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Contact angle hysteresis on random self-affine rough surfaces in Wenzel’s
wetting regime: Numerical study
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We present a numerical study of the advancing and receding apparent contact angles for a liquid meniscus
in contact with random self-affine rough surfaces in Wenzel’s wetting regime. Within the framework of the
Wilhelmy plate geometry, we use the full capillary model to obtain these global angles for a wide range of
local equilibrium contact angles and for different parameters that determine the self-affine solid surfaces: Hurst
exponent, wave vector domain, and root-mean-square roughness. We find that the advancing and receding contact
angles are single-valued functions that depend only on the roughness factor determined by the set of values of
the parameters of the self-affine solid surface. Moreover, the cosines of these angles are found to depend linearly
on the surface roughness factor. The relations between the advancing, the receding, and Wenzel’s equilibrium
contact angles are investigated. It is shown that for materials with self-affine surface structure, the hysteresis
force is the same for different liquids and it depends only on the surface roughness factor. A comparison with
existing numerical and experimental results is carried out.
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I. INTRODUCTION

Determining the hysteresis of the apparent equilibrium
contact angle (CA) θapp [1], which the free interface of a
liquid forms with a solid surface, is an important problem of
capillary theory in relation to wetting of real solid surfaces [2].
The latter are characterized by the presence of heterogeneity
and/or roughness. The conditions for retention and spreading
of the three-phase contact line (CL) are determined by the
fact that the CL is in a metastable equilibrium state when the
apparent CAs θapp (measured experimentally) lie in a certain
interval, determined by its lower and upper limits, which
are called minimum and maximum CAs, respectively. These
angles are known as receding θr (RCA) and advancing θa

(ACA), and the difference between these angles is defined as
CA hysteresis (CAH). For real solid surfaces θr and θa deviate
from the actual equilibrium contact angle θeq, defined by the
Young equation. For them, the conditions which determine the
equilibrium of the CL are reduced to obtaining θr and θa as
functions of the parameters of heterogeneity (chemical and/or
physical) of the solid phase. It has to be noted that in the
context of new research results, it is necessary to also consider
the type of wetting regime defined by the presence (Cassie’s
regime) or absence (Wenzel’s regime) of air bubbles formed
during contact [3,4]. Therefore, the measured RCA and ACA
depend on the equilibrium wetting regime.

*stani@imbm.bas.bg
†nina@imbm.bas.bg
‡pavelsiliev@gmail.com

The study of the CAH as a measure of the degree of
liquid adhesion to a solid surface [1] in both wetting regimes
with various manifestations of solid phase heterogeneity and
roughness is highly relevant, and priority should be given
to theoretical and experimental investigations of systems
describing real and technologically important three-phase sys-
tems. The present study focuses on determining the angles θr

and θa for a liquid in contact with random self-affine rough
solid surfaces in Wenzel’s wetting regime. Such self-affine
rough surfaces describe well a number of real materials, e.g.,
granite, basalt, and others [5]. There are several experimental
data sets for the CAH when a liquid is in contact in Wen-
zel’s wetting regime with random rough surfaces, e.g., on
aluminum sheets [6], on polymer surfaces [7], on abrasive
papers [8], on polypropylene [9], and on paraffin wax surfaces
[10]. These results are not sufficiently supported by theoretical
considerations and cannot be compared to theoretical investi-
gations, which are limited to the two-dimensional (2D) case
and include studies of θapp for a liquid in contact with random
topographical substrates [11], self-affine rough surfaces [12],
and fractal surfaces [13]. However, due to the reduced di-
mensionality, these studies do not take into account the “kink
depinning” along the CL, which has a significant impact on
the CAH as can be seen in Refs. [14–17]. This effect can
be established only if the full three-dimensional (3D) system
is considered in theoretical and numerical investigations. In
these studies for periodic defects, after a rigorous analysis of
the stick, slip, and jump motion of the CL, two different de-
pinning regimes were identified. For Wilhelmy plate geometry
(see Sec. II) in the first one, termed block case, the CL jumps
in a single move from one row of defects to another and it can
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be investigated through a 2D analysis. In the second or kink
case, the CL passes from one row of defects to another row
through a series of single jumps from one defect at a time. For
the kink-depinning mechanism the CAH takes smaller values
than for the block case. The block-depinning regime cannot
be observed for random self-affine rough surfaces, due to the
random distribution of the defects, and every CL jump can
be considered as a kink-depinning case. A relevant question
to be addressed is whether the CAH for periodic surfaces is
smaller than that for random self-affine rough surfaces with
an equal roughness factor r (defined as the ratio between the
actual and the projected area of the surface). Since the random
self-affine rough surfaces can be represented as Fourier series
[see Eq. (3) below], one can in principle use an asymptotic
approach [18,19] to obtain 3D solutions for the shape of the
liquid free surface and determine the CAH. However, as our
previous research has shown, these solutions are valid only
for very small values of the roughness factor r, even for
periodic surfaces. Moreover, the case of random self-affine
rough surfaces would require hundreds of thousands of modes
to be considered for the analytical approach, ruling out the use
of asymptotic methods.

To this day the only feasible method for determining 3D
equilibrium meniscus shapes is to solve numerically the full
capillary model. David and Neumann (DN) [20] made an
important step in this direction by calculating the CAH for the
case when the curvature of the free surface is very small, i.e.,
when the Laplace equation for the shape of the equilibrium
liquid interface can be linearized. Due to the above assump-
tion, their results were limited to surfaces with very small
roughness factor r � 1.0065 leading to a CAH magnitude of
only 1–3 degrees. To determine the CAH on surfaces charac-
terized by significantly greater values of r, it is necessary to
obtain the equilibrium shapes of the liquid meniscus without
restricting the magnitude of the liquid interface deformations.
This is the objective of the present study, which is based on
obtaining numerical 3D solutions in the framework of the full
capillary model. It is a continuation of previous studies in
which results were obtained for the structure and characteris-
tics of the three-phase contact [21]. This investigation focused
on the CL roughness exponent ζ , which is determined by
the scaling of the root-mean-square width w(l ) ∼ lζ over the
length scale l of the CL.

II. PROBLEM FORMULATION

We will study the CAH on random self-affine rough sur-
faces through numerical simulation based on the experimental
procedure for measuring the receding θr and advancing θa

CAs using the Wilhelmy plate method [22–24]. In this type of
experiment, a vertical solid plate, partially dipped in a tank of
liquid, is slowly withdrawing from or immersing in the liquid.
Due to capillary force, the liquid forms a meniscus at the
contact with the vertical plate. The fluid interface is assumed
to be in equilibrium and for each position of the plate, θapp

can be determined by the capillary rise method or through
the vertical component of the capillary force, acting on the
CL L. The two methods give very similar results [25]. Here,
we will obtain θapp using the CL height h of the equilibrium
state of the meniscus, averaged along the CL - 〈h〉 (where 〈〉

FIG. 1. Schematic image of a 3D meniscus, attached to a vertical
rough solid plate.

denotes such a “horizontal” averaging). A schematic image of
a 3D liquid meniscus attached to a vertical rough solid plate is
shown in Fig. 1. The CA θapp is defined as the angle which
an equilibrium liquid meniscus with an average CL height
〈h〉 forms with a homogeneous vertical plane [20,26] and it
is calculated using the following relation [27]:

θapp = arcsin
(
1 − 〈h〉2/2l2

c

)
, (1)

where lc = √
γ /ρg is the capillary length, γ is the liquid-gas

surface tension, ρ is the difference of the densities of the
liquid in the tank and the ambient gas, and g is the gravity
acceleration.

a. Advancing and receding contact angles. The advancing
and receding contact angles θa and θr are determined from
a series of equilibrium CLs Li, i = 1, 2, ..., obtained from
a sequence of small vertical solid plate displacements with
equal size �, simulating quasi-static motion of the solid plate
into/from the liquid tank. If the averaged heights of the CLs
Li are 〈hi〉 and the corresponding apparent contact angles
are θ i

app [Eq. (1)], then the CAs θa, θr are determined by
averaging the angles θ i

app when immersing or withdrawing
the solid plate, respectively. One needs to consider results for
i > is (where s denotes slip) where is indexes the first CL
Lis , for which |〈his〉 − 〈his+1〉| � |�|. This criterion is based
on the fact that changes of 〈hi〉 equal to � when displacing
the plate correspond to the stick regime, i.e., the CL remains
adhered to the plate. The slip regime is established when the
CL loses stability and starts sliding with respect to the plate,
leading to significant changes in the CL height 〈hi〉 between
consecutive equilibrium states. Thus, it can be said that we
take into account results for those i > is for which a stick-slip
motion of the CL has occurred.

b. Rough solid plate. In Cartesian coordinates, where the
y axis is horizontal and the z axis is directed upward, and the
plane z = 0 is chosen to coincide with the liquid level far from
the vertical rough plate (as shown in Fig. 1), the solid plate �s

is described by the function f (y, z), i.e., �s ≡ [ f (y, z), y, z].
We assume that f (y, z) is periodic along the y- and z axes
with period a, and that �s is a random self-affine sur-
face with roughness power spectrum C(q) ∼ q−2(H+1), where
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q = ‖(qy, qz )‖ is the norm of the wave vector (qy, qz ), and H
is the Hurst exponent. The surface is self-affine only in the
finite region q0 < q < q1 defined by the long distance roll-off
and short distance cutoff wave vectors q0 and q1, analogous to
real surfaces [5], and for the power spectrum we have

C(q) ∼
{

q−2(H+1) q > q0

C(q0) q � q0
. (2)

We obtain isotropic and self-affine functions f (y, z), periodic
in the y- and z directions, with the required properties defined
in Eq. (2), by following the method suggested in Ref. [5]. In
the square area a × a, the function f (y, z) is defined as

f (y, z) =
∑

(qy,qz )

B(q)ei[qyy+qzz+φ(qy,qz )] (3)

with wavelengths between λ1 = 2π/q1 and λ0 = 2π/q0.
In Eq. (3) φ(qy, qz ) are random numbers uniformly dis-

tributed in the interval [−π, π ] and

B(q) =
√√√√2Rqq−2(H+1)

/ ∑
(qy,qz )

√
q2

y + q2
z , (4)

where Rq is the root-mean-square of the surface roughness
defined by

Rq =
√

〈 f 2(y, z)〉yz. (5)

By incrementally increasing or decreasing the plate position
along the z axis by i�, i = 1, 2, ..., one can simulate with-
drawing and immersing the plate from/into the pool of liquid.
The parameters λ0, λ1, H , and Rq characterize the surface �s

and determine its roughness factor r. Note that the results for
CAH as a function of r in Ref. [20] are presented without
specifying the short-distance cutoff wavelength used for gen-
erating self-affine rough surfaces.

For the coordinate system and location of the rough solid
plate �s thus defined above (we assume �s to be chemically
homogeneous, i.e., the local CA θeq is the same at all points
of the CL), the equilibrium of the liquid free-surface is deter-
mined by the local minimum of the free energy functional of
the system U (�):

U = γ

∫
�

d� + γ cos θeq

∫
�sl

d�sl +
∫

V
ρgzdV, (6)

where �sl is the part of the plate surface, which is in contact
with the liquid, and V is the liquid volume.

The local minimum of Eq. (6) is determined numerically
using the same stepwise minimization algorithm from our
previous studies on the structure of the contact line of the
liquid meniscus in contact with a rough surface [16,21]. The
liquid free surface � is approximated by a triangular mesh
with Ni × Nj nodes, where Ni and Nj are the number of points
in the x- and y directions, respectively. The mesh size constant
�L along the y direction is defined by �L = a/Nj , determin-
ing the discretization of the CL by Nj − 1 line segments. The
parameters for the random self-affine rough surface used to
obtain equilibrium meniscus solutions are identical to the ones
in Ref. [21]. Since the results for the numerical simulations of
DN are presented on the example of a system for which the

liquid used is water (this does not limit the generality of the re-
sults, as they can be presented in dimensionless form using the
capillary length lc), in view of easier comparison, the results
obtained here for the same system are presented in dimen-
sional units. Taking into account the periodicity of f (y, z), it is
sufficient to obtain a solution for the free liquid surface in the
area between the planes y = 0 and y = a by imposing periodic
boundary conditions z(x, 0) = z(x, a) at the boundaries of this
area. In difference to the approximation of the CL used in
DN, where the distance between the neighboring points of the
mesh is �L = 10μm, and a = 1 mm, for the approximation of
CL we use here �L = 1μm or �L = 2μm, and our solutions
are obtained for a between a = 1 mm and a = 10 mm. We
start the numerical algorithm with � having a CL, which ad-
heres well to the rough solid surface and which has a constant
height h0. There is no requirement for the value of h0, but it
is desirable that it is close to h0 = lc

√
2(1 − sin θeq ). For the

presented below results for the CAH,

h0 = lc
√

2(1 − sin θw ), θw = cos−1(r cos θeq ). (7)

Thus, h0 is the CL height of equilibrium liquid meniscus
in contact with a vertical chemically homogeneous plate,
forming a constant CA θw with the plate known as Wenzel’s
angle. The correctness of the obtained solution is monitored
also by keeping track of the accuracy with which the points,
approximating the surface �, satisfy the Laplace equation and
the Young boundary condition. In this way it is ensured that
the equilibrium meniscus states are obtained with high preci-
sion by the minimization method. This procedure is described
comprehensively in Ref. [28]. The implementation of the nu-
merical method has been tested for the Wilhelmy geometry
where the liquid meniscus is in contact with doubly sinusoidal
wavelike patterned surfaces [16] and it has been shown that for
small roughness factors r the values obtained for the CAH are
close to the asymptotically obtained predictions in Ref. [19].

As was shown and substantiated in detail by previous re-
search on the wetting of rough surfaces in Wilhelmy geometry
[16,21], for every equilibrium state with a CA θeq there is a
corresponding state with an equilibrium CA 180◦ − θeq. Thus,
it is sufficient that numerical research is performed for the case
θeq � 90◦.

III. NUMERICAL RESULTS AND DISCUSSION

We study by means of numerical simulations how the RCA
θr and ACA θa depend on the roughness factor r for differ-
ent realizations of a self-affine rough surface, defined by the
following values of the parameters characterizing the rough
surfaces:

H ∈ [0.1, 0.9], λ0 ∈ [200μm, 1 mm],

λ1 ∈ [25μm, 50μm], Rq ∈ [1μm, 6μm], (8)

and for different values of the equilibrium CAs θeq ∈
[30◦, 90◦], which the liquid interface forms with the chem-
ically homogeneous but rough solid surface. For a chosen
set of parameter values (8), the surface roughness factor r is
calculated by approximating the solid surface by a triangular
mesh and summing up their surface areas. One has also to bear
in mind that every function f (y, z) depends on the specific
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FIG. 2. Surface roughness factor r as a function of the standard
deviation Rq for different sets of values of the rough surface parame-
ters H , λ0 (in μm), λ1 (in μm).

realization of the random numbers φ(qy, qz ), and therefore
the obtained value of the roughness factor r is not uniquely
determined by the values of the set of parameters (8). As a
consequence of that, the obtained RCA and ACA as functions
of r are not uniquely determined, but the values are very close
for different realizations of φ(qy, qz ), as shown by the numer-
ical studies. The calculations for r reveal that when the values
of three out of the four parameters in (8) are fixed, r decreases
with increasing H and λ0, and increases with increasing λ1

and Rq. Taking into account these dependencies, below we
present results for two values of the Hurst exponent H = 0.2
and H = 0.8 (i.e., for small and large value of H ). For each
of them we present results for θr and θa for combinations of
two different values of λ1 = 25μm, λ1 = 100/3μm and λ0 =
200μm, λ0 = 1/3 mm. In Fig. 2 we present results obtained
for the roughness factor (r < 1.25) as a function of Rq for the
above values of the rough surface parameters. The calcula-
tions are made for values of Rq = i0.5μm, i = 1, 2, ..., and
the results are shown by symbols connected by line segments.
For each set of values for H , λ0, and λ1, solutions for the
equilibrium shape of the liquid interface are obtained for these
values of Rq, for which the free surface of the liquid � does
not intersect the solid surface �s in an interior for � area [4]
(see Fig. 3). The nonintersection condition also depends on the
value of θeq and more specifically, the largest value of Rq for
which the condition is satisfied decreases with decreasing θeq.
The numerical studies show that for θeq ∈ [30◦, 90◦], there is
always a solution for θr and θa at least up to Rq = 1.5μm,
and the largest attainable Rq for θa is greater than that for θr .
This follows from the fact that θr < θa and that the probability
of intersection of the two surfaces � and �s increases with
decreasing θapp. As pointed out in the previous section, the
calculation of the RCA θr and the ACA θa is preceded by
obtaining θ i

app at sequential displacements of the vertical solid
plate on the basis of numerical solutions for the shape of the
equilibrium interface �. Two representative results for the
obtained sequences of θ i

app when the plate is withdrawing and
immersing are shown in Fig. 4. These results are obtained for a
rough surface characterized by H = 0.2, λ0 = 200μm, λ1 =

FIG. 3. Schematic illustration of the nonintersection condition
and its dependance on the value of Rq. Both (a) not intersecting case
with smaller defect amplitude (admissible solution) and (b) intersect-
ing case with bigger defect amplitude (not admissible solution) are
shown.

25μm, Rq = 3μm, when θeq = 75◦ and a = 2 mm (shown
by thin black solid line) and a = 5 mm (shown by bold red
solid line). The obtained 3D numerical solutions for the liq-
uid meniscus in the neighborhood of the rough solid plate
when a = 2 mm, and for i = 250 and i = −250, are shown
in Figs. 5(a) and 5(b), correspondingly. Only a part of the
rough solid plate enclosed between the planes z = 500μm
and z = 900μm is shown in Fig. 5. In Fig. 4 the obtained
sequence of 750 values of θ i

app, i = 0, 1, 2, ..., 750, is shown
for plate displacements i� (withdrawing regime) and −i�
(immersing regime), where � = 2μm. The first equilibrium
state at i = 0 is obtained at the start of the iterative process
from a CL height determined by Eq. (7). As one can see
from Fig. 4, θ i

app is changing linearly with plate displacement,
i.e., |θ i

app − θ i+1
app | ≈ const, for −100 < i < 80. The vertical

dashed lines in Fig. 4 represent the boundaries of the interval
[Da, Dr] where this linear regime is realized. Outside this in-
terval, one can observe a sequence of sharp fluctuations in θ i

app
with intermediary sections of linear change with a slope equal

FIG. 4. Apparent CA as function of the plate displacement when
θeq = 75◦ and when the plate surface is characterized by H = 0.2,
λ0 = 200μm, λ1 = 25μm, Rq = 3μm, and two values of the plate
periodicity a = 2 mm (thin black solid line) and a = 5 mm (bold red
solid line).
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FIG. 5. Numerical solutions for the equilibrium meniscus in the neighborhood of the rough wall when (a) withdrawing the solid plate from
the liquid (receding) and (b) immersing the plate in the liquid (advancing).

to the one in the interval [Da, Dr], resulting in a slip-stick
motion. The sharp changes in θ i

app are a direct result of the sud-
den changes in the CL height [the relationship between θapp

and the height 〈h〉 is determined by Eq. (1)] as a result of an
avalanche-like process where parts of the CL get detached and
move relative to the surface (sliding regime) to reach a new
equilibrium state. The RCA θr and the ACA θa are calculated
by averaging θ i

app outside the interval [Da, Dr] when i > 80
and i < −100, respectively (in Fig. 4 these areas are marked
with arrows). The sections where θ i

app is averaged (they might
vary for different system parameters) are determined by the
requirement that the averaged value obtained does not change
with their further increase. From the results shown for θ i

app
one can observe that the amplitude of the fluctuations when
a = 5 mm are smaller and their frequency is higher than those
when a = 2 mm. This is due to the fact that the average width
of the detached part of Ld in the stick-slip transition of the CL
from one equilibrium state to another has a universal charac-
teristic size. Its length, according to the results in Ref. [21], is
of the order of 0.4(λ0 + λ1). Therefore, as a increases, the ra-
tio Ld/a decreases and hence the fluctuations of the mean CL
height 〈hi〉 decrease. Smaller fluctuations of 〈hi〉, according
to Eq. (1), lead to smaller changes in θ i

app. At the same time,
at bigger a, more often parts of the CL lose equilibrium and
thus fluctuations of 〈hi〉 and θ i

app are more frequent. Therefore,
increasing a decreases the size of the areas where stable values
of the RCA and the ACA are formed. The numerical studies
show that for sufficiently big plate displacement �, the same
ACA or RCA values are achieved over the entire range of
values a ∈ [1 mm, 10 mm] studied. They do not depend on the
size �L � 2μm of the CL discretization. For definiteness, all
the results for the ACA or the RCA presented in the following
are obtained for a fixed a = 5 mm.

The results for the ACA θa and the RCA θr as functions
of the roughness factor r, for r < 1.2, at equilibrium CAs
θeq = 30◦, 45◦, 60◦, 75◦, and 90◦ are shown in Figs. 6(a)–
6(e), respectively. It is important to point out that instead
of presenting the dependencies of θa and θr themselves as
functions of the roughness factor r, we prefer to present
the dependencies of their cosines on r, since this better
illustrates the conclusions drawn from the analysis of the func-
tional dependencies described below. Different discrete values
are obtained for cos θa (solid symbols) and cos θr (empty
symbols) when Rq = i0.5μm, i = 1, 2, ..., and the results for

each set of values of H , λ0, and λ1 are presented by different
symbols shown in the legend in each subfigure. The results for
cos θa at θeq = 90◦ are obtained from the cos θr results using
the corresponding states principle. The solid line in the fig-
ures show the cosine of Wenzel’s angle θw. For convenience,

FIG. 6. The cosines of the ACA - cos θa (solid symbols) and
of the RCA - cos θr (empty symbols) as functions of the surface
roughness factor r at different combinations of values of the surface
parameters H , λ0 (in μm), λ1 (in μm), Rq, and for different values of
the equilibrium CAs, which the liquid interface forms with the solid
surface: (a) θeq = 30◦, (b) θeq = 45◦, (c) θeq = 60◦, (d) θeq = 75◦,
(e) θeq = 90◦. The solid lines in all figures show the cosine of
Wenzel’s angle θw .
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when comparing the results at different θeq, the scales on both
axes are the same. The dashed lines in the figures show the
linear fits of the data. From the results presented in these
figures one can conclude that with accuracy up to deviations of
the order of ±0.5◦, the cos θr and cos θa (and respectively the
RCA and ACA) are single-valued functions depending only
on the roughness factor r, which is determined by the set of
values of H , λ0, λ1, Rq. The same conclusion, but without
taking into account λ1, was made by DN for r � 1.0065 for
the linearized energy functional. As one can see from the
presented results, cos θr and cos θa are well approximated by
linear functions of r (while RCA and ACA themselves are
well approximated by quadratic functions of r).

The following relation between the functions cos θr and
cos θa and the cosine of Wenzel’s angle holds true:

[cos θr (r) + cos θa(r)]/2 = cos θw. (9)

A similar relation, but only for θeq = 90◦, holds true also for
the CAs, i.e.,

[θr (r) + θa(r)]/2 = θw, (10)

which is a result of the corresponding states principle and
Eq. (7) when θw = θeq = 90◦. Taking into account the prop-
erties of the cosine function, it follows from (9) that Wenzel’s
angle is closer to the ACA than to the RCA when θeq < 90◦.
This fact is also noted by DN, even though for the systems
studied by them, the CAs θr (r), θa(r), θw have very close
values due to the small range of considered parameters for
which relation (10) holds true in a first-order approximation.
Asymmetric behavior of θa and θr around θw is also estab-
lished experimentally in studies for wetting on rough surfaces
(but not self-affine) using abrasive papers [8] and polypropy-
lene surfaces [9]. According to DN, relation (10) is a “result
from a free energy that is approximately symmetric about the
global minimum θw”. However, as one can see from Eq. (6),
the free energy depends on the cosine of the CA. Due to that,
it is logical that the symmetry of the energy in relation to the
global minimum is with respect to the cosine of the CA and
relation (9) could be a result of this.

An important characteristic of the wetting properties of the
solid surface is the difference of the cosines of RCA and ACA,

cos θr (r) − cos θa(r), (11)

since it is proportional to the adhesive tension [29], the mea-
surable hysteresis force [2], and the maximum receding force
[30]. A somewhat unexpected result from the analysis of
the obtained results for the cos θr and cos θa, presented in
Figs. 6(a)–6(e), is that at fixed r this difference is a constant,
independent of θeq. This means that for a given material,
having a self-affine surface structure, the hysteresis force is
the same for all liquids. This property can also be established
in the results of Fig. 11 in Ref. [20]. Analyzing the data
presented in the figure for the CAH as a function of θeq,
DN noted that the hysteresis increases weakly as the intrin-
sic CA departs from 90◦. Since both cos θr and cos θa are
well fitted by linear functions of r (as the results in Fig. 5
show), it follows that the CAH cos θr − cos θa also has a
linear dependence on r. For approximately self-affine rough
surfaces, this relation for the CAH was recently confirmed
experimentally in Ref. [6] where a correlation between the

CAH and the mean surface height was established. Note that
when converting the indicated difference between θa and θr to
a difference of their cosines cos θr − cos θa, the latter does not
depend on the intrinsic CA. The fact that cos θr − cos θa does
not depend on θeq is not universally valid just for any rough
surface. The analysis of the experimental data [8] (Table 4
there) shows that for rough beeswax surfaces, cos θr − cos θa

depends on θeq.
Furthermore, the comparison of the cos θr and the cos θa

data from Fig. 6 with our results obtained earlier [16] for
these angles for doubly periodic smooth rough surfaces, when
the kink-depinning regime is realized, reveals that for fixed r
the difference cos θr − cos θa on self-affine surfaces is much
bigger than that on periodic rough surfaces for all θeq.

IV. CONCLUSIONS

In this paper, we studied numerically the global advancing
and receding CAs that occur on random self-affine rough
surfaces in Wenzel’s wetting regime by using the Wilhelmy
plate approach. We propose a framework within which these
angles can be unambiguously defined by averaging a large
number of realizations of equilibrium CLs of sufficiently long
length. In contrast to a previous numerical investigation by
DN, performed for a linearized energy functional, leading
to strong limitations for the studied roughness factor, we
conducted a study for a wide range of roughness factor
values by minimizing the full energy functional. We obtained
accurate results for the advancing and receding CAs for
different plate sizes and different values of the constant
local CA. The analysis of the obtained results show that at
a fixed local CA, the advancing and receding CAs do not
depend directly on individual self-affine surface parameters,
but only on the magnitude of the roughness factor. Due to
the very small difference between the apparent CAs and the
Wenzel’s angle in the DN study, the proposed linear relation
for the values of these angles cannot be decisively concluded.
Instead, our study for lager values of the roughness factor
clearly shows that the linear relation holds more generally for
the cosines and not the actual CAs. Three main conclusions
emerge from our analysis for the cosines of the RCA and the
ACA: (1) The dependencies of the cosines of these angles
on the surfaces roughness factor are fitted well by linear
functions. (2) In agreement with previous studies of rough
surfaces, a symmetry between the cosines of the ACA and
the RCA relative to the cosine of the Wenzel’s angle has
been established. (3) Surprisingly, we find that the difference
between the cosines of the advancing and receding CAs does
not depend on the local CA. Therefore, it follows that on
self-affine rough surface all liquids have the same wetting
properties, which are determined by the magnitude of the
hysteresis force (proportional to the adhesive tension). In
contrast to the wetting of doubly periodic rough surfaces,
where different depinning mechanisms are observed, in the
case of a self-affine rough surface we find that only a kink
depinning takes place. Moreover, our studies show that for the
same roughness factor, the difference between the advancing
and receding CAs is significantly higher for self-affine
surfaces than for doubly periodic surfaces in the
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kink-depinning regime. The presented numerical results
demonstrate how the properties of random self-affine rough
surfaces determine their wetting characteristics and the
specific relations they follow. It is of interest to further
validate experimentally these findings and to perform tests on
random as well as regular surfaces in order to establish how

unique they are with respect to different manifestations of
surface roughness. More specifically, investigating whether
the CAH depends on the local contact angle can be realized
by extending the study of Song et al. [6] to include various
liquids that form different local contact angles with the solid
surface.
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