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Asymptotic analysis of multi-phase-field models: A thorough consideration of junctions
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The solutions of multi-phase-field models exhibit boundary layer behavior not only along the binary interfaces
but also at the common contacts of three or more phases, i.e., junctions. Hence, to completely determine the
asymptotic behavior of a multi-phase-field model, the inner analysis of both types of layers has to be carried out,
whereas, traditionally, the junctions part is ignored. This is remedied in the current work for a phase-field model
of simple grain growth in two spatial dimensions. Since the junction neighbourhoods are fundamentally different
from those of the binary interfaces, pertinent matching conditions had to be derived from scratch, which is also
accomplished in a detailed manner. The leading-order matching analysis of the junctions exposed the restrictions
present on the interfacial arrangement at the common meeting point, while the next-to-the-leading one uncovered
the law governing the instantaneous motion of the latter. In particular, it is predicted for the considered model
that the Young’s law is always satisfied at a triple point, whether or not it is at rest. Surprisingly, the mobilities
and the curvatures of the involving interfaces as well as the driving forces on the them do not affect this result.
However, they do play a significant role in determining the instantaneous velocity of the junction point. The
study has opened up many new directions for future research.
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I. INTRODUCTION

Phase-field methodology is fast becoming ubiquitous in the
modeling of evolution in heterogeneous media [1–21]. The
unique benefits which it offers earn this approach the prefer-
ence it receives over the sharp-interface treatments. However,
due to the broad, or sometimes even rough, nature of the
arguments invoked in composing the phase-field modeling
equations, additional analysis is warranted to demonstrate
the correspondence with the right free-boundary problem.
Asymptotic analysis is a tool which helps establish this con-
nection.

A number of scalar phase-field models have been proposed
to handle diverse phenomena like spinodal decomposition
[22,23], dendritic solidification [24–26], bulk and/or surface
diffusion mediated Ostwald ripening [27,28], etc. The asymp-
totic analyses of these models have also been carried out
demonstrating a successful capture of the right physics in each
case [29–33]. The predictions of the perturbative analyses are
in turn verified numerically through interface width reduction
studies or by comparing against the sharp-interface solutions
for appropriate benchmark cases [34]. Thus, the phase-field
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program can be safely claimed to have been executed to a fair
level of completion in the scalar case.

The situation, however, is not so plain in the case of multi-
phase evolutions: Front-tracking becomes too formidable to
obtain sharp-interface solutions for any of the representa-
tive benchmark cases. The vector phase-indicator evolution
equations are seldom studied in a rigorous manner through
asymptotic methods. And even before any of these, the free-
boundary problems themselves cannot be completely and
unobjectionably written down, as the sharp-interface govern-
ing laws for multiple-phase contacts are not fully known, or
are under debate most of the time.

The disagreement about the existence of a separate Young’s
type law for dynamical situations is an instance of the latter.
Young’s law proposes how three interfaces at rest should
arrange themselves relative to each other at their common
meeting manifold depending on their excess energies [35].
This has well been verified experimentally, at least in the
case of fluid membranes or surfaces of gas bubbles. How-
ever, whether the law continues to hold even for a moving
tri-junction, i.e., when the system is evolving, is still unsettled.
The scientific community hasn’t been able to come to a com-
mon consensus about the conclusion, with some arguing that it
does and others favoring the existence of a separate dynamical
Young’s law for junctions in motion. No real experimental
data seems to exist favoring either side of the debate, definitely
not for interfaces between condensed phases.
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Given this state of affairs, it is vital to know with certainty,
at least, what the phase-field side of the picture is, i.e., what
the phase-field models recover. Ideally, one would want to
have models capable of capturing each and every possibility,
so that they can be appropriately deployed depending on the
demands of the problem at hand. Indeed, many models have
been constructed which have been demonstrated to recover
the Young’s law for both the static and the dynamic situations
[36,37], and some which break it in the latter case. In yet other
implementations, instead of the actual speed of the junction,
the mobilities of the involving interfaces are seen to have an
effect on the recovered trijunctions angles [38–40]. However,
all these demonstrations are through numerical integrations
of the phase-field equations and subsequent analysis of the
simulated microstructures. Whereas, a stronger justification
would be through analytical methods, thus signifying the ele-
vated importance of asymptotic analysis for multi-phase-field
models. However, such an analysis has never been carried
out in a full-fledged and rigorous manner bar two exceptions
[41,42].

The multi-phase-field evolution equations have always
been reduced to two-phase models (which essentially reduce
further to scalar phase-field equations due to the oft-employed
summation constraint) using heuristic arguments before an-
alyzing through asymptotic methods. Since junctions cannot
be handled in such a simplification, they are completely
left out of the analysis. The first exception, and practically
the complete solution, is due to Bronsard and Reitich [41]
who performed a rigorous handling of the multi-phase equa-
tions of simple three-grain evolution. This was later adopted
by Wheeler et al. [42] for the problem of eutectic solidifica-
tion. In Ref. [43], the current authors have extended Bronsard
and Reitich’s treatment to a grain growth model for any
number of phases and various timescales. However, the con-
sideration is only limited to the study of binary interfaces. In
the current article, the junctions part of the extension will be
presented. While Bronsard and Reitich stopped after perform-
ing the leading-order matching analysis of the junctions, the
next-to-the-leading order is also studied in the current article.

The content-wise breakdown of the rest of the paper is as
follows: Section II recalls the phase-field model of simple
grain growth studied in Ref. [43] and sets the stage for the
local analysis of junctions before working out the details. As
in Ref. [43], only two spatial dimensions will be concerned
for the entire study. An important ingredient of the asymp-
totic procedure is the exploitation of the matching conditions;
Sec. III along with Appendix A is dedicated to their detailed
derivation. The subtle aspects of the analysis are given special
attention in the discussion provided in Sec. IV. Finally, some
concluding remarks are presented in Sec. V.

II. ASYMPTOTIC ANALYSIS OF MULTI-PHASE-FIELD
MODEL OF GRAIN GROWTH

Multi-phase-field models are employed to study evolution
in systems featuring at least three distinct homogeneous bulks.
The basic idea behind their construction is a plain extension
of the philosophy of the scalar models: Each stable phase is
assigned a distinct value, and the energy associated with it
is chosen at a minimum, while the intermediate values are

penalized so that they remain restricted to thin interfacial
zones. The sustenance of the diffuseness of the interfaces is
ensured by the usage of gradient energy terms. Since more
than two distinct values have to correspond to the equilibrium
phases, there is no choice but to increase the dimensionality of
the phase-indicator [44]. This in turn requires the introduction
of multidimensional wells as counterparts to double-wells for
the penalization of the intermediate phases [43]. For conve-
nience, the standard basis vector values are chosen to be the
ones corresponding to the stable phases.

As the aim of the current study is to demonstrate the
procedure of performing the asymptotics for multi-phase-field
models, we try to tone down the complexity as much as
possbile. Hence, we do not consider any transport fields,
and just work with phase-indicator evolution. Furthermore,
the gradient energy terms are also chosen in the simplest
manner possible, i.e., with same weights irrespective of
the component of the vector phase-indicator. Such a sim-
plest multi-phase-field model has been previously leveraged
heavily for simulating the grain growth phenomenon in
polycrystalline single phase materials. In this context, the
interpretation is that each equilibrium value of the vector
phase-field variable marks a distinct grain orientation present
in the initial microstructure. Thus, the free-energy functional
is as follows:

F =
∫ (

fαgα (φ) + 1

ε
γW (φ) + ε

γ

2
|∇φ|2

)
dV, (1)

where φ is the vector-valued phase-field variable with N com-
ponents, i.e., φ = (φ1, φ2, . . . , φN ), where each component
characterizes a distinct orientation (please refer to Ref. [43]
for elaboration). W (φ) is the dimensionless multi-well po-
tential. fα is the bulk energy specifier of the αth orientation.
gα (φ) is the interpolation function conjugate to the αth ori-
entation, i.e., it satisfies gα (φ) = 1 when φα = 1, gα (φ) = 0
when φα = 0, and ∂gα (φ)

∂φα
= 0 when φα = 0 or 1. γ is a pref-

actor carrying the units of interfacial energy. Finally, ε is the
interface width, or more precisely, “the extent of spread of the
inter-phase region” parameter. We clarify that the dimension-
ality N of the phase-indicator is the number of different grain
orientations present in the starting configuration, and not nec-
essarily the total number of grains themselves, as repetitions
are allowed. That is, a number of grains with same oreintation
can be smeared all across the micrograph, and they will all be
assigned the same φ value.

The governing equation for multigrain evolution can be
derived from Eq. (1) in a straightforward manner by demand-
ing monotonic reduction of free-energy. It takes the following
form:

τ (φ)
∂φβ

∂t
= −1

ε
fα

∂gα (φ)

∂φβ

− 1

ε2
γ

∂W (φ)

∂φβ

+ γ∇2φβ − λ,

β ∈ {1, 2, · · · , N}, (2)

where λ is the Lagrange multiplier which ensures the sum-
mation constraint,

∑N
α=1 φα = 1, when the initial filling also

satisfies it. Its expansion is λ = 1
N

∑N
β=1 − δF

δφβ
, with − δF

δφβ

standing for the right-hand side (r.h.s.) of Eq. (2) excluding
λ. τ (φ) is the inverse mobilities interpolating function.
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FIG. 1. Five interfaces meeting to form a junction. The junction
neighborhood, a small strip around a binary interface and a subre-
gion within one of the bulks are highlighted. x-y is the laboratory
coordinate frame corresponding to the outer coordinates and ζ -ξ is
the local frame. The interfaces are numbered with reference to the ζ

axis by starting there and moving in the counter clockwise direction.
The local coordinate system rotated so as to align the ζ axis with
the tangent of an interface and suffixed with the number assigned
to the latter is also shown exemplarily for the second interface (i.e.,
interface #2).

Strictly speaking, the only kind of problems for which
the above model accurately applies to is that of evolution of
bubbles in a soap froth. This is because some of the anisotropy
effects that actually exist between grains in polycrystalline mi-
crostructures are neglected in the current treatment. Of course,
by choosing the multiwell W (φ) in an appropriately asym-
metric fashion, distinct pairs of grain orientations possessing
surface tensions unique to them can very well be accounted.
However, this is not entirely sufficient as, in general, two fixed
orientations can themselves have different interfacial energies
depending on the face along which they meet. Such kind of
effects are not captured by Eq. (2). In spite of this, we still
work with this so-called “isotropic grain growth model” for
its simplicity and the fact that it was massively adopted before
for the investigation of grain growth phenomenon [45–51].
Also, in situations where such anisotropy effects are indeed
not that important, and other physics play a dominant role,
like for example the interplay of interfacial tension and the
counter diffusional fluxes in the problem of directional eutec-
tic growth, Eq. (2) appears as one of the central pieces in their
governing set of equations. That is, the current model serves as
a base for a number of more advanced multiphase multicom-
ponent microstructural evolution models. Before moving on
to such coupled systems, it is only natural that we dispose of
the simpler case, and hence, we choose Eq. (2) for our present
asymptotic studies. For brevity, in the rest of the article, we
use the term “phase” synonymously with “orientation.”

In Ref. [43], Eq. (2) was studied in two spatial dimensions
for its asymptotic behavior in the limit of the interface width
specifier ε tending to zero. However, the outer analysis and
the inner one pertaining to the binary interfaces were only
performed. That is, the characteristics of the phase-field pro-
file in the interiors of the grain bulks are first determined, and
then, the same is carried out for open-strips around the binary
interfaces. These regions are exemplarily illustrated in Fig. 1

(b)(a)

FIG. 2. Some example ray-diagram constructions. Panel (a) cor-
responds to the interfacial configuration of Fig. 1, while panel
(b) gives an instance of a ray diagram of a special kind (please refer
to the main text).

which shows a schematic of five grains meeting to form a
junction. The interior of one of the grain bulks is indicated by
B, and a strip around a small portion of one of the interfaces
by I, in Fig. 1. As part of the inner analysis within the binary
interface strips, the next-to-the-leading-order equations are
also studied in Ref. [43], and the (asymptotic or the limiting)
kinetics of interface evolution is determined. In the current
study, we take up from where we have left, and perform a
detailed local analysis of the junctions (region J in Fig. 1, for
example). This enables a determination of the characteristics
of the phase indicator field (more concretely, the interfacial
arrangement) within the junction neighborhoods and also the
dynamics of motion of the common meeting point.

Let us consider a junction formed by M meeting interfaces
(i.e., for the example case shown in Fig. 1, M = 5). Tangents
to each of the involving binary interfaces can be drawn at the
common meeting point, and rays can be attached to these,
resulting in a structure that resembles a free body diagram
of a point mass as depicted in Fig. 2(a), especially when the
lengths are chosen proportional to the associated interfacial
energies. As time passes, these rays can move apart or towards
each other or rotate in unison about the point of their origin,
depending on the dynamics. Thus, the motion of the junction
is marked by the position and velocity of the center, while
the motion of the interfaces relative to it by the evolution of
the ray diagram. In the local analysis corresponding to the
junctions to be carried out presently, the question of what kind
of ray diagrams are permissible can be addressed. For exam-
ple, is it possible to have three interfaces orienting themselves
at any instant of time during the course of their evolution in
such a way that their ray diagram is as in Fig. 2(b)? Can a
junction between three phases with interfacial energies of 1,
2, and 4 units between them exhibit a stable motion? Such
questions can be answered with the help of the analysis that
follows. Furthermore, the influence of the bulk energies, the
curvatures of the interfaces, and the interface mobilities on
the instantaneous velocity of the center can also be estimated.

A. Local analysis of junctions

For performing the inner analysis, appropriate local coor-
dinates have to be selected. We choose them in the following
manner: Let (x, y, t ) be the laboratory frame of reference in
terms of which Eq. (2) has been written down. If (x∗(t ), y∗(t ))
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marks the trajectory of the junction, then a change of axis
(x, y, t ) → (ζ , ξ , t ) is made such that ζ = x−x∗(t )

ε
and ξ =

y−y∗(t )
ε

. This (ζ , ξ , t ) will be the local coordinate system for
our inner analysis around the junctions (see Fig. 1, for exam-
ple). That is, the origin is shifted to coincide with the junction
and the x and y axes are stretched by ε times to form the inner
coordinates. As will be seen, it will also be quite rewarding to
re-express the solutions in terms of coordinate axes obtained
by rotating the ζ -ξ frame so as to align the ζ axis with the
tangents of the interfaces at the confluence. If the local frame
(ζ , ξ ) is rotated to orient with the ith interface encountered
when moving in the counter clockwise direction from the ζ

axis, then the resultant coordinates are indicated using a suffix
marking the interface, i.e., (ζi, ξi ) (this is exemplified with
(ζ2, ξ2) for the second interface in Fig. 1). Thus,[

ζi

ξi

]
=

[
cos θi(t ) sin θi(t )

− sin θi(t ) cos θi(t )

][
ζ

ξ

]
, (3)

where θi(t ) is the angle subtended at time t by the ith interface
(encountered while moving in counter clockwise direction)
with the ζ axis (which, in turn, is aligned with the laboratory
frame’s x axis (see Fig. 1).

Expressing the governing equation Eq. (2) in terms of the
inner coordinates gives

τ (
�

φ)

(
−vx

ε

∂
�

φβ

∂ζ
− vy

ε

∂
�

φβ

∂ξ
+ ∂

�

φβ

∂t

)

= −1

ε
fα

∂gα (φ)

∂φβ

(
�

φ) − 1

ε2
γ

∂W (φ)

∂φβ

(
�

φ)

+ 1

ε2
γ

(
∂2

�

φβ

∂ζ 2
+ ∂2

�

φβ

∂ξ 2

)
− �

λ, β ∈ {1, 2, · · · , N},
(4)

where
�

φ is the phase indicator field expressed in terms of
the local coordinate system, i.e., by definition,

�

φ(ζ , ξ , t ; ε) =
φ(x(ζ , ξ , t ), y(ζ , ξ , t ), t ; ε) = φ(εζ + x∗(t ), εξ + y∗(t ), t ; ε).
The terms vx and vy are the x and y components of the
instantaneous velocity of the junction point, i.e., vx = d

dt x∗(t )

and vy = d
dt y∗(t ).

�

λ is the Lagrange parameter in the new
coordinate system.

Next,
�

φ, vx, and vy are assumed to posses asymptotic ex-
pansions of the Poincare type in the limit of ε vanishing:

�

φ(ζ , ξ , t ; ε) ∼ �

φ(0)(ζ , ξ , t ) + ε
�

φ(1)(ζ , ξ , t )

+ ε2 �

φ(2)(ζ , ξ , t ) · · · , (5a)

vx(t ; ε) ∼ v(0)
x (t ) + εv(1)

x (t ) + ε2v(2)
x (t ) + · · · , and (5b)

vy(t ; ε) ∼ v(0)
y (t ) + εv(1)

y (t ) + ε2v(2)
y (t ) + · · · . (5c)

These are substituted in Eq. (4) and the resultant is analyzed
order by order to predict the configuration around the junction
and also its kinetics of evolution. Of significant role in this
step is the utilization of the boundary conditions at infinity
satisfied by the terms of the asymptotic series of various
orders like

�

φ(0),
�

φ(1), etc. These are provided by the matching
relations.

In the case of binary interfaces, the outer expansions which
pertain to the bulk interiors are taken to be of the following
form

φ(x, y, t ; ε) ∼ φ(0)(x, y, t ) + εφ(1)(x, y, t )

+ ε2φ(2)(x, y, t ) + · · · .

On the other hand, the local solution, defined as φ̃(s, ρ, t ) =
φ(x(s, ερ, t ), y(s, ερ, t ), t ; ε), is assumed to be expressible as
an asymptotic series in the form

φ̃(s, ρ, t ; ε) ∼ φ̃(0)(s, ρ, t ) + εφ̃(1)(s, ρ, t )

+ ε2φ̃(2)(s, ρ, t ) + · · · ,

where (s, r) are the natural coordinates pertaining to the in-
terface under question, with s being the arc length parameter
of the base contour (see Ref. [43] for further details) and r,
the distance along the normals to it; ρ is the stretched distance
given by ρ = r/ε. The matching relations which are popularly
used for connecting the terms of these two asymptotic series
are

lim
ρ→±∞ φ̃(0)(s, ρ, t ) = lim

r→±0
φ(0)(s, r, t ) and (6)

φ̃(1)(s, ρ, t ) = lim
r→±0

(
φ(1)(s, r, t ) + ρ

∂φ(0)

∂r
(s, r, t )

)
+ o(1) asρ → ±∞, (7)

where φ(0)(s, r, t ) := φ(0)(x(s, r, t ), y(s, r, t ), t ) and φ(1)(s, r, t ) := φ(1)(x(s, r, t ), y(s, r, t ), t ). That is, for every s, the ρ → ∞
limit of the inner solution terms are matched to the r → 0 limit of the outer ones.

However, the situation is not so simple when it comes to the matching exercise for the junctions. This is because, the inner
expansions pertaining to the binary interfaces themselves act as outer ones along with those of the bulks when viewed from the
standpoint of junctions. That is, the local solutions have to be matched with different functions along different directions. For
instance, if infinity is to be approached always steering clear of the ζi axis exactly by a distance of ξ∗ units, then the following
relations should hold true:

lim
ζi→∞

�

φ(0)(ζi, ξi = ξ∗) = lim
s→0

iφ̃(0)(s, ρ = ξ∗) and (8)

�

φ(1)(ζi, ξi = ξ∗) = lim
s→0

(
iφ̃(1)(s, ρ = ξ∗) + ζi

∂ iφ̃(0)

∂s
(s, ρ = ξ∗) +

(−κ0,iζ
2
i

2

)
∂ iφ̃(0)

∂ρ
(s, ρ = ξ∗)

)
+ o(1) as ζi → ∞, (9)
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(a) (b)

FIG. 3. Polygonal constructions for the ray diagrams of Fig. 2.
Panel (a) corresponds to Fig. 2(a), while panel (b) corresponds to
Fig. 2(b).

where iφ̃(0) and iφ̃(1) are, respectively, the zeroth- and the
first-order terms in the local expansion pertaining to the
ith interface; s = 0 is taken to coincide with the junction
point; the time dependence is suppressed for brevity; κ0,i

is the curvature of the ith interface at the junction with
the convention that a function in the (ζi, ξi ) coordinate sys-
tem (say ξi = ξi(ζi )) which is concave upwards is positively
curved; and,

�

φ(0)(ζi, ξi, t ) := �

φ(0)(ζ (ζi, ξi, t ), ξ (ζi, ξi, t ), t )

and
�

φ(1)(ζi, ξi, t ) := �

φ(1)(ζ (ζi, ξi, t ), ξ (ζi, ξi, t ), t ). A separate
section (Sec. III) will be dedicated for the derivation of these
matching conditions. The postponement is to avoid interrup-
tion to the flow of the local analysis that is being carried out.
However, we do mention that Eq. (9) is a nontrivial statement,
and it cannot be easily written down without due analysis. A
naive extension of the matching relation Eq. (7) to the case of
junctions is not sufficient to arrive at it as the last summand
in the limit on the r.h.s. cannot be inferred through such a
route. The actual way in which this term arises is given a
detailed consideration in Sec. III; for now, we proceed with
the leading-order analysis of the junctions. However, before
starting, it is worth recalling a well familiar fact: The s de-
pendence of Eqs. (8) and (9) (although present in the most
generic of the cases) is unimportant for the current problem of
interest, namely, the multiphase Allen-Cahn equation, Eq. (2).
This is because, the zeroth and the first-order terms of the local
expansions pertaining to the binary interfaces, i.e., φ̃(0) and
φ̃(1), are independent of s for this problem.

1. Leading-order analysis

After substituting Eq. (5) in Eq. (4) and separating the
orders, the leading-order requirement will be

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

·
·
·
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 1
N − 1

N . . . − 1
N

− 1
N 1 − 1

N . . . − 1
N

· · . . . ·
· · . . . ·
· · . . . ·

− 1
N − 1

N . . . 1 − 1
N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂W (φ)
∂φ1

(
�

φ(0) ) − ( ∂2
�

φ (0)
1

∂ζ 2 + ∂2
�

φ (0)
1

∂ξ 2

)
∂W (φ)
∂φ2

(
�

φ(0) ) − ( ∂2
�

φ (0)
2

∂ζ 2 + ∂2
�

φ (0)
2

∂ξ 2

)
·
·
·

∂W (φ)
∂φN

(
�

φ(0) ) − ( ∂2
�

φ (0)
N

∂ζ 2 + ∂2
�

φ (0)
N

∂ξ 2

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10)

The above equation has to be fulfilled in all of the R2 space; however, to begin with, we consider a smaller region which is then
enlarged to equal the whole space. To construct the region, the associated ray diagrams will be used. Perpendiculars are drawn
to the rays at equal distance σ from the center. When the innermost envelope of these lines forms a closed figure, for example
like in Fig. 3(a), then that becomes the required region. However, when a closed figure does not form, as for the case of the ray
diagram of Fig. 2(b), as illustrated in Fig. 3(b), the figure is closed by arbitrarily drawing a line to join the two hanging edges.
Thus, the region in which Eq. (10) is considered is a closed convex polygon with the number of sides equal to or one greater
than the number of interfaces. For the moment, the former case is considered; the adjustments for moving on to the latter are
straightforward, as will become apparent shortly. The polygonal region of “size” σ will be denoted by the symbol �σ and its
boundary by ∂�σ in the subsequent analysis.

In the next step, Eq. (10) is left multiplied with ( ∂
�

φ (0)
1

∂ζ

∂
�

φ (0)
2

∂ζ
. . .

∂
�

φ (0)
N

∂ζ
), which will lead to the following owing to the

initial filling satisfying the summation rule throughout the domain and its subsequent preservation through Lagrange multiplier
implementation:

(
∂2

�

φ(0)
α

∂ζ 2
+ ∂2

�

φ(0)
α

∂ξ 2

)
∂

�

φ(0)
α

∂ζ
= ∂W (φ)

∂φα

(
�

φ(0) )
∂

�

φ(0)
α

∂ζ
. (11)

In the above equation, as well as the following steps, the Einstein’s convention (of summation over repeated indices) is used
with (and only with) regard to the index α. In the next step, Eq. (11) is integrated over the polygonal region that is just
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constructed:∫
�σ

∂2
�

φ(0)
α

∂ζ 2

∂
�

φ(0)
α

∂ζ
dV +

∫
�σ

∂2
�

φ(0)
α

∂ξ 2

∂
�

φ(0)
α

∂ζ
dV =

∫
�σ

∂W (
�

φ(0) )

∂ζ
dV

⇒ 1

2

∫
�σ

∂

∂ζ

(
∂

�

φ(0)
α

∂ζ

∂
�

φ(0)
α

∂ζ

)
dV +

∫
�σ

∂

∂ξ

(
∂

�

φ(0)
α

∂ξ

∂
�

φ(0)
α

∂ζ

)
dV −

∫
�σ

∂
�

φ(0)
α

∂ξ

∂2
�

φ(0)
α

∂ξ∂ζ
dV =

∫
�σ

∂W (
�

φ(0) )

∂ζ
dV

⇒ 1

2

∫
�σ

∂

∂ζ

(
∂

�

φ(0)
α

∂ζ

∂
�

φ(0)
α

∂ζ

)
dV +

∫
�σ

∂

∂ξ

(
∂

�

φ(0)
α

∂ξ

∂
�

φ(0)
α

∂ζ

)
dV − 1

2

∫
�σ

∂

∂ζ

(
∂

�

φ(0)
α

∂ξ

∂
�

φ(0)
α

∂ξ

)
dV =

∫
�σ

∂W (
�

φ(0) )

∂ζ
dV

⇒
∫
�σ

∂

∂ξ

(
∂

�

φ(0)
α

∂ξ

∂
�

φ(0)
α

∂ζ

)
dV =

∫
�σ

∂

∂ζ

{
W (

�

φ(0) ) + 1

2

(
∂

�

φ(0)
α

∂ξ

∂
�

φ(0)
α

∂ξ

)
− 1

2

(
∂

�

φ(0)
α

∂ζ

∂
�

φ(0)
α

∂ζ

)}
dV.

Applying the divergence theorem to the above equation leads to∫
∂�σ

∂
�

φ(0)
α

∂ξ

∂
�

φ(0)
α

∂ζ
n · ξ̂dS =

∫
∂�σ

{
W (

�

φ(0) ) + 1

2

(
∂

�

φ(0)
α

∂ξ

∂
�

φ(0)
α

∂ξ

)
− 1

2

(
∂

�

φ(0)
α

∂ζ

∂
�

φ(0)
α

∂ζ

)}
n · ζ̂dS

⇒
M∑

i=1

∫
∂ (i)

∂
�

φ(0)
α

∂ξ

∂
�

φ(0)
α

∂ζ
n · ξ̂dS =

M∑
i=1

∫
∂ (i)

{
W (

�

φ(0) ) + 1

2

(
∂

�

φ(0)
α

∂ξ

∂
�

φ(0)
α

∂ξ

)
− 1

2

(
∂

�

φ(0)
α

∂ζ

∂
�

φ(0)
α

∂ζ

)}
n · ζ̂dS, (12)

where ∂ (i) is the ith side of the polygon that was formed from the perpendicular drawn to the tangent to the ith interface. For
any single such side, the contribution from it to the left-hand side (l.h.s.) when expressed in the coordinates oriented along the
associated interface, i.e., (ζi, ξi ) is∫

∂ (i)

(
∂

�

φ(0)
α

∂ξi

∂ξi

∂ξ
+ ∂

�

φ(0)
α

∂ζi

∂ζi

∂ξ

)(
∂

�

φ(0)
α

∂ξi

∂ξi

∂ζ
+ ∂

�

φ(0)
α

∂ζi

∂ζi

∂ζ

)
n · ξ̂dS. (13)

In the limit of the size of the polygon becoming arbitrarily large, due to the matching relation Eq. (8), ∂
�

φ (0)
α

∂ζi
vanishes. Therefore,

the above integral reduces to∫
∂ (i)

σ→∞

(
∂

�

φ(0)
α

∂ξi

∂ξi

∂ξ

)(
∂

�

φ(0)
α

∂ξi

∂ξi

∂ζ

)
n · ξ̂dS =

∫
∂ (i)

σ→∞

∂
�

φ(0)
α

∂ξi

∂
�

φ(0)
α

∂ξi
cos θi(− sin θi )n · ξ̂dS. (14)

Similarly, the r.h.s. of Eq. (12), as well, modifies in the like manner, together yielding

−
M∑

i=1

∫
∂ (i)

σ→∞

∂
�

φ(0)
α

∂ξi

∂
�

φ(0)
α

∂ξi
cos θi sin θin · ξ̂dS

=
M∑

i=1

∫
∂ (i)

σ→∞

{
W (

�

φ(0) ) + 1

2

(
∂

�

φ(0)
α

∂ξi

∂
�

φ(0)
α

∂ξi

)
cos2 θi − 1

2

(
∂

�

φ(0)
α

∂ξi

∂
�

φ(0)
α

∂ξi

)
sin2 θi

}
n · ζ̂dS.

Since n · ξ̂ and n · ζ̂ equal sin θi and cos θi, respectively, the above equation simplifies to

M∑
i=1

∫
∂ (i)

σ→∞

{
W (

�

φ(0) ) + 1

2

(
∂

�

φ(0)
α

∂ξi

∂
�

φ(0)
α

∂ξi

)
cos2 θi + 1

2

(
∂

�

φ(0)
α

∂ξi

∂
�

φ(0)
α

∂ξi

)
sin2 θi

}
cos θidS = 0

⇒
M∑

i=1

∫
∂ (i)

σ→∞

{
W (

�

φ(0) ) + 1

2

(
∂

�

φ(0)
α

∂ξi

∂
�

φ(0)
α

∂ξi

)}
cos θidS = 0. (15)

However, owing to the matching relation Eq. (8), this means

M∑
i=1

∫ ∞

−∞

{
W ( iφ̃(0) ) + 1

2

(
∂ iφ̃(0)

α

∂ρ

∂ iφ̃(0)
α

∂ρ

)}
dρ cos θi = 0. (16)
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The l.h.s. in this equation is nothing but the interfacial energy
of the ith interface, except for the multiplicative factor of γ .
Thus, multiplying Eq. (16) throughout with the latter gives

M∑
i=1

(I.E.)i cos θi = 0, (17)

where (I.E.)i is the interfacial energy of the ith interface.
The adjustments to be made when one of the constructed

sides does not correspond to any of the interfaces like, for
instance, the “open side” of Fig. 3(b) are indeed trivial. Such
a side eventually falls completely inside one of the bulks
and thus

�

φ(0)
α saturates to a constant both with respect to ζi

and ξi (see Sec. III B 3 for the rigorous argument). Further,
the “value” it converges to corresponds to a minimum of the
multiwell which is chosen to vanish. Thus, the contribution
from this side to the sum on the l.h.s. of Eq. (15) is identically
zero. The upshot being, the condition Eq. (17) with M being
the number of interfaces meeting at a junction is a necessary
requirement to be fulfilled by them at their common meeting
point whether or not they give rise to a closed polygon.

Similarly, repeating the above procedure but by starting

by left multiplying Eq. (10) with ( ∂
�

φ (0)
1

∂ξ

∂
�

φ (0)
2

∂ξ
. . .

∂
�

φ (0)
N

∂ξ
)

instead, leads to the following requirement:

M∑
i=1

(I.E.)i sin θi = 0. (18)

The conditions Eqs. (17) and (18) are reminiscent of the
force balance requirement; the first one is the balance of
ζ -components and the second that of ξ , with the interfacial
energies taking the role of the applied forces. Therefore, the
questions raised regarding the situations of Fig. 3(b) and
the possibility of having a stable junction between interfaces

with energies 1, 2, and 4 units is now easy to answer in the
negative. This is because, in the former, it is impossible to
balance out the y components of the “forces,” while the latter
don’t satisfy the triangle inequality and hence cannot cancel
themselves out. A corollary is that any ray diagram which
does not produce a closed polygon upon the construction of
the perpendiculars cannot be a valid solution: Note that the
rays corresponding to the hanging edges have all the other rays
lying only on one side of them, otherwise, their perpendiculars
cannot be the ones hanging. Further, on the side to which the
the other rays lie, the angle between them can at most be only
180◦. Let the first ray make an angle of θ∗ with the x axis.
Then, since θi − θ∗ for all the interfaces is between 0◦ and
180◦, and since all the (I.E.)is are positive, we have

M∑
i=1

(I.E.)i sin (θi − θ∗) > 0

⇒
M∑

i=1

(I.E.)i sin θi cos θ∗ −
M∑

i=1

(I.E.)i cos θi sin θ∗ > 0.

Implying that Eqs. (17) and (18) cannot both be simultane-
ously satisfied for a construction that does not form a closed
polygon. And since these equations represent the necessary
conditions, such ray diagrams are never realized during the
course of the evolution.

2. Next-to-the-leading-order analysis

We now proceed with the analysis at the next order. To
begin with, the simpler case of the absence of driving forces,
i.e., fα = fβ ∀α and β, or in particular, fα = 0 ∀α, and the
unit mobility case, i.e., τ (φ) = 1 will be considered. The
interfacial energy multiplicative factor γ will also be taken
to be unity. This will be generalized later. The corresponding
equations at this order are

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−v(0)
x

∂
�

φ (0)
1

∂ζ
− v(0)

y
∂

�

φ (0)
1

∂ξ

−v(0)
x

∂
�

φ (0)
2

∂ζ
− v(0)

y
∂

�

φ (0)
2

∂ξ

·
·
·

−v(0)
x

∂
�

φ (0)
N

∂ζ
− v(0)

y
∂

�

φ (0)
N

∂ξ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 1
N − 1

N . . . − 1
N

− 1
N 1 − 1

N . . . − 1
N

· · . . . ·
· · . . . ·
· · . . . ·

− 1
N − 1

N . . . 1 − 1
N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− ∂
∂φα

∂W (φ)
∂φ1

(
�

φ (0) )
�

φ(1)
α + ∇2

�

φ
(1)
1

− ∂
∂φα

∂W (φ)
∂φ2

(
�

φ (0) )
�

φ(1)
α + ∇2

�

φ
(1)
2

·
·
·

− ∂
∂φα

∂W (φ)
∂φN

(
�

φ (0) )
�

φ(1)
α + ∇2

�

φ
(1)
N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (19)

where the operator ∇2 is in terms of the local coordinates, i.e., ∇2 stands for ∂2

∂ζ 2 + ∂2

∂ξ 2 . Left multiplying the above with the row

matrix ( ∂
�

φ (0)
1

∂ζ

∂
�

φ (0)
2

∂ζ
. . .

∂
�

φ (0)
N

∂ζ
) and integrating over the polygonal construction discussed previously gives

−v(0)
x

∫
�σ

∂
�

φ(0)
α

∂ζ

∂
�

φ(0)
α

∂ζ
dV − v(0)

y

∫
�σ

∂
�

φ(0)
α

∂ξ

∂
�

φ(0)
α

∂ζ
dV = −

∫
�σ

∂

∂φα

∂W (φ)

∂φβ

(
�

φ(0) )
�

φ(1)
α

∂
�

φ
(0)
β

∂ζ
dV +

∫
�σ

∇2 �

φ(1)
α

∂
�

φ(0)
α

∂ζ
dV,
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where Einstein’s summation convention is used with regard to
the α and β indices. By the use of divergence theorem (twice),
the last integral on the r.h.s. can be rewritten leading to

− v(0)
x

∫
�σ

∂
�

φ(0)
α

∂ζ

∂
�

φ(0)
α

∂ζ
dV − v(0)

y

∫
�σ

∂
�

φ(0)
α

∂ξ

∂
�

φ(0)
α

∂ζ
dV

= −
∫
�σ

∂

∂φα

∂W (φ)

∂φβ

(
�

φ(0) )
�

φ(1)
α

∂
�

φ
(0)
β

∂ζ
dV

+
∫
�σ

�

φ(1)
α ∇2 ∂

�

φ(0)
α

∂ζ
dV

+
∫

∂�σ

∂
�

φ(0)
α

∂ζ
∇ �

φ(1)
α · ndS −

∫
∂�σ

�

φ(1)
α ∇ ∂

�

φ(0)
α

∂ζ
· ndS.

(20)

To determine the second volume integral on the r.h.s.
of the above equation, Eq. (10) is differentiated with
respect to ζ , and the resultant is left multiplied with
(
�

φ
(1)
1

�

φ
(1)
2 . . .

�

φ
(1)
N ) and subsequently integrated, result-

ing in∫
�σ

�

φ(1)
α ∇2 ∂

�

φ(0)
α

∂ζ
dV =

∫
�σ

∂

∂ζ

(
∂W (φ)

∂φα

(
�

φ(0) )

)
�

φ(1)
α dV,

while the first volume integral on the r.h.s. can be manipulated
in the following manner:∫

�σ

∂

∂φα

∂W (φ)

∂φβ

(
�

φ(0) )
�

φ(1)
α

∂
�

φ
(0)
β

∂ζ
dV

=
∫
�σ

∂

∂φβ

∂W (φ)

∂φα

(
�

φ(0) )
�

φ(1)
α

∂
�

φ
(0)
β

∂ζ
dV

=
∫
�σ

∂

∂φβ

∂W (φ)

∂φα

(
�

φ(0) )
∂

�

φ
(0)
β

∂ζ

�

φ(1)
α dV

=
∫
�σ

∂

∂ζ

(
∂W (φ)

∂φα

(
�

φ(0) )

)
�

φ(1)
α dV.

Therefore, the first two terms on the r.h.s. of Eq. (20) cancel
each other out leading to

− v(0)
x

∫
�σ

∂
�

φ(0)
α

∂ζ

∂
�

φ(0)
α

∂ζ
dV − v(0)

y

∫
�σ

∂
�

φ(0)
α

∂ξ

∂
�

φ(0)
α

∂ζ
dV

=
∫

∂�σ

∂
�

φ(0)
α

∂ζ
∇ �

φ(1)
α · ndS −

∫
∂�σ

�

φ(1)
α ∇ ∂

�

φ(0)
α

∂ζ
· ndS.

(21)

Similarly, repeating the analysis but by beginning by left

multiplying Eq. (19) with ( ∂
�

φ (0)
1

∂ξ

∂
�

φ (0)
2

∂ξ
. . .

∂
�

φ (0)
N

∂ξ
) instead,

leads to

− v(0)
x

∫
�σ

∂
�

φ(0)
α

∂ζ

∂
�

φ(0)
α

∂ξ
dV − v(0)

y

∫
�σ

∂
�

φ(0)
α

∂ξ

∂
�

φ(0)
α

∂ξ
dV

=
∫

∂�σ

∂
�

φ(0)
α

∂ξ
∇ �

φ(1)
α · ndS −

∫
∂�σ

�

φ(1)
α ∇ ∂

�

φ(0)
α

∂ξ
· ndS.

(22)

The “surface integrals” appearing in Eqs. (21) and (22) can be
categorized into two types: one containing the gradients of the

partial derivatives of the zeroth order approximation, ∂
�

φ (0)
α

∂ζ
and

∂
�

φ (0)
α

∂ξ
, while the other that of the first-order correction,

�

φ(1).
Among these, the former can be shown to vanish identically
due to the matching requirement Eq. (8) when the area of the
polygon is made arbitrarily large. Considering explicitly the
example of the rightmost integral of Eq. (22), we have

∫
∂�σ

�

φ(1)
α ∇ ∂

�

φ(0)
α

∂ξ
· ndS

=
M∑

i=1

∫
∂ (i)

�

φ(1)
α ∇ ∂

�

φ(0)
α

∂ξ
· ndS

=
M∑

i=1

∫
∂ (i)

�

φ(1)
α

(
∂

∂ζ

∂
�

φ(0)
α

∂ξ
ζ̂ + ∂

∂ξ

∂
�

φ(0)
α

∂ξ
ξ̂

)
· ndS

=
M∑

i=1

∫
∂ (i)

�

φ(1)
α

(
∂

∂ζi

∂
�

φ(0)
α

∂ξ
ζ̂i + ∂

∂ξi

∂
�

φ(0)
α

∂ξ
ξ̂i

)
· ndS

=
M∑

i=1

∫
∂ (i)

�

φ(1)
α

(
∂

∂ζi

∂
�

φ(0)
α

∂ξ

)
dS

=
M∑

i=1

∫
∂ (i)

�

φ(1)
α

(
∂

∂ξ

∂
�

φ(0)
α

∂ζi

)
dS. (23)

However, in the limit that is of interest,
�

φ(0)
α approaches a

constant value with regard to ζi (requirement of Eq. (8)), thus

causing the derivative ∂
�

φ (0)
α

∂ζi
to vanish, and thereby, the integral

as a whole (please refer to Sec. IV B for the address of an
associated crucial detail). In the same manner, the rightmost
integral of Eq. (21) also vanishes.

Next, we look at the other type of integrals. Particularly,
the first integral on the r.h.s. of Eq. (22) can be manipulated as

∫
∂�σ

∂
�

φ(0)
α

∂ξ
∇ �

φ(1)
α · ndS

=
M∑

i=1

∫
∂ (i)

∂
�

φ(0)
α

∂ξ

(
∂

∂ζi

�

φ(1)
α ζ̂i + ∂

∂ξi

�

φ(1)
α ξ̂i

)
· ndS

=
M∑

i=1

∫
∂ (i)

∂
�

φ(0)
α

∂ξ

∂
�

φ(1)
α

∂ζi
dS

=
M∑

i=1

∫
∂ (i)

(
∂

�

φ(0)
α

∂ζi

∂ζi

∂ξ
+ ∂

�

φ(0)
α

∂ξi

∂ξi

∂ξ

)
∂

�

φ(1)
α

∂ζi
dS

=
M∑

i=1

∂ζi

∂ξ

∫
∂ (i)

∂
�

φ(0)
α

∂ζi

∂
�

φ(1)
α

∂ζi
dS

+
M∑

i=1

∂ξi

∂ξ

∫
∂ (i)

∂
�

φ(0)
α

∂ξi

∂
�

φ(1)
α

∂ζi
dS. (24)

Dividing the above with the size of the polygon, i.e., the
stretched distance σ at which the perpendiculars are drawn
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on each tangent ray for constructing the polygon �σ , gives

1

σ

∫
∂�σ

∂
�

φ(0)
α

∂ξ
∇ �

φ(1)
α · ndS

= 1

σ

M∑
i=1

∂ζi

∂ξ

∫
∂ (i)

∂
�

φ(0)
α

∂ζi

∂
�

φ(1)
α

∂ζi
dS

+ 1

σ

M∑
i=1

∂ξi

∂ξ

∫
∂ (i)

∂
�

φ(0)
α

∂ξi

∂
�

φ(1)
α

∂ζi
dS. (25)

Note that the polygon growing in size to eventually fill up
the entire space is the same as σ → ∞. In this limit, the first
summand on the r.h.s. vanishes due to matching condition
Eq. (8) and the exponential decay assumption (please refer to
Sec. IV B). Further, by using, in addition, the other matching
requirement, Eq. (9), as well, we will have

lim
σ→∞

1

σ

M∑
i=1

∂ξi

∂ξ

∫
∂ (i)

∂
�

φ(0)
α

∂ξi

∂
�

φ(1)
α

∂ζi
dS

= −
M∑

i=1

∂ξi

∂ξ
κ0,i

∫ ∞

−∞

∂ iφ̃(0)

∂ρ

∂ iφ̃(0)

∂ρ
dρ (26)

for the second summand. Similar arguments yield the follow-
ing for the first integral on the r.h.s. of Eq. (21):

lim
σ→∞

1

σ

∫
∂�σ

∂
�

φ(0)
α

∂ζ
∇ �

φ(1)
α · ndS

= −
M∑

i=1

∂ξi

∂ζ
κ0,i

∫ ∞

−∞

∂ iφ̃(0)

∂ρ

∂ iφ̃(0)

∂ρ
dρ. (27)

Thus, emerging as the final outcome of the analysis at this
order, the laws governing the trajectory of the junction are

− v(0)
x lim

σ→∞
1

σ

∫
�σ

∂
�

φ(0)
α

∂ζ

∂
�

φ(0)
α

∂ζ
dV − v(0)

y

× lim
σ→∞

1

σ

∫
�σ

∂
�

φ(0)
α

∂ξ

∂
�

φ(0)
α

∂ζ
dV = −

M∑
i=1

∂ξi

∂ζ
κ0,i(I.E.)i

(28)

and

− v(0)
x lim

σ→∞
1

σ

∫
�σ

∂
�

φ(0)
α

∂ζ

∂
�

φ(0)
α

∂ξ
dV − v(0)

y

× lim
σ→∞

1

σ

∫
�σ

∂
�

φ(0)
α

∂ξ

∂
�

φ(0)
α

∂ξ
dV = −

M∑
i=1

∂ξi

∂ξ
κ0,i(I.E.)i.

(29)

The adjustments to be made for the case of a generic in-
verse mobility τ (φ), arbitrary interfacial energy multiplicative
factor γ , and the presence of bulk energies are straightfor-
ward, and the corresponding counterparts of Eqs. (28) and

(29), respectively, read

− v(0)
x lim

σ→∞
1

σ

∫
�σ

τ (
�

φ(0) )
∂

�

φ(0)
α

∂ζ

∂
�

φ(0)
α

∂ζ
dV − v(0)

y

× lim
σ→∞

1

σ

∫
�σ

τ (
�

φ(0) )
∂

�

φ(0)
α

∂ξ

∂
�

φ(0)
α

∂ζ
dV

= − lim
σ→∞

1

σ

∫
�σ

fα
∂

∂ζ
gα (

�

φ(0) )dV −
M∑

i=1

∂ξi

∂ζ
κ0,i(I.E.)i

(30)

and

− v(0)
x lim

σ→∞
1

σ

∫
�σ

τ (
�

φ(0) )
∂

�

φ(0)
α

∂ζ

∂
�

φ(0)
α

∂ξ
dV − v(0)

y

× lim
σ→∞

1

σ

∫
�σ

τ (
�

φ(0) )
∂

�

φ(0)
α

∂ξ

∂
�

φ(0)
α

∂ξ
dV

= − lim
σ→∞

1

σ

∫
�σ

fα
∂

∂ξ
gα (

�

φ(0) )dV −
M∑

i=1

∂ξi

∂ξ
κ0,i(I.E.)i.

(31)

This concludes the next-to-the-leading-order calculations.
Before proceeding to the discussion of the obtained results and
some subtle aspects related to them, we dedicate a section to
the derivation of the matching conditions.

III. DERIVATIONS OF THE MATCHING CONDITIONS

Matching relations take center stage in the asymptotic anal-
ysis of diffuse interface models. Understandably, they are very
important as they serve to provide the boundary conditions
(at infinity) to supplement the differential equations retrieved
at various orders. In fact, sometimes, the obtained boundary
value problems are not even solved, but still the sought after
information about the performance of the models is extracted
mainly by the help of the matching relations. This is very well
known, for instance, in the next-to-the-leading-order local
analysis of the famous scalar Allen-Cahn or Cahn-Hilliard etc.
models; where, the kinetic laws of interfacial evolution are
uncovered. We point out that even in the current analysis of
junctions, in the leading order, it is predominantly by a clever
exploitation of the matching conditions that the restrictions on
the interfacial configurations at the junction points are derived
as opposed to by actually analyzing the differential equa-
tions for their solutions. This is also true for the next order
where the laws governing the junction’s motion are derived.
In spite of such being the significance of the role played by the
matching conditions, their derivations, unfortunately, are not
very popularly known. The authors are unaware of any work
providing a detailed explanation of their emergence, even for
the case of single boundary layer variable, i.e., the relations
Eqs. (6) and (7) which are very widely used. The present
section of the article is dedicated to address this shortage. We
provide the derivations of the matching requirements satisfied
by the terms of the inner expansions and the outer ones in the
case of one-dimensional layers and also the zero-dimensional
ones, i.e., junction points (we recall once again that only
two-spatial dimensions are concerned with throughout the
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current work). We assume a strong overlap hypothesis [52]
for deriving the matching conditions.

A. Single boundary layer variable

The case of single boundary layer variable will be re-
viewed. It is this which corresponds to the matching relations
relevant to the binary interfaces. However, for simplification,
only a single independent variable is assumed. Let a func-
tion φ(r; ε), r ∈ [0, 1] have a regular asymptotic expansion
in terms of the (gauge) set {ε0, ε1, ε2, · · · } in the supremum
norm in any interval of the form [A, 1] with A > 0. When
expressed in terms of the stretched variable ρ = r/ε, let the
function be denoted by φ̃(ρ; ε) and let it have a regular expan-
sion within the same set {ε0, ε1, ε2, · · · } in any interval of the
form [0, A] where A > 0. Hence, by extension theorems [52],
we have the following:

For some ν > 0 and μ > 0,

φ(r; ε) − φ(0)(r)

ε

= φ(1)(r) + o(1) uniformly in r ∈ [εν, 1] and (32)

φ̃(ρ; ε) − φ̃(0)(ρ)

ε

= φ̃(1)(ρ) + o(1) uniformly in ρ ∈
[

0,
1

εμ

]
. (33)

We assume strong overlap of the extended domains of validity,
that is, εν < ε1−μ. If μ were to be greater than unity, then the
local expansion alone approximates the function in the whole
of the domain implying that the problem is not singular but
regular, hence we take that μ < 1. Equations (32) and (33)
imply that if εφ(1)(r) = o(1) uniformly in r ∈ [εν, 1] and
εφ̃(1)(ρ) = o(1) uniformly in ρ ∈ [0, 1

εμ ], then

φ(r; ε) = φ(0)(r) + o(1) uniformly in r ∈ [εν, 1] and
(34)

φ̃(ρ; ε) = φ̃(0)(ρ) + o(1) uniformly in ρ ∈
[

0,
1

εμ

]
. (35)

Re-expressing the first of the above statements in terms of ρ

gives

φ(ερ; ε) = φ(0)(ερ) + o(1) uniformly in ρ ∈ [εν−1, ε−1].

Since φ̃(ρ; ε) and φ(r; ε) are the same quantity, for any ρ ∈
[εν−1, ε−μ], we have

0 � |φ̃(0)(ρ) − φ(0)(ερ)|
= |φ̃(0)(ρ) − φ̃(ρ; ε) + φ(r; ε) − φ(0)(ερ)|
� |φ̃(0)(ρ) − φ̃(ρ; ε)| + |φ(ερ; ε) − φ(0)(ερ)|
� sup

ρ∈[εν−1,ε−μ]
|φ̃(0)(ρ) − φ̃(ρ; ε)|

+ sup
ρ∈[εν−1,ε−μ]

|φ(ερ; ε) − φ(0)(ερ)|.

In the limit of ε vanishing, because of Eqs. (34) and (35), we
have

lim
ε→0

(φ̃(0)(ρ) − φ(0)(ερ)) = 0 uniformly in ρ ∈ [εν−1, ε−μ].

Since 0 < ν < 1 and 0 < μ < 1, this implies

lim
ρ→∞ lim

r→0+
(φ̃(0)(ρ) − φ(0)(r)) = 0.

That is,

lim
ρ→∞ φ̃(0)(ρ) = lim

r→0+
φ(0)(r)

if the limits exist. This is the matching condition for the
zeroth order terms of the asymptotic expansion. Repeating the
above calculations for the higher order corrections, that is, for
Eqs. (32) and (33) we get

lim
ε→0

(
φ̃(1)(ρ) − φ(1)(ερ) − ρ

∂φ(0)

∂r

∣∣∣∣
0+

− ερ2 1

2

∂2φ(0)

∂r2

∣∣∣∣
r∗

+ φ̃(0)(ρ) − φ(0)(0+)

ε

)
= 0, (36)

where r∗ ∈ (0, ε1−μ), ρ ∈ [εν−1, ε−μ] and limr→0+ ∂φ(0)

∂r is as-
sumed to exist. However, instead of this relation, the following
gained fame to be the matching condition for the first-order
local correction:

φ̃(1)(ρ) = φ(1)(0+) + ρ
∂φ(0)

∂r

∣∣∣∣
0+

+ o(1) as ρ → ∞.

That is, limr→0+ φ(1)(r) is assumed to exist, and the limit of
the remaining terms is assumed to vanish, for instance, by
limε→0(φ̃(0)(ε−μ) − φ(0)(0+)) approaching zero faster than ε,
and limε→0

∂2φ(0)

∂r2 vanishing appropriately fast.

B. Two boundary layer variables

1. Some specific examples

Before beginning the derivation of the matching condi-
tions, we look at some examples of functions exhibiting a
junction behavior. Our first example is the following:

�(x, y; ε) = e−x/ε + e−y/ε ∀x � 0, y � 0. (37)

This function has the trivial function as the asymptotic ap-
proximation as ε → 0 when neither of x and y is zero.
However, when one of them is zero, and the other is not,
the constant function 1 is the asymptotic approximation. As a
result, traveling towards the x axis along the dotted red line of
Fig. 4(a) gives a limit of �(x, y; ε) = 0 as ε vanishes for any
y > 0 but when y exactly equals zero, the limit is 1. Likewise
is the behavior for any other vertical line except the y axis and
also any horizontal line except the x axis. In other words, the
function has boundary layers along the positive x and y axes
of the kind considered in Sec. III A. Furthermore, when x = 0
and y = 0, the value of the function is 2 as ε → 0. Hence, it
exhibits a junction behavior at the origin.

As a second example, traces of two curves C1 and C2,
both of which containing the origin, are considered in the first
quadrant as shown in Fig. 4(b). Then, for all the points on the
paths and in the intermediate region between them (shaded
region), the following function is defined:

�(x, y; ε) = e−r1(x,y)/ε + e−r2(x,y)/ε, (38)
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(a) (b)

FIG. 4. Domains considered for some example functions exhibiting a junction behavior. Domain of (a) corresponds to the simplest function
Eq. (37), while that in (b) is considered for the example in Eq. (38).

where r1(x, y) is the distance of the point (x, y) from the trace
of the first curve and r2(x, y) is from that of the second. It
is easy to see, as before, that this function exhibits boundary
layers of the kind considered in Sec. III A along the paths
except at origin where it shows a junction behavior.

2. Study of asymptotic behavior of one of the considered examples

Before deriving the matching relations in a generic fashion,
it will be highly beneficial to be informed about what could
be expected by studying the asymptotic behavior of a specific
example. Particularly, Eq. (38) for the special case of the first
trace coinciding with the y axis and the second one with that
of the graph of a function f (x) will be considered. That is, the
function

�(x, y; ε) = e−x/ε + e−r(x,y)/ε (39)

is studied, where r(x, y) is the distance of the point (x, y)
from the graph of f (x). All y � f (x) and the y axis constitute
the domain of interest. Furthermore, let f (x) be double dif-
ferentiable with f ′(0) = 0. Consider the natural coordinates
associated with the graph of f (x); namely, the distance along
the graph s and the distance normal to it r. The latter is
stretched to give ρ = r/ε. We make a further choice that
the former is measured from the origin. For simplicity, let
us assume that all the points of the region of interest have
a unique representation in the local coordinate system. This
necessarily requires that f ′′(x) � 0. And we further demand
that f ′′(0) �= 0. A schematic drawing of a function f (x) con-
structed in such a way is shown in Fig. 5. The shaded region
(x > 0 and y > f (x)), the blue and the red paths constitute the
domain of interest for the function of Eq. (39).

The function of Eq. (39) when re-expressed in the inner
coordinates pertaining to the graph of f (x) reads

�̃(s, ρ; ε) = �(x(s, ερ), y(s, ερ); ε) = e−x(s,ερ)/ε + e−ρ.

Now, consider the regular asymptotic expansion of the above
in the gauge set {ε0, ε1, ε2, · · · } and in any neighborhood not
containing s = 0, i.e., for instance, in “rectangles” of (s, ρ) of
the form [A, 1] × [0, B] ∀A > 0 and B > 0. Since x(s, ερ) is
bounded below by a positive value as ε → 0 in these domains,

the regular expansion in the considered gauge set has only
one nontrivial term and that is the zeroth order contribution.
Therefore, the asymptotic expansion of �̃(s, ρ; ε) is identi-
cally

�̃(s, ρ; ε) ∼ �̃(0)(s, ρ) + ε�̃(1)(s, ρ) + ε2�̃(2)(s, ρ) + · · ·
= e−ρ + ε0 + ε20 + · · · .

Next, we consider the inner expansion associated with the
junction. Let the stretched coordinates centered at the junction
be ζ = x/ε and ξ = y/ε. The function �(x, y; ε) in these
coordinates is

�

�(ζ , ξ ; ε) := �(εζ , εξ ; ε) = e−ζ + e−r(εζ ,εξ )/ε, (40)

whose domain of interest is {(ζ , ξ ) ∈ R : ζ ∈ [0,∞) and ξ �
f (εζ )/ε}. Now we consider the regular asymptotic expansion
of the above in the gauge set {ε0, ε1, ε2, · · · } in any
neighborhood containing a segment of ξ axis and particularly
in rectangles of (ζ , ξ ) of the form [0, A] × [B,C] ∀A >

0 and 0 < B < C. In these regions, the following is

(0,0) x

y

y = f(x)

(x, y)

(x0(x, y), y0(x, y))s

r(
x,

y)

FIG. 5. Domain considered for the example function of Eq. (39).
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analyzed:

r(x, y) =
√

(x − x0(x, y))2 + (y − y0(x, y))2, (41)

where (x0(x, y), y0(x, y)) is the nearest point of (x, y) on the
graph of f (x). Therefore, by definition, y0(x, y) = f (x0(x, y))

and

x0 − x = [y − f (x0)] f ′(x0). (42)

Hence, we have

r(εζ , εξ )

ε
= 1

ε

√
{εζ − x0(εζ , εξ )}2 + {εξ − f (x0(εζ , εξ ))}2

= 1

ε

√
({εξ − f (x0(εζ , εξ ))} f ′(x0(εζ , εξ )))2 + {εξ − f (x0(εζ , εξ ))}2

= εξ − f (x0(εζ , εξ ))

ε

√
1 + ( f ′(x0(εζ , εξ )))2

= εξ − {
f (0) + f ′(0)x0(εζ , εξ ) + f ′′(x∗ )

2 x2
0 (εζ , εξ )

}
ε

√
1 + { f ′(x0(εζ , εξ ))}2

=
{
ξ − f ′′(x∗)

2ε
x2

0 (εζ , εξ )

}√
1 + { f ′(x0(εζ , εξ ))}2

=
{
ξ − f ′′(x∗)

2ε
x2

0 (εζ , εξ )

}{
1 + f ′(x∗∗) f ′′(x∗∗)√

1 + [ f ′′(x∗∗)]2
x0(εζ , εξ )

}
. (43)

We now find estimates for the term x0(εζ , εξ ) of Eq. (43).
Consider Eq. (42) for x = εζ and y = εξ :

x0 = εζ + (εξ − f (x0)) f ′(x0) (44)

= εζ +
(

εξ − f (0) − f ′(0)x0 − f ′′(x∗)

2
x2

0

)
× ( f ′(0) + f ′′(x∗∗)x0)

= εζ +
(

εξ − f ′′(x∗)

2
x2

0

)
f ′′(x∗∗)x0

⇒ εζ = (1 − εξ f ′′(x∗∗))x0 + f ′′(x∗)

2
f ′′(x∗∗)x3

0 . (45)

Furthermore, for ζ > 0, (it can be shown that) 0 <

x0(εζ , εξ ) < εζ , implying that x0(εζ , εξ ) → 0 as ε → 0.
Also x0(0, εξ ) = 0. This means, from Eq. (45) we will have

εζ � (1 − εξ f ′′(x∗∗))x0 and

εζ �
(

1 − εξ f ′′(x∗∗) + f ′′(x∗)

2
f ′′(x∗∗)

)
x0

for small enough ε. That is
εζ(

1 − εξ f ′′(x∗∗) + f ′′(x∗ )
2 f ′′(x∗∗)

) � x0 � εζ

(1 − εξ f ′′(x∗∗))
.

Or in other words, x0/εζ = O(1) as ε → 0 ∀ζ > 0 due to the
existence of f ′′(0). From this, using limit laws, it follows from
Eq. (45) that limε→0 x0/ε = ζ ∀ζ � 0. Therefore, Eq. (43)
becomes

r(εζ , εξ )

ε
=

{
ξ − ε

f ′′(0)

2
ζ 2

}

×
{

1 + o(1) f ′′(0)√
1 + [ f ′′(0)]2

εζ

}
as ε → 0

⇒ r(εζ , εξ )

ε
= ξ − ε

f ′′(0)

2
ζ 2 + o(ε).

Substituting this in Eq. (40) gives

�

�(ζ , ξ ; ε) = e−ζ + e−ξ

(
1 + ε

f ′′(0)

2
ζ 2 + o(ε)

)
.

That is,
�

�
(0)(ζ , ξ ) = e−ζ + e−ξ and

�

�
(1)(ζ , ξ ) = e−ξ f ′′(0)

2
ζ 2.

We now connect the local expansion terms pertaining to the
junction point to those of the trace of the curve. Particularly,
we can write the following:

�

�
(1)(ζ , ξ ) = −∂�̃(0)(s, ρ)

∂ρ
(0, ξ )

f ′′(0)

2
ζ 2. (46)

That is, for the currently considered example,
�

�(1) has a
square dependence with regard to the ζ variable, and it ap-
pears multiplied to the ρ derivative of �̃(0). However, it will
be shown next that this is, in fact, generically true, albeit as
ζ → ∞. In fact, the whole purpose of the above derivation has
been to provide a concrete example that brings out the emer-
gence of the square dependence more clearly as compared to
the complicated derivation to follow.

3. Matching relations for junction regions

The derivation involves the exact same ideas as in
Sec. III A, namely that asymptotic expansions are constructed
along a path and in the junction neighbourhood in streched
coordinates. Following this, an intersection of the domains of
validity of the expansions is assumed, and the implications
are pursued to arrive at the matching relations. However, the
calculations are complicated by the fact that an additional
stretched dimension is now present. Since the principal idea
is the same, and the differences are only in the details, we
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ζ

ξ
x

y

ζ1ζ2

ζ3

#1

#2

#3

FIG. 6. Setup considered for demonstrating the accuracy of the
asymptotic laws Eqs. (28) and (29) in predicting the instantaneous
motion of a junction.

push the derivation of the two boundary layer variables case
to Appendix A.

IV. DISCUSSION

A. Quadratic growth behavior

The importance of the term carrying ζ 2
i in Eq. (9) can-

not be over-emphasized. In the case of binary interfaces, the
first-order correction φ̃(1)

α (s, ρ) is not of the order ρ2 as ρ

approaches infinity. Eq. (7) only says that the outer limit of
the first-order inner correction matches with the inner limit of
the first-order outer correction plus inner variable times the
inner limit of the derivative of the zeroth order term of the
outer expansion. It would be tempting to extend this, in a naive
way, to a higher order interior “layer,” i.e., a neighborhood of
a junction, in the following manner:

�

φ(1)
α (ζi, ξi ) = lim

s→0

(
φ̃(1)(s, ρ = ξi ) + ζi

∂φ̃(0)

∂s
(s, ρ = ξi )

)
+ o(1) as ζi → ∞. (47)

That is, without the ζ 2
i dependence. Let us see what the

predictions would be if the analysis of Sec. II A 2 is instead
performed with this naive extension. As the local solution
corresponding to the binary interfaces is independent of the
distance along the interface in the problem we are concerned
with, the second term on the r.h.s. of the above equation is
identically zero. This implies that the calculation in Eq. (25)
ultimately returns a vanishing value. That is, not only the
integrals of the type considered in Eq. (23), but also of the
kind analyzed in Eq. (25) vanish. Hence, Eqs. (21) and (22)
will reduce to

−v(0)
x

∫
�σ

∂
�

φ(0)
α

∂ζ

∂
�

φ(0)
α

∂ζ
dV − v(0)

y

∫
�σ

∂
�

φ(0)
α

∂ξ

∂
�

φ(0)
α

∂ζ
dV = 0

(48)

and

−v(0)
x

∫
�σ

∂
�

φ(0)
α

∂ζ

∂
�

φ(0)
α

∂ξ
dV − v(0)

y

∫
�σ

∂
�

φ(0)
α

∂ξ

∂
�

φ(0)
α

∂ξ
dV = 0.

(49)

Now consider the setup of Fig. 6 where three phases φ1,
φ2, and φ3 with equal bulk energies are in contact as shown.

The interfaces 1 and 2 are mirror images of one another with
regard to interface 3, and all the three have the same surface
tension. Further, they always meet with the bounding box at
necessarily right angles. Then, the evolution should progress
in such a way that the triple junction moves only in the
downward direction. The impossibility of the horizontal mo-
tion can be easily deduced from the symmetry considerations,
and the downward direction for the vertical motion can be
corroborated using the Gibbs-Thomson condition. However,
if Eqs. (48) and (49) rightly predict a value of zero for vx,
then substituting it in the latter of the equations shows that
they will wrongly predict a value of zero for vy. Thus, writing
down the matching relation for junctions without due analysis
and just by mimicking the well known counterpart of the
binary interfaces seriously falls short. The dependence of the
instantaneous velocity of the junction on the instantaneous
curvatures of the interfaces at the common meeting point is
highly reasonable which is entirely a result of the ζ 2 term
of the matching relation which warrants the analysis of Ap-
pendix A.

We make it a special point to emphasize once again that
there is no counterpart to the ζ 2 term of Eq. (A25) in a
single variable boundary layer case. For binary interfaces,
there are two independent variables, s and ρ. But only one
of them is the boundary layer variable namely ρ. Even if the
matching laws are derived taking both s and ρ into account,
a ρ2 wouldn’t arise being multiplied to first derivatives. On
the other hand for a junction, the independent variables are
also two in number, viz. ζ and ξ . However, both of them are
boundary layer variables. Furthermore, here, one will find that
ζ 2 appears multiplied to first ρ (or ξ ) partial derivative. There
is no option but to perform the analysis of Appendix A to
realize this. And without this quadratic term, the equations of
motion for junctions remain far from complete.

B. Exponential decay assumption

The discussion that the r.h.s. of Eq. (23) identically van-
ishes as the polygonal construction grows unbounded is not

quite complete. While ∂
�

φ (0)
α

∂ζi
indeed vanishes in such a limit,

�

φ(1)
α (ζi, ξi ) and the domain of integration ∂ (i) grow arbitrarily

large. The conclusion holds only when the rate of decay of the
former is shown to be higher than the rate of growth of the
latter two; otherwise, the argument is still nonrigorous. In the
case of the local problem pertaining to binary interfaces, it can
be rigorously shown that the leading-order term of the local
asymptotic expansion converges to the matching requirement
at an exponential rate [43]. Hence it may be a valuable as-
sumption to invoke the same for the case of junctions, i.e., the
solution of the p.d.e. system Eq. (10) as well. If so, the entire
analysis of Sec. II A 2 will automatically be rigorously valid.
Unfortunately, a proof of this exponential decay behavior is
not currently available. Nevertheless, we turn our attention to
the special case of triple junction to derive some insights. The
explicit solution of the system of equations Eq. (10) is pre-
sented for the first time by Bollada et al. [53] when the chosen
well is W (φ) = W FP(φ) = a{[φ2

1 (1 − φ1)2 + φ2
2 (1 − φ2)2 +

φ2
3 (1 − φ3)2]}, i.e., the one proposed by Folch and Plapp [37],

and the junction is a triple point. Indeed it so happens that an
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TABLE I. Table showing a parameter set used in the study of three phase growth within the setup of Fig. 6. Nx and Ny are the number of
grid points in the x and y directions, respectively.

f1 f2 f3 γ τ12 τ13 Nx Ny �x �t ε

0.2 0.0 0.0 1.0 1.0 1.0 128 96 0.25 0.0125 5.0 × (�x)0.6

{gα (φ)} W (φ) τ (φ)

{φ3
α (10 − 15φα + 6φ2

α )} W FP = 18[φ2
1 (1 − φ1)2 + φ2

2 (1 − φ2)2 1
τH(φ) =

∑
α<β

1
ταβ

φ2
αφ2

β∑
α<β φ2

αφ2
β

+ φ2
3 (1 − φ3)2]

exponential decay is exhibited by ∂
�

φ (0)
α

∂ζi
as ζi approaches ∞.

Bollada et al.’s solution is studied in Appendix B where this
tendency is explicitly demonstrated. We invoke an assumption
that the exponential convergence behavior continues to remain
true for any generic multiwell and a junction of any number
of interfaces meeting. Then, the contribution from the integral
of Eq. (23) to Eq. (22) is indeed zero. And similarly, the first
integral on the r.h.s. of Eq. (25) will likewise identically van-
ish without any problem. In principle, in all the steps of going
from Eq. (13) to Eq. (14), or from Eq. (15) to Eq. (16), or in
establishing Eq. (26) or Eq. (27), an estimation of the relative
rates of the convergence of the integrands and the divergence
of the integration domains has to be performed to justify the
deductions; which will all be taken care of, if the exponential
decay assumption were to be invoked. In short, the analysis of
Secs. II A 1 and II A 2 is complete if this assumption can be
rigorously proven.

C. Mobilities’ noninfluence on interfacial
arrangement at junctions

Looking at Eqs. (17) and (18), it might be surprising to
note that the mobilities of the interfaces have no say in how
the latter arrange themselves at a junction. However, there
is nothing really strange about how this result comes about.
A comparison with the asymptotics routine for the binary
interfaces will help expose the process. We consider the case
of the standard (i.e., the scalar) Allen-Cahn equation:

τ
∂φ

∂t
= 1

ε
� f g′(φ) − γ

1

ε2
f ′
dw(φ) + γ∇2φ. (50)

At the leading order, the requirement of the local analysis of
this equation is

∂2φ̃(0)

∂ρ2
= f ′

dw(φ̃(0) ). (51)

That is, it has only contributions coming from the gradient
term and the well term. Only from the next order does the
mobility start making an appearance in the emerging problem
sequence characteristic of a perturbative method. Therefore,
since the mobility does not show up in the leading-order prob-
lem, any information that can be extracted from the problem
will be independent of it. For example, equipartition of the
interfacial energy between the well term and the gradient term
is a result that can be inferred from Eq. (51). Further, since
τ does not appear in the equation, the result will remain un-
changed no matter what admissible numerical value is chosen
for it.

In the same manner, in the current case of junction analysis,
at the leading order, the requirement is Eq. (10), and it is from
this equation that the “force balance” requirements, Eqs. (17)
and (18), are derived. Since the mobility function τ (φ) does
not contribute to this order, the result is independent of it;
the independence on the bulk energies fα is also for the same
reason.

1. Numerical verification

We now present some numerical verification of this asymp-
totics predicted fact. Simulations in the same setup as in Fig. 6
are performed, but by assigning the φ1 phase a higher bulk
energy. As a result, there is a driving force for the phases
on the bottom to grow at the expense of the one on the top.
When it is high enough to overcome the curvature effects, the
said growth indeed takes place, and eventually a steady state
is attained. We carried out these simulations by numerically
integrating Eq. (2) using an explicit finite difference scheme.
The values of the inverse mobilities of the interfaces 1 and 2,
i.e., τ12 and τ13, are fixed at unity and that of τ23 is varied
across three orders of magnitude. The exact parameter set
used and the interpolation and multiwell forms employed
for conducting the simulations are as given in Table I. The
obtained steady-state growth fronts for various values of τ23

are displayed in Fig. 7 along with the sharp-interface pre-
dicted profile. It can be seen that the recovered results are
practically independent of the mobility values. The compu-
tational steady-state speeds are tabulated in Table II and are
compared with the sharp-interface analytical solution. Once
again, the results remain practically the same for a change
of τ23 across three orders of magnitude. Since all the three
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FIG. 7. Steady-state growth fronts realized in the simulations
performed with the parameter set of Table I within the setup of Fig. 6
for various values of τ23. Also depicted is the sharp-interface theory
predicted profile in black.
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TABLE II. Steady-state speeds recovered in the simulations cor-
responding to Fig. 7.

Recovered angle at Recovered steady-state
τ23 the triple junction speed (rel. error)

1 30.86887◦ 0.071089274 (0.74%)
10 31.60365◦ 0.070363992 (1.75%)
50 31.76636◦ 0.070052259 (2.18%)
100 32.36498◦ 0.069987820 (2.27%)
500 32.22706◦ 0.069931031 (2.35%)
1000 32.27956◦ 0.069923091 (2.36%)

Sharp interface 30.0◦ 0.071616518
solution

interfaces are chosen to have the same interfacial energy, the
angle subtended by interface 1 with the x axis should be 30◦.
The simulation results, as is evident from column 2 of Table II,
are in agreement with this, thus verifying the asymptotics
prediction of noninfluence of interfacial mobilities in deciding
the triple junction angles.

We note that the remaining errors found in Table II and
their increasing trend down the columns is an artefact of
the currently chosen interface width. Furthermore, the latter
behavior, i.e., the deviation increasing as τ23 is made big-
ger, will become more drastic if an arithmetic form, viz.

τA(φ) =
∑

α<β ταβφ2
αφ2

β∑
α<β φ2

αφ2
β

, were to be chosen for inverse mobility

interpolation in place of the current τH (φ) of Table I. The
demonstration of this fact, the explanation for such a behavior,
and the best prescription to carry out interface width reduction
studies for its verification are too lengthy to fit into the current
article, and hence are deferred to a follow-up one. We also
point out that the validation through Fig. 7 and Table II is
in no way an exhaustive numerical verification of the force
balance requirement predicted by the asymptotics. The phases
φ2 and φ3 are symmetric in the just presented numerical
studies, whereas Eqs. (17) and (18) are valid for more general
situations. In particular, we would like to vary the initial seed
sizes of the two phases and then verify Eqs. (17) and (18).
Folch and Plapp [37] gave steps for constructing an asymmet-
ric triple well by means of which a system with all the three
interfacial energies being different can be studied. Our current
asymptotics is generic enough to apply for such a case. The
mobilities τ12 and τ13 can also be taken to be different from
one another and so can the bulk engeries f2 and f3. We would
like to verify the validity of our force balance result for all
such possible variations, although it must be admitted that it
is going to be tricky to verify the Young’s law in the latter two
cases due to a very probable absence of steady-state modes. In
the like manner, the comparison of the phase-field recovered
steady-state velocities with the sharp interface solution in the
third column of Table II is only an indirect verification of
the equations of motion derived for junction kinetics, viz.
Eqs (30) and (31). More direct proofs can be given by ex-
plicitly evaluating the integrals and the limits appearing in
said equations either analytically or numerically. All these
will be presented in a next article dedicated for the numerical
verification of the asymptotics predicted junction dynamics.

V. CONCLUSION

An important question that can be asked about a multi-
phase-field model is whether it recovers the Young’s law for
triple junctions at rest, and, what about when they are in
motion? The most direct way of answering this is through
asymptotic analysis which, unfortunately, is not usually per-
formed at a level of rigour or completeness that is sufficient
for this purpose. However, following Bronsard and Reitich
[41], a full-fledged matching analysis is carried out for the
problem of simple grain growth by the current authors over
the span of two papers. The inner problem pertaining to the
binary interfaces is analyzed in Ref. [43] while the junctions
are given a thorough consideration in the current article. And
the finding is that the angles subtended around a junction
point by the meeting interfaces and their interfacial energies
should always satisfy a force balance type condition whether
or not it is in motion. For three interfaces, this translates to the
validity of the Young’s law for both the static and the dynamic
situations.

The requirement of the force balance condition for junc-
tions of any order (i.e., any number of meeting interfaces)
immediately inspires a further query, namely that of stability.
Particularly, it is well known from the experiments for soap
bubbles and also those of grain-growth in pure metals that
quadruple junctions are unstable over longer periods of time,
and dissociate into two triple junctions. This naturally raises
the question: While the asymptotic analysis infers which inter-
facial configurations are permissible around various junctions
like triple, quadruple, etc., points, what explains the latter’s
relative stabilities?

Can it be Eq. (10)? That is, could it happen that the four
phase version of Eq. (10) for a symmetric multiwell and for a
quadruple point cannot have any solution that can give rise
to a twofold rotationally symmetric interfacial arrangement
thereby disallowing them a stable long term existence? On the
other hand, not only the interfacial arrangement, but also the
instantaneous speed of a junction point is determined by the
asymptotic analysis and is as per Eqs. (30) and (31). So could
it instead happen that twofold symmetric solutions well do
exist for Eq. (10), and it is these kinetics laws, Eqs. (30) and
(31), which actually determine the instability of the quadruple
and higher order junctions? One of the focusses of our future
investigations is going to be the pursuit of this inquiry further.

Most often, sharp-interface descriptions of three-phase
evolutions are written down as though the whole of the
governing physics pertaining to the junctions is completely
exhausted by the Young’s law. An additional equation dic-
tating their instantaneous motion is typically not separately
formulated and included. Since in our asymptotic analysis,
apart from the Young’s law, a condition governing the instan-
taneous velocity of the triple point is also recovered, it poses
many new questions: Is this extra condition independent in
its content, or is it derivable from the Young’s law + motion
by mean curvature combination [54]. In Ref. [41], short-time
existence and uniqueness of evolution is indeed proved for this
combination. Boundary integral solutions for a close by prob-
lem also suggest the same [55]. In such a case, an expression
independent of fairly generic kinds of interpolation functions
must be derivable from Eqs. (30) and (31). How to prove such
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a strikingly surprising result? This is yet another interesting
direction for research that emerged from the current work.

A crucial ingredient of the presented matching analysis
that is only hypothesized but not proven is the assumption
of exponential convergence of solutions of Eq. (10) to their
“values at infinity.” A stronger justification of this through a
rigorous proof is very desirable.

While all these are very interesting topics for further in-
vestigation, they are more inclined to being problems in
mainstream mathematics. A direction which is of immediate
interest to the materials community is the asymptotic study of
multiphase alloy evolution. That is, while the current study
only looked at the phase-field evolution equation, it is of
foremost interest to extend it by an inclusion of a chemical
composition field.

Finally, for very similar models, a presence of definite
influence of mobilities on the trijunction angles is observed in

numerical simulations [38–40], whereas the current analysis
predicts the opposite, which is also verified numerically in
Sec. IV C. How can this contradiction be resolved? As it turns
out, certain mobility interpolation functions impose severe de-
mands on the interface thicknesses to have converged results
for specific setups. Thus, by reducing the interface widths
enough, the Young’s law can be recovered even in the cases
of the previously cited works. Demonstrations supporting this
will be presented in an upcoming article.
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APPENDIX A: DERIVATION OF MATCHING RELATIONS FOR JUNCTION REGIONS

Let a scalar field φ(x, y; ε) have local asymptotic regular approximation along a path whose natural and stretched coordinates
are (s, ρ). Let s = 0 correspond to the origin. Let the path correspond to the graph of a double differentiable function f (x) with
f ′(0) = 0 for s ∈ [0, 1]. Let the asymptotic approximation be as follows:

φ̃(s, ρ; ε) = φ̃(0)(s, ρ) + εφ̃(1)(s, ρ) + o(ε) uniformly in(s, ρ) ∈ [A, 1] × [−B, B] ∀ A > 0, B > 0.

By extension theorem, we have

φ̃(s, ρ; ε) = φ̃(0)(s, ρ) + εφ̃(1)(s, ρ) + o(ε) uniformly in (s, ρ) ∈ [εν, 1] ×
[
− 1

εν ′ ,
1

εν ′

]
. (A1)

For the sake of convenience, we denote the interval [εν, 1] by Rs and [− 1
εν′ ,

1
εν′ ] by Rρ . For the reason expounded in Sec. III A,

we take that ν ′ < 1. The domain of validity when considered in the outer coordinates is

x(s, ρ) = x0(s) + n̂x(s)ρε = x0(s) − f ′(x0(s))√
1 + f ′(x0(s))2

ρε ∀(s, ρ) ∈ Rs × Rρ,

y(s, ρ) = f (x0(s)) + n̂y(s)ρε = f (x0(s)) + 1√
1 + f ′(x0(s))2

ρε ∀(s, ρ) ∈ Rs × Rρ. (A2)

Since ν ′ < 1, this means that for small enough ε, different (s, ρ) from the domain of validity corresponds to distinct spatial
points. That is, there is no nonuniqueness in the representation of the points.

Next, let φ(x, y; ε) exhibit a junction behavior at (0,0). In the junction’s local coordinates (ζ = x
ε
, ξ = y

ε
), let it have an

asymptotic approximation as follows:

�

φ(ζ , ξ ; ε) = �

φ(0)(ζ , ξ ) + ε
�

φ(1)(ζ , ξ ) + o(ε) uniformly in (ζ , ξ ) ∈ [0,C] × [−D, D] ∀C > 0 and D > 0. (A3)

By extension theorem, we have

�

φ(ζ , ξ ; ε) = �

φ(0)(ζ , ξ ) + ε
�

φ(1)(ζ , ξ ) + o(ε) uniformly in (ζ , ξ ) ∈ [0, ε−μ] ×
[

− 1

εμ′ ,
1

εμ′

]
. (A4)

For a similar reason as in Sec. III A, let μ < 1 and μ′ < 1.
We now re-express the domain of validity of the expansion of Eq. (A1) in terms of the (ζ , ξ ) coordinate system. However, of

interest is not an exact prescription but an estimation of the “end points” up to approximate powers of ε. Consider x0(s),

x0(s) = x0(0) + dx0

ds

∣∣∣∣
s=0

s + d2x0

ds2

∣∣∣∣
s=s∗

s2

2
. (A5)

Since x0(s) is invertible and x0(0) = 0, we have

dx0

ds

∣∣∣∣
s=0

= 1
ds
dx0

∣∣
x0=0

= 1√
1 + f ′(x0(0))2

= 1√
1 + f ′(0)2

= 1, (A6)
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and

d2x0

ds2

∣∣∣∣
s=s∗

= − f ′(x0(s∗)) f ′′(x0(s∗))

{1 + f ′(x0(s∗))2}2
= − f ′(x∗) f ′′(x∗)

(1 + f ′(x∗)2)2
, (A7)

where x∗ = x0(s∗) � s∗. Since f ′(x0(s)) and f ′′(x0(s)) are bounded ∀ s ∈ [0, 1], this implies that when s = Os(εν ), then x0(s) =
Os(εν ). Therefore, for the domain of validity in Eq. (A1), x0(s) ∈ [Aεν, A′] for some positive constants A and A′. Similarly, the
upper and lower bounds for n̂x(s)ρε for the domain considered for (s, ρ) in Eq. (A1) can be estimated as

|n̂x(s)ρε| =
∣∣ f ′(x0(0)) + f ′′(x0(s))|s∗

dx0
ds

∣∣
s∗

s
∣∣√

1 + f ′(x0(s))2
ρε

= | f ′′(x0(s∗))|√
1 + f ′(x0(s))2

√
1 + f ′(x0(s∗))2

sρε ∈ [Os(ε
ν+1−μ′

),Os(ε
1−μ′

)] when (s, ρ) ∈ Rν . (A8)

Therefore, x(s, ρ) ∈ [Bεν, B′] for some positive B and B′ which implies ζ ∈ [Bεν−1, B′ε−1] for the domain of the local
approximation of Eq. (A1). We carry out similar analysis for y(s, ρ):

y(s, ρ) = f (0) + f ′(0)x0(s) + f ′′(x∗)
x2

0 (s)

2
+ 1√

1 + f ′(x0(s))2
ρε

= f ′′(x∗)
1

2

(
s + d2x0

ds2

∣∣∣∣
s∗∗

s2

2

)2

+ 1√
1 + f ′(x0(s))2

ρε

= Os(ε
2ν ) + Os(ε

1−ν ′
) when s = Os(ε

ν ) and ρ = Os(1/εν ′
). (A9)

Hence, ξ ∈ [−Cε−max{1−2ν,ν ′},Cε−max{1−2ν,ν ′}] for some C > 0 for the domain of the local approximation of Eq. (A1). As a
consequence, Eq. (A1) can be re-expressed as follows:

φ̃(s(εζ , εξ ), ρ(εζ , εξ ); ε) = φ̃(0)(s(εζ , εξ ), ρ(εζ , εξ )) + εφ̃(1)(s(εζ , εξ ), ρ(εζ , εξ )) + o(ε)

uniformly in (ζ , ξ ) ∈ [Bεν−1, B′ε−1] × [−Cε−max{1−2ν,ν ′},Cε−max{1−2ν,ν ′}]. (A10)

We next proceed by assuming a strong overlap, i.e., εν−1 < ε−μ. Furthermore, if limε→0 ε||φ̃(1)(s, ρ)||L∞(Rs×Rρ ) = 0 and

limε→0 ε||�

φ(1)(ζ , ξ )||L∞([0,ε−μ]×[−1/εμ′
,1/εμ′ ]) = 0, then

φ̃(s(εζ , εξ ), ρ(εζ , εξ ); ε) = φ̃(0)(s(εζ , εξ ), ρ(εζ , εξ )) + o(1) uniformly in

(ζ , ξ ) ∈ [Bεν−1, B′ε−1] × [−Cε−max{1−2ν,ν ′},Cε−max{1−2ν,ν ′}] (A11)

and
�

φ(ζ , ξ ) = �

φ(0)(ζ , ξ ) + o(1) uniformly in (ζ , ξ ) ∈ [0, ε−μ] ×
[
− 1

εμ′ ,
1

εμ′

]
. (A12)

We define Rζ = [Bεν−1, ε−μ] and Rξ = [−Dε−min{μ′,max{1−2ν,ν ′}}, Dε−min{μ′,max{1−2ν,ν ′}}] with D = min{1,C} in the following.
Now consider

|�

φ(0)(ζ , ξ ) − φ̃(0)(s(εζ , εξ ), ρ(εζ , εξ ))| for any (ζ , ξ ) ∈ Rζ × Rξ . (A13)

One can write

|�

φ(0)(ζ , ξ ) − φ̃(0)(s(εζ , εξ ), ρ(εζ , εξ ))| � |�

φ(0)(ζ , ξ ) − �

φ(ζ , ξ ; ε)|
+ |φ̃(0)(s(εζ , εξ ), ρ(εζ , εξ )) − φ̃(s(εζ , εξ ), ρ(εζ , εξ ; ε))|

� sup
ζ∈Rζ ,ξ∈Rξ

{|�

φ(0)(ζ , ξ ) − �

φ(ζ , ξ ; ε) + |φ̃(0)(s(εζ , εξ ), ρ(εζ , εξ )) − φ̃(s(εζ , εξ ), ρ(εζ , εξ ; ε))|}

� sup
ζ∈[0,ε−μ],ξ∈[−1/εμ′

,1/εμ′ ]
|�

φ(0)(ζ , ξ ) − �

φ(ζ , ξ ; ε)|

+ sup
ζ∈Bεν−1,B′ε−1]

ξ∈[−Cε−max{1−2ν,ν′ },Cε−max{1−2ν,ν′ }]

|φ̃(0)(s(εζ , εξ ), ρ(εζ , εξ )) − φ̃(s(εζ , εξ ), ρ(εζ , εξ ; ε))|. (A14)

In the limit ε → 0, due to Eqs. (A11) and (A12), we have

lim
ε→0

{�

φ(0)(ζ , ξ ) − φ̃(0)(s(εζ , εξ ), ρ(εζ , εξ ))} = 0 uniformly in (ζ , ξ ) ∈ Rζ × Rξ (A15)
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or

lim
ε→0

�

φ(0)(ζ , ξ ) = lim
ε→0

φ̃(0)(s(εζ , εξ ), ρ(εζ , εξ )) (A16)

uniformly for all (ζ , ξ ) ∈ Rζ × Rξ , if the limits exist. Further, due to the domain of concern for (ζ , ξ ) being the way it is, as
ε → 0, ζ grows arbitrarily large. Let us now estimate the behavior of s(εζ , εξ ) and ρ(εζ , εξ ) as ε → 0, temporarily assuming
that ζ and ξ are constants independent of ε, i.e., not in Rζ × Rξ . We rewrite them as

s(εζ , εξ ) = s(0, εξ ) + ∂s

∂x

∣∣∣∣
(εζ∗,εξ )

εζ

= s(0, εξ ) + ds

dx0

∣∣∣∣
x0(εζ∗,εξ )

∂x0

∂x

∣∣∣∣
(εζ∗,εξ )

εζ = 0 +
√

1 + f ′(x0(εζ∗, εξ ))2
∂x0

∂x

∣∣∣∣
(εζ∗,εξ )

εζ (A17)

and

ρ(εζ , εξ ) = ρ(0, εξ ) + ∂ρ

∂x

∣∣∣∣
(0,εξ )

εζ + ∂2ρ

∂x2

∣∣∣∣
(εζ∗,εξ )

ε2ζ 2

2
= ξ + ∂r

∂x

∣∣∣∣
(0,εξ )

ζ + ∂2r

∂x2

∣∣∣∣
(εζ∗,εξ )

εζ 2

2
, (A18)

where x0(εζ , εξ ) is the solution of Eq. (44) and r(x, y) is given by Eq. (41). Since it is established that each (εζ , εξ ) for the
domain concerned for (ζ , ξ ) has a unique representation in the (s, ρ) coordinate system for small enough ε, x0(εζ∗, εξ ) → 0 as
ε → 0. Further, differentiating Eq. (42), we have

∂x0

∂x
− y f ′′(x0)

∂x0

∂x
+ f ′(x0)2 ∂x0

∂x
+ f (x0) f ′′(x0)

∂x0

∂x
= 1

⇒ ∂x0

∂x

∣∣∣∣
(εζ∗,εξ )

= 1

(1 − εξ f ′′(x0) + ( f ′(x0))2 + f (x0) f ′′(x0))
⇒ ∂x0

∂x

∣∣∣∣
(εζ∗,εξ )

→ 1 as ε → 0. (A19)

Similarly, from Eq. (41), for ∂r
∂x we have

∂r

∂x

∣∣∣∣
(x,y)

= x − x0√
(x − x0)2 + (y − f (x0))2

⇒ ∂r

∂x

∣∣∣∣
(0,εξ )

= 0. (A20)

For ∂2r
∂x2 , we have

∂2r

∂x2

∣∣∣∣
(x,y)

= − r
(
1 − ∂x0

∂x

) − (x − x0) ∂r
∂x

r2
= −κ (x0)

1

{1 − y f ′′(x0) + ( f ′(x0))2 + f (x0) f ′′(x0)} , (A21)

where κ (x0) is the curvature of the function f (x) at x0 and is defined as κ (x) = f ′′(x)

{
√

1+[ f ′(x)]2}3
. That is, with the convention that

concave upwards is positively curved. The upshot being

∂2r

∂x2

∣∣∣∣
(εζ∗,εξ )

→ −κ (0) as ε → 0. (A22)

Equations (A17), (A18), (A19), (A20), (A22), and the associated analysis indicate that s(εζ , εξ ) → 0 and ρ(εζ , εξ ) → ξ as
ε → 0 for (ζ , ξ ) ∈ Rζ × Rξ as well. Which implies that Eq. (A16) modifies as

lim
ζ→∞

�

φ(0)(ζ , ξ ) = lim
s→0

φ̃(0)(s, ξ ) (A23)

This is the matching relation for the zeroth order term of the local expansion corresponding to the junction point. We repeat the
above analysis from Eq. (A13) but for Eqs. (A4) and (A10) to obtain the matching condition for the first-order correction:
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Consider ∣∣∣∣�

φ(1)(ζ , ξ ) + 1

ε

�

φ(0)(ζ , ξ ) − φ̃(1)(s(εζ , εξ )) − 1

ε
φ̃(0)(s(εζ , εξ ))

∣∣∣∣ for any (ζ , ξ ) ∈ Rζ × Rξ (A24)

⇒ lim
ε→0

{
�

φ(1)(ζ , ξ ) − φ̃(1)(s(εζ , εξ ), ρ(εζ , εξ ))

− 1

ε

[
φ̃(0)

(
0 + ∂s

∂x

∣∣∣∣
(εζ∗,εξ )

εζ , ξ + 0 + ∂2r

∂x2

∣∣∣∣
(εζ∗,εξ )

εζ 2

2

)
− �

φ(0)(ζ , ξ )

]}
= 0

uniformly for (ζ , ξ ) ∈ Rζ × Rξ

⇒ lim
ζ→∞

lim
εζ→0

lim
ε→0

{
�

φ(1)(ζ , ξ ) − φ̃(1)(s(εζ , εξ ), ρ(εζ , εξ ))

− 1

ε

[
φ̃(0)(0, ξ ) + ∂φ̃(0)

∂s

∣∣∣∣
(∗,∗)

∂s

∂x

∣∣∣∣
(εζ∗,εξ )

εζ + ∂φ̃(0)

∂ρ

∣∣∣∣
(∗,∗)

∂2r

∂x2

∣∣∣∣
(εζ∗,εξ )

εζ 2

2
− �

φ(0)(ζ , ξ )

]}
= 0

for all ξ ∈ R

⇒ �

φ(1)(ζ , ξ ) = lim
s→0

(
φ̃(1)(s, ξ ) + ζ

∂φ̃(0)

∂s
(s, ξ ) − κ (0)

2
ζ 2 ∂φ̃(0)

∂ρ
(s, ξ )

)
+ o(1) as ζ → ∞ (A25)

assuming that the limit exists and that limε→0
�

φ(0)(ε−μ, ξ ) approaches φ̃(0)(0, ξ ) faster than ε as well as that the other errors
remain vanishingly small.

Although the above derivation is presented for the case of a scalar field φ(x, y; ε), the same arguments work for the vector
case as well, as uniform continuity of a vector valued function implies and is implied by the like behavior of its components.
Further, when viewed from the coordinate system (ζi, ξi ), the ith interface up to some arc length will necessarily look like the
trace of a function, i.e., can be expressible as (ζi, f (ζi )) for some nonzero interval of ζi. Further, due to the way in which these
coordinates are selected, f ′(ζi ) necessarily vanishes at ζi = 0. Also, it is easy to see that the right end-point of s in Eq. (A1) being
at unity can be easily disposed off. Thus, from Eqs. (A23) and (A25), Eqs. (8) and (9) readily follow. Furthermore, nowhere in
the above derivation, the boundary layer or the interior layer behavior along the path of r = 0 was crucial for the analysis. A
mere existence of an asymptotic expansion is all that suffices. But this is true even if no singular behavior exists at the path of
the function f (x). Thus, if a path were to be chosen completely inside any of the “bulks,” then the derivation still applies with
the only change being that all φ̃(q)(s, ρ), q � 1 in Eq. (A1) and thus in Eq. (9) are identically zeros. Further, φ̃(0)(s, ρ) will be
a constant, and hence, the r.h.s. of Eq. (9) as a whole vanishes. This justifies our treatment for the “open-side” of the polygonal
construction in Sec. II A 1, as the path chosen there is a straight line completely lying inside a bulk.

APPENDIX B: ANALYSIS OF THE EXPLICIT SOLUTION OF EQ. (10) FOR W FP MULTIWELL

The system of equations of Eq. (10) written down explicitly for the multiwell W FP read

∂2
�

φ
(0)
1

∂ζ 2
+ ∂2

�

φ
(0)
1

∂ξ 2
= 4a

�

φ
(0)
1

(�

φ
(0)
1 − 0.5

)(�

φ
(0)
1 − 1

) − 4a

3

3∑
α=1

�

φ(0)
α

(�

φ(0)
α − 0.5

)(�

φ(0)
α − 1

)
,

∂2
�

φ
(0)
2

∂ζ 2
+ ∂2

�

φ
(0)
2

∂ξ 2
= 4a

�

φ
(0)
2

(�

φ
(0)
2 − 0.5

)(�

φ
(0)
2 − 1

) − 4a

3

3∑
α=1

�

φ(0)
α

(�

φ(0)
α − 0.5

)(�

φ(0)
α − 1

)
,

∂2
�

φ
(0)
3

∂ζ 2
+ ∂2

�

φ
(0)
3

∂ξ 2
= 4a

�

φ
(0)
3

(�

φ
(0)
3 − 0.5

)(�

φ
(0)
3 − 1

) − 4a

3

3∑
α=1

�

φ(0)
α

(�

φ(0)
α − 0.5

)(�

φ(0)
α − 1

)
,

(B1)

when it is kept in mind that the solution space is restricted to functions satisfying the summation rule property, i.e.,
�

φ
(0)
1 (ζ , ξ ) +

�

φ
(0)
2 (ζ , ξ ) + �

φ
(0)
3 (ζ , ξ ) = 1 ∀ (ζ , ξ ) ∈ IR2.

Bollada et al. [53] proposed a possible multi-phase-field profile around a triple junction by generalizing the “tanh solution” of
the 1D problem. Using it, they studied what gradient energy will be associated with a spatial point corresponding to a particular
phase field value, for various choices of the gradient energy forms. However, it is unclear from the article if it is indeed explicitly
verified whether the proposed profile does actually solve the equilibrium equations for any of the combinations of the potential
wells and the gradient energy forms considered. It will now be tested if the postulated profile, which is reproduced in Eq. (B2),
is the solution of Eq. (B1).
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1. Verification of the exactness

The equilibrium phase-field profile around a triple junction hypothesized by Bollada et al. is considered as a potential
candidate for the solution of Eq. (B1). That is,

�

φ
(0)
1 = 1

1 + e(ζnζ
12+ξnξ

12 ) + e(ζnζ
13+ξnξ

13 )
,

�

φ
(0)
2 = 1

1 + e(ζnζ
21+ξnξ

21 ) + e(ζnζ
23+ξnξ

23 )
,

�

φ
(0)
3 = 1

1 + e(ζnζ
31+ξnξ

31 ) + e(ζnζ
32+ξnξ

32 )
, (B2)

where nζ
i j and nξ

i j are the ζ and ξ components of a vector nij which is (i) normal to the interface between phases φi and φ j , (ii)
at the triple junction, and (iii) pointing toward phase φ j (and hence away from phase φi). Further, the vectors nij should satisfy
n12 + n23 + n31 = 0. This makes sure that the component functions

�

φ(0)
α satisfy the summation rule which can be quickly shown

by re-expressing Eq. (B2) in the following manner by using it:

�

φ
(0)
1 = 1

1 + e(ζnζ
12+ξnξ

12 ) + e(ζnζ
13+ξnξ

13 )
,

�

φ
(0)
2 = 1

1 + e−(ζnζ
12+ξnξ

12 ) + e(ζnζ
23+ξnξ

23 )
= e(ζnζ

12+ξnξ
12 )

1 + e(ζnζ
12+ξnξ

12 ) + e(ζnζ
13+ξnξ

13 )
,

�

φ
(0)
2 = 1

1 + e−(ζnζ
13+ξnξ

13 ) + e(ζnζ
32+ξnξ

32 )
= e(ζnζ

13+ξnξ
13 )

1 + e(ζnζ
12+ξnξ

12 ) + e(ζnζ
13+ξnξ

13 )
. (B3)

Expressed in this form, the summation property is easy to verify.
Substituting Eq. (B3) in Eq. (B1), and verifying if the latter is satisfied for some constant “a” could be a very cumbersome and

lengthy calculation. To minimize this, we make the following observations. First, due to the nature of the equations in Eq. (B1),
if (

�

φ
(0)
1 ,

�

φ
(0)
2 ,

�

φ
(0)
3 ) is a solution, then a rotation of it about the origin is also a solution. Thus, without loss of generality, one of the

interfaces can be oriented along the ζ axis. Specifically, we choose the phase above the positive axis as φ1, therefore, n12 is −ξ̂ .
Second, Eq. (B3) may or may not solve Eq. (B1) for any given three vectors n12, n23, and n31 satisfying n12 + n23 + n31 = 0.
However, we are only interested in vectors that are 120-120-120 degrees apart, as that is what the demand of the asymptotic
analysis is in the present problem of interest (equal interfacial energies). Hence, it will be enough to test the case of n12, n23, and
n23 being unit vectors. In fact, this is exactly the recommendation of Bollada et al. when the interfacial energies are all equal.
Thus, as n12 is fixed as −ξ̂ , n23 and n23 readily get determined and the test solution becomes

�

φ
(0)

1 = 1

1 + e−ξ + e−
√

3
2 ζ− 1

2 ξ
,

�

φ
(0)
2 = e−ξ

1 + e−ξ + e−
√

3
2 ζ− 1

2 ξ
,

�

φ
(0)
3 = e−

√
3

2 ζ− 1
2 ξ

1 + e−ξ + e−
√

3
2 ζ− 1

2 ξ
. (B4)

Note that the r.h.s. of the last equation of Eq. (B1) is the same as the sum of the r.h.s. of the first two equations but with a negative
sign irrespective of what

�

φ
(0)
1 ,

�

φ
(0)
2 , and

�

φ
(0)
3 are. Further, when these latter are chosen to satisfy the summation rule, the left-hand

sides of Eq. (B1), as well, behave identically, i.e., add up to zero. Therefore, it follows that it suffices to check the validity of
only the first two equations. These latter can be rewritten further as follows to facilitate a reduction of number of algebra steps:

∂2
�

φ
(0)
1

∂ζ 2
+ ∂2

�

φ
(0)
1

∂ξ 2
= 4a

�

φ
(0)
1

(�

φ
(0)
1 − 0.5

)(�

φ
(0)
1 − 1

) − 4a
�

φ
(0)
1

�

φ
(0)
2

�

φ
(0)
3 ,

∂2
�

φ
(0)
2

∂ζ 2
+ ∂2

�

φ
(0)
2

∂ξ 2
= 4a

�

φ
(0)
2

(�

φ
(0)
2 − 0.5

)(�

φ
(0)
2 − 1

) − 4a
�

φ
(0)
1

�

φ
(0)
2

�

φ
(0)
3 .

Substituting Eq. (B4) in the above equations shows that the latter are satisfied for a = 0.5. Thus, Eq. (B2) with unit vectors
n12, n23, and n31 satisfying n12 + n23 + n31 = 0 is the exact solution of the leading-order junction equations for the Folch-Plapp
multiwell with a = 0.5.

2. Exponential “decay”

It will now be shown that approaching infinity along lines parallel to the interfacial directions recovers the consequent limiting
values of (

�

φ
(0)
1 ,

�

φ
(0)
2 ,

�

φ
(0)
3 ) at an exponential rate. First, let us consider the particular case of Eq. (B4), i.e., when one of the

interfaces is along the positive ζ axis. Now, let us approach infinity always staying at a distance of δ from the latter. That is, we
travel along the ray −→r (ρ) = (0, δ) + ρ × (1, 0) as ρ → ∞. The result is

lim
ρ→∞

�

φ(0)(ρ, δ) =
(

1

1 + e−δ + 0
,

e−δ

1 + e−δ + 0
,

0

1 + e−δ + 0

)
=

(
1

1 + e−δ
,

e−δ

1 + e−δ
, 0

)
.

To find the rate at which this “value” is converged to, we subtract
�

φ(0)(ρ, δ) from the limiting value. Particularly, considering the
first component, we have

1

1 + e−δ
− �

φ
(0)
1 (ρ, δ) =

∣∣∣∣ 1

1 + e−δ
− �

φ
(0)
1 (ρ, δ)

∣∣∣∣ = e−
√

3
2 ρ− 1

2 δ

(1 + e−δ )(1 + e−δ + e−
√

3
2 ρ− 1

2 δ )
< e−

√
3

2 ρ− 1
2 δ.
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That is, the first component exponentially attains its limiting value as ρ → ∞; similar calculations reveal the same for the others
as well.

The above is for that interface lying along ζ axis, the like nature of the others can be argued without reperforming the
calculations: Rotating the solution

�

φ
(0)
1 (ζ , ξ ) by 120◦ and 270◦, the other interfaces will align along the ζ axis. Furthermore, the

resultant components will be permutations of the current ones. Since, the functional forms remain unchanged, the convergence
behavior carries over.
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