps, but the rod is allowed to freely
rotate within the claws of the clamp. A laboratory clamp
retort is then clamped (allows for no rotation or slipping) to
the rotation-free horizontally placed rod with the claws on
one end of the laboratory clamp retort, while the claws on the
other end of the laboratory clamp retort are clamped to one
of the plates of the origami (the plate fixed during training as
previously described). As one hand is used to exert a normal
force or turning torque on one of the free plates of the origami
assembly in order to fold it into the positive and negative
components of the desired mode, the other hand is used to
manually turn the rotation-free horizontal rod. This combined
process results in the folding of the origami assembly, while
under rotation, and thus prevents the flow of the epoxy so-
lution from the origami’s creases during this training, while
under the influence of gravity.

3. Emergence of crease stiffness

After training the origami assembly, the origami samples
are allowed to further cure and are left hanging in the labora-
tory for a week. This allows the epoxy solution in the creases
to harden, thus producing an effective stiffness on the creases
of the origami.

4. Testing protocol

The plate of the origami assembly fixed during training is
clamped. A 100-mm-long thread knotted on one end is passed
through each of the testing holes of the origami assembly. The
threads are gently pulled normal to the surface of the origami
plate. Upon pulling each thread in each hole, the origami folds
into a given configuration. The resulting configuration for
each pull is recorded. The attractor size of the different folding
modes of the origami assembly is computed. This process is
repeated for both the trained and untrained samples of the
origami assembly. The attractor sizes of the chosen trained
mode before and after training are compared with one another.
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