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Magnetized granular particles running and tumbling on the circle S1
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It has been shown that a nonvibrating magnetic granular system, when fed by an alternating magnetic field,
behaves with most of the distinctive physical features of active matter systems. In this work, we focus on
the simplest granular system composed of a single magnetized spherical particle allocated in a quasi-one-
dimensional circular channel that receives energy from a magnetic field reservoir and transduces it into a running
and tumbling motion. The theoretical analysis, based on the run-and-tumble model for a circle of radius R,
forecasts the existence of a dynamical phase transition between an erratic motion (disordered phase) when the
characteristic persistence length of the run-and-tumble motion, �c < R/2, to a persistent motion (ordered phase)
when �c > R/2. It is found that the limiting behaviors of these phases correspond to Brownian motion on the
circle and a simple uniform circular motion, respectively. Furthermore, it is qualitatively shown that the smaller
the magnetization of a particle, the larger the persistence length. It is so at least within the experimental limit of
validity of our experiments. Our results show a very good agreement between theory and experiment.
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I. INTRODUCTION

“Active matter” is a term conceived to classify those sys-
tems composed of entities (called active particles) that can
extract free energy from a reservoir and transform it into
kinetic energy; these particles transform into self-propelled
units. The available reservoir can be on-board or environ-
mental. The energy consumed by each active particle fuels an
intrinsic mechanism that, in dissipating, transduces in a type
of systematic motion that is generally common for all active
particles [1–3]. The active matter can have a variety of patterns
depending on its constituents that generate emergent and col-
lective nonequilibrium phenomena [4,5], such as the patterns
of dancing birds flocking in the sky [6] (other examples can
be seen in Ref. [7]). This type of matter can also be presented
at the sub-cellular scale [8–10], and it can have nonbiological
components [4].

The constituents of active matter might be of a very diverse
origin, from biological entities such as bacteria, unicellular
protozoa, and spermatozoa, among many others, to artifi-
cial experimental models such as artificial microswimmers
that mimic biological microorganisms such as Janus parti-
cles, colloidal propellers, Pt-loaded stomatocytes, and water
droplets [2,11]. Some examples show self-propulsion can be
carried out by converting chemical to mechanical energy.
For instance, by coating with platinum, a hemisphere of a
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polystyrene sphere immersed in a bank of hydrogen peroxide
allows achieving a transition between directed motion to a
Brownian motion using the platinum catalyst processes (this
is a typical example of self-diffusiophoresis) [12]. Another
illustrative example is a particle half-metal coated under laser
irradiation that undergoes self-thermophoresis due to a local
temperature gradient induced by a laser beam [13]. Some
granular systems are examples of the physical realization of
active matter [14–17], where the shape anisotropy of the sin-
gle grains under vertical vibration can produce mobility on a
horizontal surface [14]. For instance, the single-particle active
motion can be generated in a vibrated granular system, where
the main features of the Active Brownian Motion model have
been proved in Ref. [18]. Furthermore, recent experimental
studies on the dynamics of active granular particles have been
performed using “microrobotic creatures,” a robot toy called
“Hexbugs Nano” with an internal motor that produces vibra-
tions, where the most outstanding properties of active motion
are described through a Langevin stochastic model whence
inertial effects are highlighted [19].

In contrast with the above vibrated granular systems, a non-
vibrating granular system composed of many metallic balls
under an alternating magnetic field is a simple 2D active
matter system. Unlike a vibrated one, in which particles can
move vertically, in a nonvibrating granular system, particles
always remain in contact with the lower surface of the cell.
This 2D granular system exhibits a ballistic behavior at short-
times and a diffusive behavior at long-times as it is shown
in Ref. [20], which is a feature of the stochastic dynamics
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of an active particle (for instance see Refs. [2,21]), including
the dependence of the collective behavior on the confinement
conditions, emerging also in vibrated granular systems [22],
particle concentration, as well as the merging correlations
that originate from self-organization phenomena like flocking,
arrested structures, and crystallization [23–25]. The motion of
particles during crystallization phenomena in confined condi-
tions changes from diffusive to subdiffusive. In particular, it
has been observed that confinement fastens the crystallization
process [26,27], as well it induces complex correlations that,
under certain conditions, generate emergent phenomena such
as vortices or flocking [2].

Here, we wish to understand some of the main aspects of
the stochastic dynamics of active granular matter confined in a
quasi-1D-channel such as a circular track. We study this gran-
ular system based on a magnetized spherical bead activated
by an alternating magnetic field used as a reservoir. The par-
ticle extracts energy from the magnetic field and transforms
it into kinetic energy through the following mechanism. In
the presence of the magnetic field, the magnetic dipole of the
particle tries to align with the field to minimize the energy of
the system. When the magnetic field reverses its direction, the
particle rotates to align again with the field. In this process,
a particle rotates, rolling over the surface without slipping
because of kinetic friction. In this manner, the particle moves
along the circular channel. When the field reverses direction
again, a new impulse acts over the particle, making it continue
rolling in the same direction or reversing the direction inside
the channel to a random new direction leading to an active
motion. If confinement were not present, the particle would
change its motion to a random new direction leading to a
2D-active behavior [20].

One of the main aims of the present work is to under-
stand how well the particle behavior of this nonvibrating
1D-granular-system can be described in terms of the run-and-
tumble model [28–31] on the circle S1. In this model, the
constraint to the line turns out in the continuous persistent
random walk model introduced by Goldstein [32] back in the
fifties, where the limiting process of the probability of finding
a particle among a large number of noninteracting particles,
that moves to the left or the right with equal probabilities
and uniform velocity is described precisely by a solution
of a telegrapher’s equation (TE). This equation arose as an
approximation within the standard active Brownian motion
model [21,33] studied in 2D flat space [34,35] and 2D curved
surfaces [36]; and also in the run-and-tumble model for active
particles [37,38]. However, for the 1D situation, the telegra-
pher’s equation description is exact, as opposed to the higher
dimensions [38]; thus, its solutions have the full description of
the active motion behavior. In particular, in contrast to a higher
dimension, where the hydrodynamic-like description of the
active dynamics consists of an infinite tower of a hierarchy
of equations [38,39], the 1D case consists of the continuity
equation and a current probability equation, namely,

∂

∂t
ρ(s, t ) = − ∂

∂s
J (s, t ), (1)

∂

∂t
J (s, t ) = − 1

τc
J (s, t ) − v2

0
∂

∂s
ρ(s, t ), (2)

where τc is the average time elapsed before the particle per-
forms a tumble, v0 is the constant average persistence velocity,
and s is the arc length of the curve. The quantity ρ(s, t )
represents the probability density function to find a particle at
position s after a time t has passed, and J (s, t ) is the current
probability function that describes the preferential probability
direction of the particle motion. The theoretical predictions
of the run-and-tumble model on S1, described by Eqs. (1)
and (2), predict the existence of a critical persistence length
�c = v0τc that distinguishes between two-state of motion; that
is, the model predicts a dynamical phase transition between
an erratic motion (disorder phase) to a persistent motion
(order phase), where the extreme behavior of these states
corresponds to a Brownian motion on the circle and a sim-
ple uniform circular motion, respectively. A good agreement
between theory and experiment within the parameter regime
considered in the experiment is shown below.

This paper is organized as follows: In Sec. II, the exper-
imental setup to study the magnetic granular active motion
in 1D is introduced; in particular, the main features of the
stochastic motion of a magnetized ball confined on a circular
channel and subjected to the time-varying magnetic field used
as a thermal reservoir are described. In Sec. III the run-and-
tumble model defined on a circle S1 is developed; in particular,
there is computed exactly the probability density function
ρ(s, t ), the current probability function J (s, t ). In Sec. IV,
the expectation values of different physical quantities such
as the mean-square displacement are calculated. In Sec. V,
we give a comparison between the experimental results and
the theoretical predictions made by the run-and-tumble model
on S1. Here, we describe the most salient characteristic of a
phase transition that undergoes the particle’s motion between
an erratic and a soft motion; finally, in Sec. VI, we give our
concluding remarks and perspectives.

II. EXPERIMENTAL SETUP

The experimental arrangement described in recent works
[24,40–42] is slightly modified to study the stochastic motion
of a metallic ball confined to a lithographic circular channel
made on an acrylic plate. Briefly speaking, the setup consists
of a pair of Helmholtz coils, where a flat and horizontal
plate, called an observation cell, is placed in the homogeneous
magnetic field region, as shown schematically on the left
of Fig. 1. A closed circular channel is built on the obser-
vation cell, so the particle motion becomes confined into a
quasi-1D-channel (see right-hand side of Fig. 1). The present
experiment analyzes the motion of a single steel bead 1 mm
in diameter. The coils are powered by a KEPCO brand power
source controlled by a National Instruments data acquisition
card through a sinusoidal signal generated by a homemade
program in LabView. The coil system generates an oscillatory
magnetic field of the form B = B0 sin(2π f t ). The frequency
f is kept constant at 9.24 Hz. Recall that previously it has been
shown that in this kind of system, the amplitude of the mag-
netic field B0, can be interpreted as an effective temperature,
up to a proportional coefficient [23]. Therefore, for simplicity,
the effective temperature is denoted here by B0, quantified in
Gauss units denoted by G.
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FIG. 1. Left: Experimental arrangement consists of a pair of
Helmholtz coils that produce an oscillating magnetic field B through
the observation cell. Right: A lithographic circular channel with a
width value of 1.6 mm and one metallic bead of diameter σ = 1 mm.
The channel radius is measured from the center of the channel to the
center of the ball. The scale bar is 5 mm.

The experiments reported here start by putting a single
particle in the quasi-1D-channel and turning on the alternating
magnetic field. To search for the influence of the particle
magnetization on the stochastic motion, it is prepared particles
with magnetic dipole m1, obtained after exposing the particle
under the magnetic field of magnitude 66 G for one hour,
and particles with magnetic dipole m2, obtained by using a
magnetic field of magnitude 100 G for the same time. After-
ward, the mean-square displacement (MSD) is calculated to
determine the stochastic motion behavior for particles with
m1 and m2, respectively. The MSD is defined by 〈�r2(t )〉 =
〈|r(t ) − r(0)|2〉, where the displacement �r is measured in
particle’s diameter units σ , and r(t ) is the vector position
measured from the center of the circular channel to the center
of the metallic ball.

We carried out four series of experiments. In series S1, we
used a particle with magnetic moment m1, a magnetic field
amplitude B0 = 55 G, and a set of various radii of the circular
channel R, measured in units of the particle’s diameter, σ . The
ratio R/σ ranges from 5 to 34. For series S2, we used a particle
with magnetic moment m2 at the same values of B0 and R as
in S1. In the series S3, we used m1, circular track radius R =
20 σ , and varied the effective temperature, B0, from 44 to 88
G. For series S4, we used m2, circular track radius R = 21 σ ,
and varied B0 from 11 to 88 G. In series S3, we observed at
lower effective temperatures, 11 G, 22 G, and 33 G, that the
particle tended to adhere to the wall and stop moving. The
values of radii of the circular channel, R, and the effective
temperature, B0 for the experiment series S1, S2, S3, and S4

are given in the Table I. At higher effective temperatures in
S3 and S4, the particle’s kinetic energy might no longer be
proportional to the field’s amplitude, such that the amplitude
could no longer be used as an effective temperature, as it is
shown in Ref. [23].

Experiments were recorded using a CCD camera at a speed
of 30 frames per second in interlaced AVI format. Each exper-
iment lasted 5 min, enough time before the balls modified their
magnetization. In the AVI video format, each frame is created
using two fields, one after the other. The first with all the odd
lines and the other with all the even lines. Frequently, slightly
blurred particles are observed in the images. This effect is due
to the speed with which they move; each field captures the

TABLE I. In this table we show the values of radii of the circular
channel, R, and the effective temperature, B0 for the experiment
series S1, S2, S3, and S4.

Series m R(σ ) B0(G)

S1 m1 5.0 9.0 13.0 14.0 21.0 25.0 29.0 34.0 55
S2 m2 5.0 9.0 13.0 14.0 21.0 25.0 29.0 34.0 55

B0(G) R(σ )

S3 m1 44.1 55.2 66.7 77.3 88.4 20
S4 m2 11.0 22.0 33.1 44.1 55.2 66.7 77.3 88.4 21

particle in two different positions. A deinterlacing filter was
used to improve the visual definition of the particle centers
and increase the temporal resolution. In each field, made up
of a pattern of lines with spaces, the missing information
is interpolated to fill the pattern. Thus, a complete image is
generated from each field. The final resolution obtained is
60 fps. The ImageJ package performed further analysis of the
videos.

Figures 2(a) and 2(b) show the particle trajectories in a
circular channel with R = 34 σ for series S1 at 20 s and 66 s,
respectively. At the same time intervals, Fig. 2(c) and Fig. 2(d)
show the particle trajectories for series S2. At a shorter time,
it is observed that the particle in series S1 exhibits more
extensive traces and a larger displacement than the particle
in the conditions of series S2; clearly, this particle travels a
smaller portion of the entire circular channel.

Figure 3(a) shows the mean-square displacement curves of
the series experiment S1. It is observed there that each curve
reaches a maximum value and then oscillates. The general
trend is that the amplitude of the oscillations increases as

FIG. 2. Top-left particle trajectories at 20 s and down-left at 66 s
for series S1 are shown. Top-right, particle trajectories at 20 s and
down-right at 66 s for series S2 are shown. In both series, the radius
of the circular track channel is R = 34 σ .
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FIG. 3. Mean-square displacement for (a) series experiment S1

and (b) series experiment S2 for several radius R. Exponent c of
the power law 〈�r2(t )〉 ∝ t c, at the short-time regime of the curves
(a) and (b), as a function of the radius R; for (c) series S1 and
(d) series S2. Upper inset: log-log plot of the MSD for series S1 and
S2 for R = 34 σ , the straight lines correspond to the power law of
the first segment of MSD. Lower inset: Linear adjustment of the first
segment of the red curve from (a) to calculate the exponent c. The
exponent c is calculated by taking the first 15, 25, and 50 data points
from the MSD, respectively.

long as R increases. Also, the maximum values appear to
shift to the right as R increases. Both of these results can
be explained considering the accessibility to more significant
displacements when R increases and the fact that particle with
magnetization m1 presents itself as persistent motion as it
is argued below at the conclusions. Figure 3(b) shows the
corresponding curves from the series S2. These curves, which
were obtained using a particle with larger magnetization, do
not exhibit oscillations. They grow monotonically toward a
limiting value. A direct explanation of this phenomenon can
be obtained by observing the role of the magnetization of
the particle, as shown in Fig. 2. Both regimes of the mean-
square displacement can be compared on a log-log scale. The
upper inset shows the MSD for series S1 and S2 considering
R = 34 σ , the color line represents the power law adjustment
by taking the first 50 points from the MSD. The initial portion
of each set of MSD curves was fitted using power-law func-
tions to determine the qualitative behavior of the stochastic
motion. Figure 3(c) shows the exponents c obtained from each
power-law function as a function of the radius. The behavior
of the exponent corresponding to the series S1 exhibits the
same general trend for all the R values. The exponent indicates
that the motion is superdiffusive with an exponent roughly of
∼1.8, considering a radius above 21 σ . Figure 3(d) shows
the corresponding c values as a function of radius. It was
observed that the average value is around the unity, indicating
that its motion is nearly diffusive for this magnetization of the
particle.

Figure 4(a) shows the mean-square displacement curves
obtained from the series S3. Here we varied the effective

FIG. 4. Mean-square displacement for (a) series S3 and (b) series
S4 as a function of the amplitude of magnetic field B0. Exponent c of
the power law 〈�r2(t )〉 ∝ t c, at the short-time regime of the curves
(a) and (b), as a function of the radius R; magnetic field B0 for series
S3 (c) and series S4 (d). The exponent c is calculated by taking the
first 15, 25, and 50 data points from the MSD, respectively. Inset:
log-log plot of the MSD for series S3, and S4 at 88.4 G, the straight
lines correspond to the power law of the first segment of MSD.

temperature, B0. As in series S1, each curve reaches a max-
imum value and oscillates. The general trend is that the
amplitude of the oscillations increases with B0. The maximum
values slightly shift to the left as B0 increases. Figure 4(b)
shows the corresponding curves of series S4. These curves,
which were obtained using a particle with larger magne-
tization, grow almost monotonically toward a limit value,
presenting as small superimposed oscillations. The compari-
son between both regimes of the MSD on a log-log scale at
88.4 G is shown in the inset, and the color line represents
the power law adjustment by taking the first 50 points from
the MSD. The exponents c obtained from each power-law
function are shown in Fig. 4(c) as a function of the effec-
tive temperature B0. Although the exponent depends on the
number of data used to fit, the general trend is the same. The
motion is superdiffusive with an exponent of around ∼1.8.
Figure 4(d) shows the corresponding c values as a function of
effective temperature. In these conditions, the particle motion
oscillates between superdiffusive to subdiffusive, with an av-
erage value above the unit indicating that the motion is also
superdiffusive but less than in series S3.

The damping observed in the Figs. 3(a) and 4(a) is a conse-
quence of the confinement since, after much time has passed,
the probability density function to find a particle in a certain
point of the circle is uniform and independent on time.

III. THEORY OF THE RUN-AND-TUMBLE MOTION ON
THE CIRCLE ρ(s, t ) FOR THE ACTIVE MOTION ON S1

We developed here the run-and-tumble model for a par-
ticle confined to move on a compact planar Jordan curve γ

of perimeter L. In the simplest case of a one-dimensional
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manifold γ , the possible states of an active particle are the
motion to the right or the left. Mathematically, these states
can be characterized as elements of a 0-dimensional sphere
S0 = {−1, 1} accounting for the two directions of the particle
velocity v̂ = ±1. Following the general model of run-and-
tumble [28] for a particle in a d-dimensional curved manifold
(A1) (see Appendix A), it is straightforward to obtain Gold-
stein’s equations on γ [32],

∂

∂t
P+(s, t ) + v0

∂

∂s
P+(s, t ) = −λP+(s, t ) + λ

2

∑
k=±

Pk (s, t ),

(3)

∂

∂t
P−(s, t ) − v0

∂

∂s
P−(s, t ) = −λP−(s, t ) + λ

2

∑
k=±

Pk (s, t ),

(4)

where P±(s, t ) = P(s, v̂ = ±1, t ) represents the probability
density function to move either to the right (+1) or to the left
(−1), v0 is the constant average particle velocity, and λ is a
uniform tumbling frequency rate related to the persistent time
defined by τc = λ−1, which gives the average time elapsed
before the particle performs a tumble. Similarly, we also de-
fine the persistent length by �c = v0τc, meaning the average
length run by the particle during the persistent time. One can
use the radius of the circle R to define a large persistent length
as �c � R and a small persistent length as �c � R; thus, a
useful dimensionless parameter shall be α = �c/R.

To solve Eqs. (3) and (4), it is convenient to define
the marginal density of probability by ρ(s, t ) = 1

2 [P+(s, t ) +
P−(s, t )] obtained by integrating out the velocity directions,
which represents the density probability of finding a particle
at the position s at the time t . In contrast, the particle was at
a certain initial position and time. In addition, we introduce
the current density of probability by J (s, t ) = v0

2 [P+(s, t ) −
P−(s, t )], taking into account the preferential probability di-
rection of the particle motion. From these definitions, it is
not difficult to get from Eqs. (3) and (4) the equations (1)
and (2), which correspond to a continuity equation, and an
exact current equation which gives the actual dynamics of the
particle. Remark that Eq. (2) can be recast as

∂

∂t
[e

t
τc J (s, t )] = − ∂

∂s

[
v2

0e
t
τc ρ(s, t )

]
, (5)

which represents a continuity equation for the conjugate quan-
tities ρ̃(s, t ) = e

t
τc J (s, t ) and J̃ (s, t ) = v2

0e
t
τc ρ(s, t ). Now,

Eqs. (1) and (2) can be easily decoupled in one-dimensional
telegraphers equations [43] on the curve γ ,

∂2

∂t2
ρ(s, t ) + 1

τc

∂

∂t
ρ(s, t ) = v2

0
∂2

∂s2
ρ(s, t ), (6)

where ∂2/∂s2 represents the one-dimensional Laplacian as-
sociated with the one-dimensional space, where s is the arc
length of the curve γ . Note that P±(s, t ) and J (s, t ) also sat-
isfy similar telegraphers equations. Strictly speaking, ρ(s, t )
and J (s, t ) depend on the initial position s′ and the initial
time t = 0. The initial conditions for the probability den-
sity function corresponding to limt→0 ρ(s, t ) = δ(s − s′)/L,
which expresses the fact that at time t = 0, the particle was

FIG. 5. Schematic image of a circle, S1, of radius R, with the
embedding X(s) = (cos θ, sin θ ), in the 2D Euclidean space with the
usual Cartesian coordinates x, y. In addition, a chord of the circle is
shown with length d as a function of the angle θ .

at the position s′; and limt→0 ∂ρ(s, t )/∂t = 0, which express
that no particles are introduced at the initial time. Since we
do not know the initial conditions for the current probability
density, we proceed to solve for ρ(s, t ) and then use Eqs. (1)
and (2) to find a solution for J (s, t ).

The one-dimensional space γ can be described through
a parametrization X : I ⊂ R → R2 embedded in a two-
dimensional Euclidean space. Although the following analysis
can be carried out for any planar Jordan curve, in the follow-
ing, we focus on a circular curve S1 to adapt the theoretical
predictions to the specific experimental conditions. The circle
is described by the parametrization X(s) = R(cos θ, sin θ ),
where θ ∈ I = [−π, π ], R is the radius of S1, and the arc
length is s = Rθ (see Fig. 5 for a schematic view of the circle).
In this case, the Laplacian can be written simply as 1

R2
∂2

∂θ2 ,
whose eigenfunctions are in the set {eimθ : m ∈ Z} and their
eigenvalues are in {−m2

R2 : m ∈ Z}. The orthonormal relation
is given by

∫
I dθei(m−n)θ = 2πδmn and the completeness rela-

tion, in this case, corresponds to δ(θ − θ ′) = ∑
m∈Z eim(θ−θ ′ ).

In the following, we choose that at the initial time, the active
particle is at θ ′ = 0.

A. Probability density function ρ(s, t ) for the active
motion on S1

Here, we present the solution of the telegrapher’s equa-
tion (6) with the appropriate initial conditions. The probability
density function (PDF), ρ(s, t ), is written as a linear combina-
tion of the circular Laplacian eigenfunctions

∑
m∈Z ρ̃m(t )eimθ ,

where we identify ρ̃m(t ) with intermediate scattering function
(ISF) defined by

ρ̃m(t ) =
∫

I
ds e−imθρ(s, t ), (7)

for a particle confined to move on the circle S1, where
we recall the arc length definition s = Rθ . The coefficients
ρ̃m(t ) satisfy the second order differential equation d2

dt2 ρ̃m(t ) +
τ−1

c
d
dt ρ̃m(t ) + m2ω2ρ̃m(t ) = 0, where it is convenient to de-

fine the frequency ω = v0/R, which allows us to write the
dimensionless parameter α = �c

R also as α = ωτc. Thus, it is
not difficult to show that the solution of the last differential
equation is the linear combination Ae− t

τc
(1−σm ) + Be− t

τc
(1+σm ),
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FIG. 6. Intermediate scattering function (ISF) [Eq. (8)] from
the theory of run-and-tumble. Top: ISF for m = 1 [Eq. (11)], and
for m = 2, 3, 4, 5 [Eq. (8)] with α < 1/2. Down: ISF for m =
1, 2, 3, 4, 5 and α > 1/2. Note that for both, top and down figures,
bigger the m is, bigger the frequency that graph cross the time axis.

where σm = √
1 − 4m2α2, whose factors A, B can be obtained

after imposing the initial conditions, which turns out to be
ρ̃m(0) = 1/(2πR), and d

dt ρ̃m(0) = 0. After a straightforward
calculation, the ISF and the PDF are given by

ρ̃m(t ) = G

(
t

2τc
, 4m2α2

)
, (8)

ρ(s, t ) = 1

2πR

[
1 + 2

∞∑
m=1

cos (mθ )G

(
t

2τc
, 4m2α2

)]
,

(9)

respectively, where the function G(v,w) is given by

G(v,w) = e−v

[
cosh(v

√
1 − w) + sinh

(
v
√

1 − w
)

√
1 − w

]
.

(10)

It is noteworthy to mention that the probability density
function is given through a cosine Fourier series so that it is
symmetric under the interchange θ → −θ . The orthonormal
basis, in this case, is given by {1/

√
2πR, cos(mθ )/

√
πR},

and its completeness relation is given by (C1). Finally, this
Fourier series (9) is normalized with the perimeter of the
circle, i.e.,

∫
I ds ρ(s, t ) = 1, where the line element ds = Rdθ

and I = [−π, π ].
In Fig. 6, we explore the behavior of the ISF (8) against

time scaled with the persistent time τc. Let us note in Eq. (8)

that for each m, there is a value for α where the intermediate
scattering function transforms its behavior from monotonous
to oscillating. This value can be determined by making σm =
0, which occurs when α acquires the values 1/(2m) for m =
1, 2, · · · . In particular, for m = 1, let us call α∗ = 1/2; thus,
one can notice that ISF has an oscillating behavior for α > α∗
for each m ∈ {1, 2, · · · }; whereas for α � α∗ the ISF func-
tion has a monotonous behavior for the mode m = 1 and an
oscillating one for the rest of the modes with m > 1. This
analysis implies that for α > α∗ all the terms involved in
the series of the probability density (9) have an oscillating
behavior, whereas for α � α∗, the first term, with m = 1,
is monotonous, while the remaining terms, for m > 1, have
oscillating behavior. In particular, the ISF for the mode m = 1
at exactly α = α∗ is

ρ̃m=1(t )|α=α∗ = e− t
2τc

(
1 + t

2τc

)
. (11)

The previous analysis shown in Fig. 6 of the ISF Eq. (8)
allows us to consider three dynamical states depending on the
parameter α, namely, the kinematic state (KS), when α � 1;
diffusive state (DS), when α � 1; and the active state (AS)
in between the former and latter. Recall that α = �c/R; thus,
KS means a considerable persistent length, whereas DS has a
small persistent length. For the active state, we need to con-
sider the full expression of the PDF Eq. (9). For the kinematic
state, it is convenient to write τc = α/ω, thus the leading term
of the G function is G(ωt/(2α), 4m2α2) � cos(mωt ), where
the frequency ω = v0/R is kept fixed. Now, after substituting
in Eq. (9) and using Eq. (C1), one has that the probability
density function in the KS corresponds to

ρk (s, t ) = δ(θ − ωt )

R
. (12)

In the kinematic state, this PDF represents a sharp pulse mov-
ing around the circle with uniform angular velocity ω = v0/R.

Now, for the diffusive regime, i.e., α � 1, it is not dif-
ficult to show that G gives the asymptotic expression of
G(ωt/(2α), 4m2α2) � e−m2Deff t/R2

, as long as the quantity
Deff = v2

0τc is kept fixed. Now, after substituting in Eq. (9),
one has that the probability density function in the DS corre-
sponds to

ρd (s, t ) = 1

2πR

[
1 + 2

∞∑
m=1

e−m2Deff t/R2
cos (mθ )

]
. (13)

This probability density function corresponds to the PDF of
a Brownian particle confined in a circle S1 [44]. So now it
makes sense to call Deff effective diffusion coefficient.

B. Current probability density J (s, t )

Here we present a solution for the current probability den-
sity J (s, t ). Since we do not know the initial conditions of the
current, we proceed to find an expression of the current using
the solution for the probability density (9) and one of the equa-
tions (1) or (2). Following the development in Appendix B, the
basic procedure consists of integrating Eq. (1) with respect to
s and t . In addition, we choose that at the initial time t = 0,
the particle is moving anticlockwise. Thus, the expression for
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the current probability density is given by

J (s, t ) = 2ω2τc

π

∞∑
m=1

m sin (mθ )F

(
t

2τc
,
√

1 − 4m2α2

)

+ ω

2π
e− t

τc , (14)

where the function F (v,w) is given by

F (v,w) = e−v sinh(v
√

1 − w)√
1 − w

. (15)

For the active state, we need to consider the full expres-
sion (14) for the current probability. In the following, we
determine the behavior of the current for the kinematic and
diffusive states, respectively. In the KS α � α∗, one has the
leading term of F (ωt/α, 4m2α) � sin(ωt )/(2mα). Now, after
substituting in Eq. (14) and using Eq. (C2), one has that the
probability density function corresponds to

Jk (s, t ) = ωδ(θ − ωt ), (16)

which using Eq. (12), it can be written as Jk (s, t ) = v0ρk (s, t )
expressing the current of the sharp pulse moving with constant
velocity v0 around the circle.

Now, for the DS, i.e., α � α∗, it is not difficult to show that
the asymptotic expression for F is given by F (ωt/α, 4m2α) �
1
2 e−Deff tm2/R2

as long as Deff kept is fixed. Now, after substitut-
ing in Eq. (14), the current has the asymptotic behavior

Jd (s, t ) = Deff

πR2

∞∑
m=1

m sin (mθ )e− Deff tm2

R2 . (17)

Notice, as expected, that in this state, it satisfies the transport
according to Fick’s law Jd (s, t ) = −Deff

∂
∂sρd (s, t ).

IV. EXPECTATION VALUES OF OBSERVABLES

In this section, we determine the expectation values of
several physical observables using Eq. (9) to contrast with the
experiment described above. In particular, we focus on the
following quantities, namely, v̂, the direction velocity; the
normal vector N = (cos θ, sin θ ); the tangent vector T =
(− sin θ, cos θ ); the Euclidean displacement �R = X(s) −
X(s′), and the angular displacement �s = R(θ − θ ′). In what
follows, we study the behavior of the mean values and mean-
square values of these quantities for the three behaviors KS,
AS, and DS.

A. Mean value of direction velocity v̂

The stochastic variable v̂ gives the direction to the right (+)
or the left (−) of the particle at each point on the circle. The
mean value 〈v̂〉 can be computed using the current probability
J (s, t ) as follows:

〈v̂(t )〉 = 1

v0

∫
I

ds J (s, t ). (18)

Now, by direct calculation using Eq. (14), one has

〈v̂(t )〉 =
⎧⎨
⎩

0, α � 1,

e−t/τc , 0 < α < ∞,

1, α � 1.

(19)

Notice that at the diffusive state (α � 1), the active particle
motion does not have any preferential velocity direction. In
the kinematic state, the average direction is exactly 〈v̂〉 = 1,
consistent with the leading expression (16), meaning that in
the KS, the particle moves anticlockwise for all the time,
whereas in the active state, the particle on average moves also
anticlockwise, however, it damped out exponentially as the
time is increased.

B. Mean value of the geometrical quantities N and T

In the case of the circle, the normal vector is related to the
vector position N = X(s)/R and the tangent vector T to the
direction of the active particle vector velocity. Now, by direct
calculation using Eqs. (9), (12), and (13), the expectation
value of the normal vector is

〈N(t )〉 =

⎧⎪⎪⎨
⎪⎪⎩

e−Deff t/R2
x̂, α � 1,

G(t/2τ2, 4α2)x̂, 0 < α < ∞,

(cos ωt, sin ωt ), α � 1,

(20)

where x̂ is unit vector along the x direction [see Fig. (5)]. Sim-
ilarly, the expectation value of the tangent vector is 〈T(t )〉 =
Rπ/2〈N(s)〉, where Rπ/2 is a ninety-degree anticlockwise ro-
tation. Notice that no y component appears in 〈N(t )〉 for the
DS and AS, since, for these states, there is no preferential
direction from the initial position; that is, the particle can
move with the same probability to the right (+) or the left
(−), while for the KS the particle undergoes a precise uniform
circular motion with the frequency given by ω.

C. Mean value and mean-square value
of Euclidean displacement

The Euclidean displacement �R can be thought of as an
artificial physical displacement because the active particle
confined to the circle S1 does not displace along the vector
defined by �R. However, the Euclidean displacement is an
observable measurable from an experimental point of view
that captures the stochastic motion of the particle. The ex-
pectation value can be written in terms of 〈N(t )〉 (20) as
〈�R(t )〉 = −R(x̂ − 〈N(t )〉). For the mean-square Euclidean
displacement (MSED), �R one has (�R)2 = 2R2(1 − cos θ ),
according to its thus it is enough to compute the expec-
tation 〈cos θ (t )〉, but this quantity is given by 〈cos θ (t )〉 =
G(t/2τc, 4α2) as a consequence of the orthogonality of the
terms in the Fourier series (9). Thus, the MSED is given by

〈�R2(t )〉
2R2

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − e− Deff t

R2 , α � 1,

1 − G
(

t
2τc

, 4α2
)
, 0 < α < ∞,

2 sin2
(

ωt
2

)
α � 1.

(21)

This equation captures information on the stochastic motion
of the particle confined to move on the circle. In the diffu-
sive state (α � 1), the MSED has the typical behavior of a
Brownian motion on a compact curved manifold, whereas,
for the kinematic state, the square root of MSD (21) can be
interpreted as the average length d of the chord shown in the
Fig. 5, consistent with uniform circular motion exhibited in
this regime. Furthermore, in the active state, 0 < α < ∞, let
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us note that similar to the ISF Eq. (8) that there is the value
for α∗ = 1/2, where the mean-square Euclidean displacement
transforms its behavior from a monotonous to an oscillating
behavior. Thus, one can notice that the MSED has an oscillat-
ing behavior for α > α∗, and a monotonous one for α < α∗.
The specific behavior of the MSED, monotonic or oscillating,
gives a feature of a specific active particle with an intrinsic
value of persistence length �c. In both diffusive and active
states, the MSED reaches the limit value of

〈�R2(t )〉 = 2R2, (22)

at the long-time regime; this value is known as the ge-
ometric limit [45] when there is a uniform probability
density in each point of the circle. Indeed, assuming that
the probability density in the long-time regime is uniform,
i.e., ρ � 1/(2πR), thus, the mean-square Euclidean dis-
placement is given by the elementary integral 〈�R2〉 �∫ π

−π
Rdθ [1/(2πR)][2R2(1 − cos θ )] = 2R2.

D. Mean value and mean-square value of angular displacement

The angular displacement �s = Rθ can be considered the
true physical displacement because the active particle moves
on the circle S1. Also, angular displacement is another ob-
servable measurable from an experimental point of view that
captures the stochastic motion of the particle. Therefore, the
expectation value is given by 〈�s(t )〉 = 0, which is expected
since the probability density function is symmetric (9).

For the mean-square geodesic displacement (MSGD),
〈�s2(t )〉, we need to carry out integration by parts∫

I θ2 cos(mθ )dθ = 2(−1)m/m2. By a straightforward calcu-
lation the MSGD 〈�s2(t )〉 is given by

〈�s2(t )〉
R2

= π2

3
+ 4

∞∑
m=1

(−1)m

m2
�m(t, α), (23)

where

�m(t, α) =

⎧⎪⎪⎨
⎪⎪⎩

e−m2 Deff t

R2 , α � 1,

G
(

t
2τc

, 4m2α2
)
, 0 < α < ∞.

cos (mωt ), α � 1.

(24)

The mean-square angular displacement for the DS is con-
sistent with previous works [44]. In addition, the expression
for 〈�s2(t )〉 in the KS limit is consistent with the uniform
circular motion shown in the above mean values since one can
sum up the series in terms of the second Bernoulli polynomial
[see Eq. (C3) in the Appendix], where it can be shown that
〈�s2(t )〉 = R2(ωt )2 for each t in the interval [0, π/ω], and
then repeat the pattern with periods of 2π for t > π/ω. In the
active state, similar to the MSED, the mean-square geodesic
displacement transforms its behavior from a monotonous
(α < α∗) to an oscillating behavior (α > α∗). Similar to the
MSED, in both diffusive and active states, the MSGD reaches
the limit value of

〈�s2(t )〉 = π2

3
R2, (25)

at the long-time regime; this value is known as the geometric
limit [44,46] when there is a uniform probability density at

FIG. 7. (Top) Mean-square Euclidean displacement 〈�r2(t )〉 for
a particle confined in a circular channel from the experiment (open
symbols) and run-and-tumble theory (solid lines). Three systems
considered with radius R/σ = 5, 21, 34 at effective temperature
B0 = 55 G, (a) for magnetic moment m1 (series S1), and (b) for
magnetic moment m2 > m1 (series S2). The solid lines represent the
theoretical prediction (21), adjusting the values of α and τc (see the
Table II). The thin horizontal straight line is a reference guide for
the eyes, showing the theoretical limit of value 2 [Eq. (22)]. (Down)
Persistence velocity v0 versus radius R, (c) for magnetic moment m1

(series S1), and (d) for magnetic moment m2 > m1 (series S2).

each point of the circle. Indeed, assuming that the probability
density in the long-time regime is uniform, i.e., ρ � 1/(2πR),
thus, the mean-square geodesic displacement is given by
the elementary integral 〈�s2〉 � ∫ π

−π
Rdθ [1/(2πR)][R2θ2] =

π2

3 R2.

V. RESULTS AND DISCUSSION

In this section, we compare the granular magnetic bead
experiment described above in Sec. II and the theory of run-
and-tumble on the circle S1 developed in Secs. III and IV. To
make this comparison, it has been chosen from the theory, the
mean-square Euclidean displacement (MSED), 〈�R2(t )〉, and
the mean-square geodesic displacement (MSGD), 〈�s2(t )〉.
Note that from an experimental point of view it is measured
the MSD 〈�r2(t )〉, which is strictly different from the MSED
since the latter is computed exactly for the motion on the circle
S1, while MSD captures radial motions since the channel
has a finite-size. However, since the thickness of the chan-
nel is slightly bigger than the diameter of the particle, the
following difference 〈�R2(t )〉 − 〈�r2(t )〉 must be small. An-
gular displacement can be computed also from the experiment
calculating θ (t ) = arctan[y(t )/x(t )], where x(t ) and y(t ) are
extracted from the vector positions r(t ) = [x(t ), y(t )].

Figure 7(a) shows the comparison between the mean-
square displacement, 〈�r2(t )〉, using experiment series S1,
with a particle with the lower magnetization m1, and the
theoretical predictions encoding in equation 〈�R2(t )〉 (21).
It is observed that the fitted curves very closely reproduce
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TABLE II. In this table we show the values for the parameter α = �c/R and the persistence time τc obtained by adjusting Eq. (21) to the
experimental values for the experiment series S1 and S2.

S1 S2

R(σ ) α τc (s) α τc (s)

5 2.812 ± 0.042 0.581 ± 0.009 0.261 ± 0.009 0.181 ± 0.013
9 2.325 ± 0.016 0.864 ± 0.006 0.292 ± 0.001 0.604 ± 0.003
13 2.866 ± 0.045 1.492 ± 0.024 0.286 ± 0.001 0.615 ± 0.003
18 3.182 ± 0.037 2.113 ± 0.026 0.278 ± 0.002 0.718 ± 0.004
21 1.756 ± 0.013 1.451 ± 0.013 0.158 ± 0.001 0.813 ± 0.001
25 2.211 ± 0.031 2.084 ± 0.031 0.147 ± 0.001 0.875 ± 0.001
29 1.586 ± 0.029 1.655 ± 0.035 0.297 ± 0.002 0.795 ± 0.004
34 1.522 ± 0.009 1.898 ± 0.013 0.288 ± 0.001 0.911 ± 0.002

the experimental results. A good experimental and theoretical
agreement is also exhibited for the experiment series S2, with a
particle with the higher magnetization m2, shown in Fig. 7(b).
In both S1 and S2, small discrepancies between the experiment
and theory were notoriously observed in the case of a small
radius R = 5 σ . These differences are attributed to the finite
size of the channel thickness, which is slightly bigger than
the diameter of the particle, implying that the radial degree
of freedom of the bead is not entirely suppressed. In both
series of experiments, the persistence velocity v0 is calculated
from a fit of Eq. (21) at the active state using the persistence
time τc and the dimensionless quantity α as free parameters
through the relation α = v0τc/R, for each radius R in the range
R/σ from 5 to 34 (see Table II). In particular, all values of α

in S1 are larger than 1/2, while in S2 are smaller than 1/2,
according to the theoretical prediction. Figures 7(c) and 7(d)
show the persistence velocity v0 for the experiment series
S1 and S2, respectively. It is observed that for the system
with magnetic moment m1, the particle persistence velocity v0

slightly increased as R increases and roughly is a constant with
a value around 25.7 σ/s, whereas for the system with mag-
netic moment m2, the persistence velocity has a more abrupt
behavior, and the increase is more pronounced. However, it
has bigger oscillations around the value of 5 σ/s. Addition-
ally, the magnitude of persistence velocity v0 is smaller for the
higher magnetic dipole particle than for the smaller magnetic

dipole, which is the same trend observed in the experimental
results discussed above in relation to Fig. 3.

Figure 8(a) shows the mean-square displacement for the
particle with lower magnetization m1 in a circle with ra-
dius R = 20 σ , and Fig. 8(b) for the particle with the higher
magnetization m2 in a circle with radius R = 21 σ , for the
experiment series S3 and S4, respectively. In both series, the
magnitude of the amplitude of the magnetic field B0 has varied
from 11 G to 88.4 G. Also, both figures compare with the
theoretical expression (21). It is observed that the fit between
experiments and theory has a very good agreement. The per-
sistence velocities v0 were calculated from the values obtained
with the fits (see Table III). In particular, all values of α in S3

are larger than 1/2, while in S4 are smaller than 1/2, accord-
ing to the theoretical prediction. In these experiment series,
small discrepancies between the experiment and theory can
be observed in the small magnetic amplitude B0 = 11 G and
B0 = 44 G (series S3). These differences are also attributed to
the small radial motion because the particle does not absorb
enough energy from the magnetic field to self-propel along
the circle. Figure 8(c) shows a weak dependence of v0 on the
effective temperature and roughly is a slight oscillation around
33.9 σ/s. This is clear for the temperature’s lowest and high-
est B0 values. For the intermediate values, v0 slightly increases
as B0 increases. The physical explanation of the fact that
the highest effective temperature B0 = 88 G, the value of v0

decreases slightly because the magnetic interaction between

TABLE III. In this table we show the values for the parameter α = �c/R and the persistence time τc obtained by adjusting equation (21)
to the experimental values for the experiment series S3 and S4. Notice that values B0 = 11, 22, 33 G are absent in series S3 since the reasons
mentioned at Sec. II.

S3 S4

B0(G) α τc (s) α τc (s)

11 0.283 ± 0.014 0.450 ± 0.007
22 0.236 ± 0.001 0.888 ± 0.001
33 0.300 ± 0.001 0.850 ± 0.001
44 1.328 ± 0.025 0.828 ± 0.020 0.060 ± 0.002 0.964 ± 0.001
55 3.707 ± 0.100 2.367 ± 0.066 0.106 ± 0.001 0.867 ± 0.001
66 2.653 ± 0.027 1.634 ± 0.017 0.327 ± 0.002 0.609 ± 0.004
77 3.932 ± 0.037 2.348 ± 0.022 0.179 ± 0.001 0.794 ± 0.001
88 3.667 ± 0.026 2.293 ± 0.017 0.179 ± 0.001 0.822 ± 0.001
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FIG. 8. (Top) Mean-square Euclidean displacement 〈�r2(t )〉 for
a particle confined in a circular channel from the experiment (open
symbols) and run-and-tumble theory (solid lines). Three systems
considered with magnetic field B0 = 11 G to B0 = 88.4 G, (a) for
magnetic moment m1 (series S3) with radius R = 20 σ , and (b) for
magnetic moment m2 > m1 (series S4) with radius R = 21 σ . The
solid lines represent the theoretical prediction (21) adjusting the
values of α and τc (see the Table III). The thin horizontal straight
line is a reference guide for the eyes, showing the theoretical limiting
value 2 [Eq. (22)]. (Down) Persistence velocity v0 versus radius R,
(c) for magnetic moment m1 (series S3), and (d) for magnetic moment
m2 > m1 (series S4)

the particle and the magnetic field is higher, so the particle ex-
hibits more changes in its direction, leading to a more erratic
motion. This behavior can also be observed in the experiment
series S4, where the particle has higher magnetization. Fig-
ure 8(d) shows that persistent velocity v0 has a more abrupt
behavior and more extensive oscillations, with a general trend
of decreasing as B0 increases. At a low magnetic field, the par-
ticle travels longer paths, but as the magnetic field increases,
the particle frequently changes direction, so the particle tra-
jectory is more random. Thus, undoubtedly, the intensity of
the interaction between the field and the particle magnetiza-
tion has an important influence on the direction and inertial
components of the particle motion; namely, it impacts the
tumbling behavior that manifests in the erratic motion of the
particle. Note that in both Figs. 7 and 8 can be observed the
limit value 〈�R2(t )〉/R2 = 2 in the geometric regime.

Figure 9 compares the theoretical predictions and experi-
mental results using the mean-square geodesic displacement
〈�s2(t )〉. It shows just three cases for the experiment series
S1, S2, and S3, and four for the experiment series S4. This
comparison considers only the dimensionless parameter, α, as
a free parameter, whereas the persistence time, τc corresponds
to the same value used to adjust the mean-square Euclidean
displacement in the corresponding system. The curves of the
mean-square geodesic displacement indicate that the fit be-
tween experimental data and theoretical prediction (23) has
a good agreement. The general trend of the MSGD curves is
similar to the corresponding Euclidean displacement case. In

FIG. 9. Mean-square geodesic displacement 〈�s2(t )〉 for a par-
ticle confined in a circular channel from the experiment (open
symbols) and run-and-tumble theory (solid lines). Three systems
considered with radius R/σ = 5, 21, 34 at effective temperature
B0 = 55 G, (a) for magnetic moment m1 (series S1), and (b) for
magnetic moment m2 > m1 (series S2). Additionally, four systems
considered with magnetic amplitude B0/G = 11, 44.1, 66.7, 88.4,
(c) for magnetic moment m1 (series S3) with radius R = 20 σ , and
(d) for magnetic moment m2 > m1 (series S4) with radius R = 21 σ .
The solid lines represent the theoretical prediction (23), adjusting
the values of α. The thin horizontal straight line is a reference guide
for the eyes, showing the value π 2/3 [Eq. (25)] of the geodesic
geometrical limit.

the series S1, Fig. 9(a), and S3, Fig. 9(c), the maximum of
the oscillations are higher than the corresponding Euclidean
cases. Similarly, series S2, Fig. 9(b), and S4, Fig. 9(d), show
similar behavior to the corresponding Euclidean cases. Addi-
tionally, the notoriously difference between the MSGD and
MSED is the geometric regime which in the geodesic case
corresponds to the long-time regime to 〈�s2(t )〉/R2 = π2

3 ≈
3.28.

Figures 10(a) and 10(b) show the comparison between the
period, T , obtained as the ratio of the perimeter 2πR and
the persistence velocity v0 [whose values are extracted from
Fig. 7(c)], and the period obtained directly from the experi-
mental data corresponding to the mean-square displacements
curves, measured from the beginning up to the first mini-
mum, tmin, for the experiment series S1 and S3, respectively.
It is observed that the values are very close to each other.
Figure 10(a) shows that the period is linear with the radius, im-
plying that persistence velocity for the particles with smaller
magnetic moments does not depend on the radius of the circle.
Figure 10(b) shows that the period only slightly depends on
the effective temperature. Furthermore, a comparison between
the persistence velocity obtained from the fitting through
the theoretical model (21) and the velocity obtained as the
ratio of the perimeter and the period obtained directly from
the experiment are shown in Figs. 10(c) and 10(d). Again it
is observed that in both series S1 and S3, persistence velocity
values are very close to each other. Figure 10(c) shows that the
velocity slightly increases as the radius increases. Figure 10(d)
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FIG. 10. Period of oscillation from the experiment (open circles
symbols) and T = 2πR/v0 where values of v0 extracted from Fig. (7)
as a function of the (a) radius of the circular channel, R, and (b) am-
plitude of the magnetic field. Persistence velocity v0 as a (c) function
of the radius of the circular channel, R, and (d) amplitude of the
magnetic field B0.

shows that although the slight dependence of the persistence
velocity on the effective temperature, one observes that v0

oscillates around the value of 33 σ/s. This irregular behavior
of the persistence velocity can be understood as a consequence
of the magnetic interaction between the field and the particle
and the finite size of the channel’s width, where the particle is
confined.

VI. CONCLUSIONS

In this paper, we have investigated the random motion of an
active particle confined along a circle through a nonvibrated
granular experiment contrasting with the run-and-tumble
model used to describe an active particle’s stochastic mo-
tion. On the one hand, the experiment confines a magnetized
metallic ball into a circular channel subjected to an alternating
magnetic field that causes stochastic motion. In each experi-
ment, the positions of the particle were determined after the
data analysis of the recorded videos, which allows for calcu-
lating the mean-square displacement. On the other hand, we
have developed the model of run-and-tumble to describe the
self-propel motion of an active particle characterized by two
parameters, namely, the persistence velocity v0 and the tumble
rate λ = τ−1

c , where τc is the persistence time. Using this
model, we carried out an exact statistical physics analysis
that allowed comparison with the experiment, finding a good
agreement between the experimental results and the theoreti-
cal predictions.

The theoretical predictions of the run-and-tumble model
on the circle established the existence of a transition between
two states of motion: an erratic motion (or disordered phase)
and persistent motion (or ordered phase). From the viewpoint
of the theory, the change of the persistence length, �c = v0τc,
of a particle triggers a transition phase from a disorder to an

ordered phase. Notably, at the level of the MSD, the ordered
phase is characterized by an oscillating function when �c >

R/2, while at the disordered phase, its behavior corresponds to
an increasing monotonic function, for �c < R/2, that saturates
to a particular finite value due to the compactness of the circle.
Additionally, from the theory, one can show that for �c � R,
the movement of the particle corresponds to a uniform circular
motion, whereas for �c � R, the movement corresponds to the
usual Brownian motion on the circle.

From the experimental point of view, the magnetization m
is the only essential property of the particle, and the oscillating
behavior appears for particles with lower magnetization, while
the monotonic behavior is for the higher value of magnetiza-
tion. Thus, one can conclude qualitatively that the higher the
persistence length of a particle is, the lower the magnetization,
at least within the experimental limit of validity considered
in the present experiment. Notably, a specific manifestation
of the two states of motion predicted by the theory can be
observed in Fig. 2 where particles with lower magnetization
exhibit larger traces. In contrast, the particle with higher
magnetization travels a smaller portion of the entire circular
channel. One can explain the physical mechanism behind
this dynamic transition through simple dimensional analy-
sis. Indeed, introducing the characteristic period the particle
changes its rotation direction τm = √

I/(mB0), where I is
the particle’s moment of inertia, and comparing it with the
period the magnetic field alternates its direction τB = 1/ f
one can conclude that for the situation when τm > τB the
particle’s magnetic torque maintains itself in the same di-
rection giving rise to a bead’s rolling motion with a more
significant displacement along the circle as occurs in the
persistent motion (or ordered phase), while if the magnetiza-
tion increases above a critical value occurs τm < τB, which
implies that the torque of the particle is constantly changing
direction, that is generating a pronounce erratic motion (or
the disordered phase). Additionally, it has been shown that
the movement is superdiffusive, almost ballistic, in the order
phase, while in the disordered phase, at a short-time regime,
the motion becomes approximately diffusive. We have shown
that this effect can be modulated by varying the particle-field
interaction. As the interaction between the particle and mag-
netic field increases, the particle experiments more changes
in its direction, going from a superdiffusive to a diffusive
behavior. This interaction can be modulated by varying the
magnetization of the particle, namely, by exposing it to a
static magnetic field of different intensities or along different
exposition times.

After comparing the theory and experiment, it has been
shown that the magnetized metallic balls under the alternating
magnetic field have the most salient properties exhibited by
the active particle matter systems. This is because the mag-
netization of the ball corresponds to the intrinsic property in
this case, and its interaction with the time-varying magnetic
field allows the particle to extract energy to transform it into
a self-propel motion along the quasi-1D circular channel. In
particular, it has been shown that this granular nonvibrated
experiment describes the main characteristics determined by
the run-and-tumble model (initially to describe the bacterial
motion [28]), at least in one-dimensional confinement in the
absence of exclusion effects.
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The present work can be extended in several directions.
Using the same experiment setup, it remains to carry out an
analysis using more than two different values of magnetiza-
tions to establish a quantitative law between the persistence
length and the magnetization of the ball. Now that we have
proved that the magnetized metallic balls behave as active
particles, one can address the single-file diffusion problem
of studying the interacting active particle system confined in
quasi-1D circular channels. This analysis can be extended to
investigate the universal character of the nature of the power
law associated with the correlations observed experimentally
in 1D colloidal systems [46]. Changing the experimental setup
by replacing the circular channel with a concave surface plate
allows addressing the problem of a single active particle mov-
ing in a 2D curved space [36,47]. For instance, using this
kind of experimental setup one can board up the problem
of triggering criticality phenomena in a single active particle
in a spherical surface as predicted theoretically in Ref. [36].
Furthermore, at 1D, the telegrapher equation (6) is common
in various models of active particles. However, the question
remains to be answered: What is the most acceptable model
to describe the stochastic motion of the magnetized active
particle in higher dimensions? This could be addressed by
considering in a 2D situation the Active Brownian Motion
[21,33,36], the run-and-tumble model [28], and the Gener-
alized Active Brownian Motion model proposed recently in
Ref. [38].
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APPENDIX A: THE RUN-AND-TUMBLE
MODEL IN MANIFOLDS

In this section, it is introduced the run-and-tumble model
[28] for an active particle moving in a d-dimensional curved
space M. A particle that follows this model also has internal
degrees of freedom that dictate the direction of motion accord-
ing to the condition that the velocity is v = v0v̂, where v̂ ∈
Sd−1 and v0 is a constant persistence velocity. Thus, the phase-
space available for this particle corresponds to M × Sd−1.
The model in the curved space is given by

∂

∂t
P(x, v̂, t ) + v0v̂ · ∇P(x, v̂, t )

= −λP(x, v̂, t ) + λ

∫
Sd−1

d v̂

V (Sd−1)
P(x, v̂, t ), (A1)

where {xa} with a = 1, · · · , d , represents a set of local coordi-
nates and v̂ · ∇ f = 1√

g v̂
a∂a(

√
gf ), where g is the determinant

of the tensor metric gab that defines the Riemannian geometry
of the space M, and V (Sd−1), and V (Sd−1) is the volume of
the sphere Sd−1. In the above model, λ is the tumbling rate
that gives, on average, how many tumbles the particle makes
in a unit of time.

In the simplest case, when d = 1, the sphere S0 has only
two points, S0 = {−1, 1}, that are interpreted as the direction
to the left (−1) or the right (+1), the volume V (S0) = 2,

and the integration is given adopting the formal expression∫
d v̂ f (v̂) = f (+1) + f (−1). From this definition, we define

the probability density function ρ(s, t ) and the current proba-
bility function

ρ(s, t ) =
∫

S0

d v̂

V (S0)
P(s, v̂, t ), (A2)

J (s, t ) =
∫

S0

d v̂

V (S0)
v̂P(s, v̂, t ). (A3)

APPENDIX B: CALCULATION OF THE CURRENT
PROBABILITY DENSITY J (s, t )

Here, we present a calculation for the current probability
density J (s, t ). We proceed to find an expression of the current
using the solution for the probability density (9) and Eqs. (1)
and (5). Let us calculate the partial derivative of ρ(s, t ) with
respect to time, that is,

∂ρ

∂t
= −2α2e− t

2τc

τcπR

∞∑
m=1

cos(mθ )
m2 sinh

(
t

2τc

√
1 − 4m2α2

)
√

1 − 4m2α2
.

(B1)

Now, in virtue of continuity equation (1), we equate the last
expression to − 1

R
∂J
∂θ

. Afterward, we integrate out the variable
θ such that

J (s, t ) = 2ω2τce− t
2τc

π

∞∑
m=1

m sin(mθ )
sinh

(
t

2τc

√
1 − 4m2α2

)
√

1 − 4m2α2

+ψ (t ), (B2)

where ψ (t ) is a time function to be determined. To obtain
ψ (t ), we observe that the current can also be obtained using
Eq. (5). Thus, we calculate ∂ρ/∂s, namely,

∂ρ

∂s
= − 1

πR2

∞∑
m=1

m sin (mθ )G

(
t

2τc
, 4m2α2

)
. (B3)

Now we integrate out the time variable t on both sides of
Eq. (5) such that we obtain for the current

J (s, t ) = 2ω2τce− t
2τc

π

∞∑
m=1

m sin(mθ )
sinh

(
t

2τc

√
1 − 4m2α2

)
√

1 − 4m2α2

+ϕ(s)e− t
τc . (B4)

Now, comparing both expressions (B2) and (B4) of the
current, one can conclude that ϕ(s) = J0 is a constant
independent of s and ψ (t ) = J0e− t

τc . The constant J0 is de-
termined by noting that the integration of the series term in
Eq. (B4) vanished then

∫
I dsJ (s, t ) = 2πRJ0e− t

τc , now ob-
serving that

∫
I dsJ (s, t ) = v0〈v̂(t )〉. Now let us choose that

at t = 0 the direction is such that 〈v̂(0)〉 = 1, thus one has
v0 = (2πR)J0, thus J0 = v0/(2πR). Finally, we got the de-
sired result (14).
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APPENDIX C: USEFUL MATHEMATICAL IDENTITIES

The following mathematical identities were useful for the
analytical calculations:

1

2πR

(
1 + 2

∞∑
m=1

cos (mθ ) cos(mθ ′)

)
= 1

R
δ(θ − θ ′), (C1)

1

2πR

(
1 + 2

∞∑
m=1

sin (mθ ) sin(mθ ′)

)
= 1

R
δ(θ − θ ′), (C2)

∞∑
m=1

(−1)m

m2
cos (my) = π2B2

(
y

2π
− 1

2

)
, (C3)

where B2(x) = x2 − x + 1
6 is the second Bernoulli polyno-

mial.
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