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Chemical Leslie effect in a chiral smectic-C∗ film: Singular target patterns
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We analyze experimentally and theoretically the flows that develop around the core of a +1 disclination
placed at the center of a freely suspended ferroelectric smectic-C� film subjected to a flow of ethanol. We show
that the �c director partially winds under the action of the Leslie chemomechanical effect by forming an imperfect
target and that this winding is stabilized by flows which are induced by the Leslie chemohydrodynamical stress.
We show moreover that there is a discrete set of solutions of this type. These results are explained in the
framework of the Leslie theory for chiral materials. This analysis confirms that the Leslie chemomechanical
and chemohydrodynamical coefficients are of opposite signs and of the same order of magnitude to within a
factor of 2 or 3. A method for measuring the velocity field is also proposed, which does not require seeding the
film with particles that can disturb the flows.
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I. INTRODUCTION

We have shown in a previous article [1], to which we refer
for a general introduction about the Leslie effects, that it was
possible to wind the �c director inside a film of smectic-C�

subjected to a flow of ethanol. As the director anchors parallel
to the meniscus that connects the film to its frame (circular
in all of our experiments), it cannot turn on the edge of the
meniscus. Because of this boundary condition, the phase φ,
defined as the angle between the �c director and a fixed direc-
tion in the film, accumulates in the film and a target pattern
forms. When the +1 defect imposed by the boundary condi-
tions is trapped on the meniscus, the target is stabilized—in
first approximation—when the elastic torque is balanced by
the chemomechanical torque imposed by the flow of alcohol.
Under this condition, the target pattern is circular, except in
the center of the film where significant oval deformations are
visible (Fig. 1). We showed that these deformations were not
due to the elastic anisotropy of the liquid crystal (LC), but to
the presence of two recirculation vortices near the center of
the target. These vortices are caused by the Leslie chemohy-
drodynamic stress induced by the flow of ethanol. From this
work, we estimated the order of magnitude of the ratios ν/K
of the Leslie chemomechanical coefficient ν over the average
elastic constant K and we found that the ratio X = μ/ν, where
μ denotes the Leslie chemohydrodynamic coefficient, was
negative, of the order of −2.5. In this paper, we focus on the
formation of a target when the +1 defect is no longer pinned
on the meniscus, but is placed in the center of the film. In
that case, the solution becomes rotationally symmetric, which
was not the case with the targets previously described. This
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change of symmetry is fundamental and leads to very different
solutions that we analyze in this paper.

It must be noted that the importance of this change of
symmetry was already noted by many authors, in particular
by Cladis et al. [2] when they studied the magic spiral con-
figuration (first described in nematics by de Gennes [3]) in a
smectic-C film pierced by a fiber and by Chevallard et al. [4]
when they studied topological flows in a film subjected to a
rotating electric field with a +1 defect in the center (for a
review on this problem see Ref. [5]).

The plan of the paper is as follows. In Sec. II, we briefly
recall how the films are prepared and how the flow of ethanol
is imposed experimentally. In Sec. III, we analyze what hap-
pens at equilibium when no flow of ethanol crosses the film
and we show that there exist two distinct configurations when
the +1 defect is placed in the center of the film. In Sec. IV,
we analyze what happens when the film is subjected to a
flow of ethanol. We will show that several solutions exist,
forming target patterns partially wound due to the presence of
important flows. We will also describe a new optical method
for visualizing flows in the film based on the observation and
the tracking of the orientational fluctuations of the director.
This method inspired by the classic particle image velocime-
try (PIV) does, however, not require seeding the film with
particles, which makes it less intrusive and more powerful
than the latter. Finally, conclusions and perspectives are drawn
in Sec. V.

II. EXPERIMENTAL SYSTEM

The LC used is the commercial chiral mixture FELIX
M4851-100 (Merck, Germany). This LC has a smectic-C�

phase at room temperature as can be seen from the phase
sequence

Cr < −20 ◦C–Sm C�–67◦C–Sm A–71◦C–Chol–76◦C–Iso.
The device used to prepare and observe a film subjected to

a flow of ethanol is described in Ref. [1] to which we refer
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0.1 mm

FIG. 1. Typical target pattern observed at equilibrium in a circu-
lar film of 10 layers crossed by a flow of ethanol. In this case, the +1
defect is pinned on the meniscus and does not move.

the reader for more information. A simplified diagram of this
device is shown in Fig. 2.

The most important thing to know is that in all experiments,
the film is stretched over a stainless steel pinhole of thickness
200 µm and 0.6 mm in diameter. This pinhole is placed on top
of a box in which the mixture air+ethanol vapor circulates.
The rate of ethanol vapor is controlled by mixing precisely
dry air with dry air saturated in ethanol at 18 ◦C. In this way,
the difference in ethanol vapor pressure between the two sides
of the film is given by

�P = % × Psat, (1)

where % is the percentage of ethanol vapor below the film and
Psat the saturation vapor pressure of ethanol, equal to 5.16 kPa
at 18 ◦C. In practice, the dry air and the air+ethanol mixture
are injected with a flow rate of 20 ml/min. It is important to
note that the flows remain negligible in the film when dry air
is injected on both sides of the film with this flow rate.

The box is placed in an oven regulated at 25 ◦C which
is the temperature at which all our experiments have been
performed. This oven is fixed on the rotating stage of a re-
flection microscope (Laborlux 12Pol, Leica) equipped with a
mercury vapor lamp and a blue filter (λ = 436 nm) or a green
filter (λ = 546 nm). The film is observed through a tilted glass
slide which ensures the thermal insulation of the film. The
film thickness is obtained by measuring the film reflectivity at
these two wavelengths.

III. EXPERIMENTAL RESULTS

We have shown in our previous paper that the �c director
orients parallel to the meniscus that connects the film to the
frame on which it is stretched. We recall that the �c director
is the unit vector giving the projection in the film plane of
the mean orientation of molecules. Because of this anchoring
condition, a +1 defect is necessarily present in the film. This
defect often pins on the meniscus, but it sometimes detaches
from the meniscus. In this paper, we analyze the film behavior
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FIG. 2. Diagram of the experimental device used to observe a
film subjected to a flow of ethanol. CAM: Andor sCMOS ZYLA-
4.2P-USB3.0 camera; P: polarizer; SRB: semireflective blade; A:
analyzer; O: objective (×10 or ×20).

when the +1 defect is free to move inside, first at equilibrium
when there is no flow of ethanol, and then when the film is
subjected to a flow of ethanol.

A. Film at equilibrium

In the absence of a flow of ethanol, the film tends to
minimize its elastic energy. The equilibrium state is reached
when the +1 defect lies in the center of the film as observed
before by many authors [2,6–8]. In practice, we observed two
types of defects which are shown in Fig. 3 between crossed
polarizers and between slightly uncrossed polarizers. The first
thing that stands out is that between crossed polarizers the
extinction branches do not form a Maltese cross, but are
strongly deformed. This immediately shows that these defects
are not in a purely radial or circular configuration. We know
from previous studies that the �c director is oriented parallel to
the meniscus, which imposes a circular configuration at the
edge of the film. As the branches are twisted, the obvious
conclusion is that the circular configuration is energetically
less favorable than the radial configuration which tends to
develop in the center of the film. This is clearly visible in
Figs. 3(a) and 3(c), where the extinction branches are parallel
to the polarizer and the analyzer in the central part of the film.
The radial configuration near the center is also confirmed by
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(a) (c)

(b) (d)

FIG. 3. The two types of +1 defects observed experimentally
in a circular freely suspended film of 10 layers. (a) and (b): the
first type of defect observed between crossed and slightly uncrossed
polarizers. (c) and (d): the second type of defect observed in the same
conditions. In (a) and (c) the polarizer is horizontal and the analyzer
is vertical. In (b) and (d) the polarizer is horizontal and the analyzer
is rotated by 5 ◦ CCW.

slightly rotating the analyzer. In this case, the four extinction
branches are replaced by two branches inclined at 45◦ with
respect to the polarizer near the center of the film. This means,
according to the intensity calibration curve shown in Fig. 4,
that the director is indeed tilted by 45 ◦ along these branches,
as it should be in a radial configuration. The main difference
between these two defects is visible very close to their core,
in a region of typical diameter 50–100 µm. In the first defect,
shown in Figs. 3(a) and 3(b), the radial configuration of the
director extends to the core of the defect as indicated by the
arrangement of the extinction branches which are perfectly
aligned on either side of the core. However, this is not the case
for the other defect shown in Figs. 3(c) and 3(d), where the
extinction branches are strongly deformed near the core and
are slightly shifted one from the other on both sides of the
core. This reveals that the director field is strongly distorted
with respect to the radial configuration in this region. It must
be noted that these two types of defects have already been
observed by Loh et al. [8] and correspond to a stable and
metastable solution of the torque equation. In practice, the two
types of defects are observed with a similar frequency, which
indicates that their energies are likely very close to each other.

B. Film under a flow of alcohol

We saw in our previous paper on target patterns [1] that,
in the presence of a flow of ethanol, the director undergoes a
torque, which causes the winding of the phase and a parabolic
distortion of the phase field in the stationary regime when the
defect is pinned at the edge of the film. One might think that,
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FIG. 4. Typical calibration curve of the reflected intensity be-
tween crossed polarizer and analyzer (a) and when the analyzer is
rotated CCW by 5 ◦ for a film of 10 layers. From Ref. [1].

in the presence of a +1 defect in the center of the film, the
phase winds in the same way by forming a spiraling target
with a parabolic distortion of the phase field superimposing
to the singular phase field. This is indeed what happens in the
presence of a +1 defect in chiral Langmuir monolayers [9]
subjected to the evaporation flow of the water contained in the
sub-phase, or in films of smectic-C when the director is wound
with a rotating electric field [10]. In these two examples, the
solution is unique and looks like a strongly wound spiraling
target as the one shown in Fig. 6. It must be noted that in the
monolayers, no flows are observed because they are strongly
damped by the viscosity of the sub-phase, whereas in the
freely suspended smectic-C film under rotating electric field,
circular topological flows persist in the steady state when the
phase field is static (Fig. 6) [10].

The situation is however completely different in our exper-
iments, for several reasons.

—First, several stationary solutions are observed experi-
mentally in the same film at the same percentage of alcohol.
This contrasts with the previously cited experiments in which
the solution was unique. Two of these solutions, frequently
observed, are shown in Fig. 5. The first one, which is the less
wound, will be called solution of order 0. The second one,
more wound, will be called solution of order 1. We mention
that other, more wound, solutions were observed, but they
were less frequent and above all too unstable and too fugitive
to be photographed;
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(a)

(b) 0.1 mm

FIG. 5. Two stable stationary states observed when the defect lies
in the center of the film and when the film is subjected to a flow of
alcohol. The film is 15 layers thick and the percentage of alcohol
vapor is 20%. The reader will note that in this experiment the defect
is of the same type as in Figs. 3(c) and 3(d).

—Second, the �c director is much less wound here than in
the usual target pattern observed at the same percentage of
ethanol vapor when the defect is pinned on the meniscus (see
Fig. 14 in Ref. [1] or Fig. 3.20 in Ref. [11] for a compari-
son);

—Third, the phase winding is localized near the edge of the
film, contrary to what was observed in Langmuir monolayers

FIG. 6. Spiraling target pattern observed in the stationary regime
in a smectic-C film subjected to a rotating electric field. This pic-
ture is the superposition of five images taken at time intervals of
20 s. The positions of dust particles are indicated by white dots and
reveal the existence of the so-called topological flow. From Ref. [10],
courtesy P. Pieranski.

or in smectic-C films under rotating electric field as one can
see in Fig. 6;

—Fourth, and that is probably the most important obser-
vation, there are significant flows in the film. These flows
are visible to the naked eye as one can immediately realize
by viewing the videos SM1 and SM2 [12]. These flows are
much stronger than in the experiment of Chevallard et al. and
they are mainly localized in the region where the director
is not wound. This strongly suggests that these flows pre-
vent the director from winding, contrary to the topological
flows described by Chevallard et al. [10]. We shall see in
the theoretical section that these flows are due to the chemo-
hydrodynamical stress and dominate the topological flows
associated with the chemomechanical torque.

To complete these observations we measured the radial
profile of angle ψ (r) = φ(r, θ ) − θ for the two solutions of
Fig. 5. Here, φ(r, θ ) is the angle between the �c director and
the x axis and θ is the polar angle in cylindrical coordinates.
In principle, an absolute measurement of the intensity along a
radius would be sufficient to determine this profile on the con-
dition of having an intensity calibration curve. Unfortunately,
it was not the case in these experiments [13]. In addition, the
strong variation of the intensity close to the meniscus makes
this measurement very inaccurate. For this reason, we chose
another method, using the fact that the pattern has rotational
symmetry around the defect. By drawing the lines where the
intensity is the same, we got the positions where the �c director
had the same orientation. By reversing the polar coordinates
of these positions, we then obtained the orientation profile.
Formally, this amounted to searching for the lines [r, θ (r)] on
which φ[r, θ (r)] = φ0, which gives the angle profile of the
pattern using the relation ψ (r) = φ0 − θ (r). This method is
much simpler than the other one, because it does not require
having a complete calibration curve, but just knowing the
orientation φ0 at a chosen point. It gives in particular the
variations of ψ (r) in a precise way, since only one image of
the texture is needed to measure these variations. However,
the absolute value of the angles depends on the knowledge
of the reference orientation φ0, which is missing here a priori.
To estimate it nevertheless, we assumed that the intensity
calibration curves change little from one experiment to an-
other and we used the calibration curve of Fig. 4 by taking
for φ0 the values of φ corresponding to the maximums and
minimums of this curve. Figure 7 shows the angle profiles
obtained with this method from the images shown in Fig. 5.
By neglecting the variations very close to the core of the defect
(in r = 0), we note that the molecules pass from a quasiplanar
orientation (φ ∼ −π/2) at the edge of the film, toward a radial
organization (φ ∼ 0 or φ ∼ π ) close to the center. Molecules
thus rotate between the plateau and the edge of the film by
approximately π/2 for the solution of order 0 and by 3π/2
for the solution of order 1.

We also measured the velocity profile for the two solutions
shown in Fig. 5. One possible method is to introduce tracer
particles and study their trajectories. We tested this method
but we found that the use of tracers was not appropriate in our
experiments. Indeed, we observed that after a certain time, the
particles aggregated on the core of the defect and deformed
the texture, which strongly disturbed the measurements. For
this reason, we developed a new method which does not
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FIG. 7. Orientation profiles measured from the snapshots shown
in Fig. 5. The different colors correspond to the measurements
made on the dark and bright branches of the pattern. Angle
ψ (r) = φ(r, θ ) − θ represents here the deviation from the radial
configuration.

require seeding the film with particles. This method is based
on the temporal tracking of the orientational fluctuations of
the director and only requires relatively fast acquisition of
film images. We indeed see on the Supplemental Movie SM1
[12] that the local intensity fluctuations are clearly advected
by the flows present in the film. Based on these observations,
we developed an image processing program which allowed us
to automatically track these fluctuations and deduce a mea-
surement of the velocity field. This program resembles a PIV
code except that the particles are now replaced by the local
intensity fluctuations. More details on this method are given
in the Appendix. With this technique, we checked that the
flows were orthoradial and we measured the velocity profiles
corresponding to the two solutions shown in Fig. 5. The result
is presented in Fig. 8. We note now that the velocity changes
sign once for the solution of order 0 and twice for the solution
of order 1 near the edge of the film. These velocity reversals
are clearly visible to the naked eye under the microscope as
the reader can verify by viewing the Supplemental Movies
SM1 and SM2 [12].

To complete these data, we also measured how the velocity
changes with the percentage of ethanol vapor. The experiment
was performed with a film of 17 layers in the configuration of

0.0 0.2 0.4 0.6 0.8 1.0

r/R

−0.05

0.00

0.05

0.10

0.15

0.20

v
θ

(m
m

/s
)

Order 0

Order 1

FIG. 8. Velocity profiles measured in the film of Fig. 5 of 15
layers when the percentage of ethanol vapor is of 20%. The blue
symbols correspond to solution of order 0 and the green ones to the
solution of order 1.

order 0. Two images of the film at 20% and 60% of ethanol
vapor are shown in Fig. 9. The corresponding phase profiles
are shown in Fig. 10. They are essentially identical, the an-
gle ψ varying from −π/2 at the edge of the film (circular
orientation) to 0 (radial configuration) in the center. We also
measured the velocity profiles. They are shown for percent-
ages ranging from 20% to 60% in 10% increments in Fig. 10.

(a)

(b)

FIG. 9. Solution of order 0 observed in a film of 17 layers at 20%
(a) and 60% of ethanol vapor. The reader will note that the defect is
this time of the same type as in Figs. 3(a) and 3(b).
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FIG. 10. Angle profile measured at 20% (a) and 60% (b) of
ethanol vapor from the images of Fig. 9. At 60%, the angle varies so
rapidly near the edge of the film that it becomes nearly impossible to
measure. The different colors correspond to the measurements made
on the dark and light branches of the pattern.

Finally, we reported in Fig. 11 the maximal velocity measured
along these profiles as a function of the percentage of ethanol
(or the pressure difference �P). As expected, a linear law is
observed. The reader will note that at 20% of ethanol vapor,
the maximal velocity for this film is 0.14 mm/s. This velocity
is smaller than in the film of 15 layers shown in Fig. 5 in
which we measured 0.19 mm/s. This shows that the velocity
decreases when the film thickness increases. This behavior is
expected since the ethanol flow must decrease at a given �P
when the film thickness increases.

IV. THEORETICAL MODEL

A. General considerations and notations

We recall that the film is characterized by two elastic con-
stants KS and KB which respectively describe the splay and
bend distortions of the director field. In the following, we will
set ⎧⎪⎨

⎪⎩
K = KS + KB

2
ε = KB − KS

KB + KS

. (2)
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FIG. 11. Maximal velocity measured in the film of Fig. 9 as a
function of the percentage of ethanol vapor (top scale) and the vapor
pressure difference (bottom scale). The solid line is the best fit with
a linear law.

K is the mean elastic constant and ε characterizes the elastic
anisotropy.

The film is also characterized by six viscosity coefficients
αi—but only five of them are independent since they must
verify the Parodi relation α2 + α3 = α6 − α5 as in the nemat-
ics [14]—and by two rotational viscosities γ1 = α3 − α2 and
γ2 = α3 + α2 = α6 − α5.

Finally, it can be shown that when the film is crossed
by a flow of particles (in our experiment a flow of ethanol)
two new coupling terms appear in the expressions of the
out-of-equilibrium torque and stress acting on the molecules.
These two quantities are proportional to �P and two new
coefficients ν and μ, respectively called the chemomechanical
and chemohydrodynamical coefficients.

In the following, we will introduce the dimensionless ratio

X = μ

ν
, (3)

and the dimensionless viscosity coefficients

ai = αi

γ1
and γ = γ2

γ1
. (4)

Because of the symmetry of revolution of our problem,
all the equations will be written in polar coordinates (r, θ ).
We will also use dimensionless variables r̃ = r/R, ṽθ =
vθ /(D/R) where D = K/γ1 is the average rotational diffusiv-
ity, and we will omit the tilde symbol to simplify writing in
the following.

B. General equations

The two equations which govern the dynamics of the film
are the torque equation and the momentum (or Cauchy) equa-
tion. Their general expressions are given in Ref. [1]. The first
equation essentially governs the rotational dynamics of the
director, while the second one gives the velocity field. In the
general case, these two equations are coupled and cannot be
solved separately.
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In our study, we suppose that the defect is in the center of
the film and that the anchoring of the �c director is planar on
the edge of the film. The film is circular with radius R. We
will denote by φ the angle between the director and the axis x
and we will assume that the film is in the steady state: ∂φ

∂t = 0.
Because of the symmetry of revolution of our problem, we
will look for the solution in the form vθ (r) and φ(r, θ ) = θ +
ψ (r) with ψ (R) = −π/2 (mod π ) to take into account the
boundary condition on the outer edge of the film.

With these notations, the dimensionless torque equa-
tion reads

�ψ + 8πn + γ 1(ψ )

2

(
∂vθ

∂r
− vθ

r

)

+ ε

{
cos(2ψ )�ψ − sin(2ψ )

[(
∂ψ

∂r

)2

+ 1

r2

]}
= 0,

(5)

where

γ 1(ψ ) = 1 − γ cos (2ψ ), (6)

and

n = ν�PR2

8πK
. (7)

Here, we recognize in the first line of Eq. (5) the isotropic
part of the elastic torque, the thermomechanical torque and
the viscous torque, respectively, and in the second line the
anisotropic part of the elastic torque. Note that n is the number
of turns accumulated by the director in a target without defect
that is calculated by neglecting the elastic anisotropy and the
flows [1,11].

The second equation is the momentum Cauchy equa-
tion which can rewritten under an integral form by writing
that the momentum of the forces acting on a disk of radius r
is equal to zero in the absence of external forces. This gives
explicitly:∫ 2π

0
r
(
σ L

θr + σV
θr + σ E

θr

)
rdθ +

∫ 2π

0
�E

S rdθ = 0. (8)

One recognizes in the first integral the chemohydrodynami-
cal stress of Leslie, the viscous stress and the elastic stress,
respectively, and in the second integral the surface elastic
torque. In practice, it is not necessary to calculate σ E

θr and �E
S

because of the symmetry of revolution of the problem that
imposes: ∫ 2π

0
r σ E

θr rdθ +
∫ 2π

0
�E

S rdθ = 0. (9)

Note that this result was demonstrated for the first time by O.
Parodi to solve the paradox of the magic spiral raised by R. B.
Meyer in nematics (for a discussion see Ref. [3]). This identity
greatly simplifies Eq. (8) which becomes[
β(ψ ) + γ 1(ψ )

4

](
∂vθ

∂r
− vθ

r

)
+ 4πn[1 − X cos(2ψ )] = 0,

(10)

where we set

β(ψ ) = a4

2
+ a5

4
+ a6

4
− γ

4
cos (2ψ ) + a1

4
[1 − cos2 (2ψ )].

(11)

Equation (10) immediately shows that vθ must be proportional
to n in agreement with the experimental results (see Fig. 11).
One also notices that the same quantity ∂vθ

∂r − vθ

r appears in
Eqs. (5) and (10). This makes it possible to decouple these
two equations and obtain an equation for ψ :

�ψ + 8πnF (ψ )

+ ε

{
cos(2ψ )�ψ − sin(2ψ )

[(
∂ψ

∂r

)2

+ 1

r2

]}
= 0,

(12)

where we set

F (ψ ) = 4β(ψ ) + X γ 1(ψ ) cos(2ψ )

4β(ψ ) + γ 1(ψ )
. (13)

In practice, it is better to solve this equation by using the new
variable k = ln r. With this variable, the previous equation be-
comes

∂2ψ

∂k2
+ 8πnF (ψ )e2k

+ ε

{
cos(2ψ )

∂2ψ

∂k2
− sin(2ψ )

[(
∂ψ

∂k

)2

+ 1

]}
= 0.

(14)

Solving this equation with appropriate boundary condi-
tions in k = 0 and k = kc (see below) gives ψ (k). From this
solution, the velocity is obtained by solving Eq. (10) with
the boundary condition vθ (1) = 0 expressing that the velocity
vanishes at the edge of the film. In practice, we will choose
kc = −10 in our calculations, which corresponds to a core
radius rc of 10 nm for a film radius R = 0.25 mm. This choice
is a bit arbitrary but it is possible to check that the solution
depends very little on the choice of kc at great distance with
respect to rc.

C. Defect at equilibium

At equilibrium, without flow of ethanol, one has n = 0 and
vθ = 0 and angle φ satisfies the following equation:

∂2ψ

∂k2
+ ε

{
cos(2ψ )

∂2ψ

∂k2
− sin(2ψ )

[(
∂ψ

∂k

)2

+ 1

]}
= 0.

(15)

This equation has the first integral:(
∂ψ

∂k

)2

[1 + ε cos(2ψ )] + ε cos(2ψ ) = constant. (16)

To solve the second-order differential equation (15) we sup-
pose that the director aligns parallel to the edge of the film,

ψ (0) = −π/2, (17)

and that the director anchors on the core of the defect with an
anchoring energy W = 1

2Wa sin2 ψ . Minimization of the total
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FIG. 12. Equilibrium solutions calculated by taking ε = 0.5. The bottom row shows the radial profiles of angle ψ for each solution. The
top row shows the density plot of sin2(2ψ ) corresponding to images taken between crossed polarizers. The middle row shows the density plot
of sin2(ψ − π/4) corresponding to images taken between slightly uncrossed polarizers.

energy leads to the following torque equation on the core:

ψ ′(kc) =
( rc

lp
− 2ε

1−ε

)
sin[2ψ (kc)]

2
[

sin2[ψ (kc)] + 1+ε
1−ε

cos2[ψ (kc)]
] , (18)

where ψ ′ is the derivative with respect to k and lp = KS
RWa

is
the dimensionless extrapolation length. If the anchoring is
weak, which is certainly the case on the isotropic core, then
one has lp � rc and the ratio rc/lp can be neglected in the
previous equation as long as KB > 1.5KS . This means that the
anchoring on the core does not play an important role in this
problem.

As for the elastic energy of the defect, it can be calculated
(in unit of KSR) from the formula

E =π

∫ kc

0

ψ ′2+2εψ ′ sin(2ψ )+ε(ψ ′2 − 1) cos(2ψ ) + 1

1 − ε
dk.

(19)

It is important to note that to each particular solution ψ =
ψp of these equations is associated another solution with the
same energy ψ = −ψp − π . These two solutions are images
of each other in a mirror and are of opposite chiralities.

If ε � 0 (KS � KB), then the only solution is ψ (r) = −π/2
corresponding to the stable circular configuration. In our
experiments, this solution is never observed, meaning that

KB > KS . This is expected because of the strong spontaneous
polarization of the SmC� phase which is known to increase
the value of KB [15–17].

When ε > 0 (KS < KB), the circular solution always exists,
but it is unstable. However, other solutions exist which can be
found by solving numerically Eq. (15) with Mathematica. To
find them, we used a shooting method consisting of taking
as starting initial conditions ψ (kc) = C and ψ ′(kc) given by
Eq. (18). By slowly varying C, we found that this equation had
several solutions. The first of them are shown in Fig. 12 for
ε = 0.5 (KB = 3KS) in ascending order of energy. For each
of them we checked that Eq. (16) was satisfied in the whole
interval [kc, 0]. Only solutions with the extinction branches
rotating CCW at large distance of the core are shown. For
each solution, the radial profile ψ (r) and the energy is given
in Fig. 12 together with the density plots of sin2(2φ) and
sin2(φ − π/4), corresponding to the images between crossed
polarizers and slightly uncrossed polarizers. All these defects
have an energy smaller than that of the circular defect, for
which we calculate a value of 30π = 94.25. The value of ε

was chosen so that the density plots of the two solutions which
have the least energy [Figs. 12(a) and 12(b)] resemble as
closely as possible the experimental images shown in Fig. 3.
This value is not very precise but gives the order of magnitude
to within ±0.5. We note that the existence of several solutions
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was already demonstrated by Loh et al. [8], but with different
boundary conditions (weak planar anchoring condition at the
edge of the film and fixed value of φ on the core of the defect).

D. Defect under ethanol flow

In this section we analyze the behavior of the film when it is
subjected to a flow of ethanol. At first we will look under what
conditions there are solutions with a plateau. Then, we will
study the stability of these solutions. Finally, we will make a
complete study of these solutions by numerically solving the
equations, which will allow us to calculate the flows around
the defect.

1. A discrete set of dynamical solutions

We have seen that under a flow of ethanol, several dynamic
solutions exist in the film. All these solutions are characterized
by a partial winding of the director near the edge of the film
and by the presence of a large almost unwound central zone
in which significant flows are present. In the solution of order
0 presented in Fig. 5(a) the director rotates a little more than
a quarter turn over a distance of the order of 0.1R while in
the solution of order 1 shown in Fig. 5(b), the director rotates
an additional half-turn over a distance of 0.2R. Other solutions
exist, wound by additional half turns, but they were impossible
to study because of their tendency to spontaneously unwind
to return to a lower order solution by transiently forming a
texture similar to that shown in Fig. 18(c) below.

An essential characteristic of all these solutions is that
there is an extended range of radii, over which the angle ψ

is almost constant and forms a quasiplateau (see Figs. 7 and
10). Since ψ is almost constant, its first and second derivatives
with respect to r (or k) almost vanish. As a consequence, we
deduce from Eq. (14) that the average value ψp of ψ on each
pseudo-plateau must satisfy the equation

F (ψp) = ε sin(2ψp)

8πn
e−2k . (20)

In practice F (ψp) is an oscillating function of unity ampli-
tude. In addition, we calculate n ≈ 13 in a film of radius R =
0.25 mm for an ethanol fraction of 20% by taking ν/K ≈ 5 ×
109 kPa−1s−1 [1,11]. For 0.2R < r < 0.8R, we have 1.6 <

e−2k < 25. It follows that the quantity in the second member
of Eq. (20) is always less than 0.038. We conclude that with
a good approximation, the average value ψp of ψ on each
quasiplateau is the solution of the equation

F (ψp) = 0. (21)

From this equation, we calculate by using Eq. (13)

X = −4β[cos(2ψp)]

γ 1[cos(2ψp)] cos(2ψp)
. (22)

This formula makes it possible to calculate X knowing ψp and
the viscosities.

To further analyze this issue, we use the Stannarius
model for the viscosity tensor [18]. In this model a1 = a3 =
a6 = 0, a2 = γ = −1 and a4—which represents the ordinary
viscosity—is arbitrary. We have seen that this model allowed
us to explain our observations on nonsingular targets fairly

− 1.0 − 0.5 0.0 0.5 1.0

cos(2 ψp)

− 30

− 20

− 10

0

10

20

30

X

no solutions with a plateau

FIG. 13. X as of function of cos(2ψp) where ψp is the value of
ψ on the plateau when it exists.

well. It is thus pertinent to use it here. In this model, F (ψp) is
written in the form

F (ψp) = 2a4 + [1 + X cos(2ψp)][1 + cos(2ψp)]

2[1 + a4 + cos(2ψp)]
, (23)

and Eq. (22) becomes

X = −2a4 − 1 − cos(2ψp)

[1 + cos(2ψp)] cos(2ψp)
. (24)

The functions X [cos(ψp)] and F (ψp) are plotted in Figs. 13
and 14, respectively, when a4 = 1. These graphs show that for
−2 < X < 9.9 there is no solution with a plateau. However,
solutions with a plateau exists with four possible values for ψp

in the interval [−π,+π ] when X > 9.9 and only two possible
values for ψp in the interval [−π,+π ] when X < −2.

This result is general and applies whatever the value of a4.
To show it, we set x = cos(2ψp) and we rewrite Eq. (24) by
using this variable:

Xx2 + (X + 1)x + (2a4 + 1) = 0. (25)

This quadratic equation in x has real solutions if and only if
its discriminant � is positive:

� = X 2 − (8a4 + 2)X + 1, (26)

i.e., if ⎧⎪⎨
⎪⎩

X < 1 + 4a4 − 2
√

2a4(1 + 2a4)

or

X > 1 + 4a4 + 2
√

2a4(1 + 2a4)

. (27)

By taking a4 = 1, for instance, this gives the conditions

X < 0.1 or X > 9.9 . (28)

When one of these two conditions is met, Eq. (25) has two
solutions ⎧⎪⎪⎨

⎪⎪⎩
x1 = −(X + 1) + √

�

2X

x2 = −(X + 1) − √
�

2X

. (29)
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FIG. 14. Typical shape of the function F (ψ ) for different values
of X in the Stannarius viscosity model. In the upper graph X < 0 and
in the lower one X > 0. Depending on the values of X this function
may not cancel or it may cancel two or four times. The curves are
drawn here by taking a4 = 1. The dots indicate the stable solutions
for which F ′(ψp) < 0.

Because x = cos(2ψp), these solutions must also be in the
interval [−1, 1]. This additional condition is always satis-
fied when X > 1 + 4a4 + 2

√
2a4(1 + 2a4) (or X > 9.9 when

a4 = 1), and in this case, we find four solutions for each
integer value of p given by

ψp = pπ ± 1

2
arccos

(
−(X + 1) ± √

�

2X

)
. (30)

These solutions are visible in the lower graph of Fig. 14. How-
ever, in the case X < 1 + 4a4 − 2

√
2a4(1 + 2a4) (or X < 0.1

when a4 = 1) we have x1 < −1 and the solution x2, which is
always positive, is less than 1 if

X < −(1 + a4). (31)

In this case, we find only two solutions for each integer value
of p given by

ψp = pπ ± 1

2
arccos

(
−(X + 1) − √

�

2X

)
. (32)

These solutions are visible in the upper graph of Fig. 14. Note
in passing that the radial solution ψp = 0 is obtained in the
limiting case X = −(1 + a4) while the circular solution ψp =
±π/2 is reached in the theoretical limit X → +∞.

2. Stability of the solutions

At each value of x solution of Eq. (25) are associated two
values of ψp in the interval [−π/2 + pπ, π/2 + pπ ] given by{

ψp = 1
2 arccos(x) + pπ

ψp = − 1
2 arccos(x) + pπ

. (33)

For one of these solutions, F ′(ψp) < 0 and for the other
F ′(ψp) > 0. To know if these solutions are stable, let us
rewrite the torque equation on the plateau by taking into
account the viscous term. The calculation gives

�
∂ψ

∂t
= 8πnF (ψ )e2k, (34)

where � is a viscosity term, always positive, but its expression
is not important here.

We can now look for a solution in the form ψ (t ) = ψp +
u(t ), where u is a perturbation. To the first order in u, the
previous equation becomes

�
∂u

∂t
= 8πnF ′(ψp)e2ku. (35)

This equation shows that if F ′(ψp) > 0 (knowing that ν—and
so n—is positive in our experiments), the perturbation u grows
exponentially over time. However, it decays exponentially
over time if F ′(ψp) < 0. As a consequence, the solutions
ψp for which F ′(ψp) > 0 are unstable, whereas the solutions
ψp for which F ′(ψp) < 0 are stable. The stable solutions are
marked with a dot in Fig. 14.

3. General solutions

To find the complete angle profile ψ (r) [or, equivalently,
ψ (k) in the steady state], one must numerically solve Eq. (14)
with the two boundary conditions (17) and (18) which respec-
tively fix the angle on the edge of the film and the anchoring
condition on the core. In practice, this problem can be solved
with Mathematica using a finite-element relaxation method.
This consists in solving numerically the equation

∂ψ

∂t
= �ψ + 8πnF (ψ )

+ ε

{
cos(2ψ )�ψ − sin(2ψ )

[(
∂ψ

∂r

)2

+ 1

r2

]}
= 0,

(36)

with the boundary conditions

ψ (0, t ) = −π/2, (37)

and

ψ ′(kc, t ) = − 2ε
1−ε

sin[2ψ (kc, t )]

2
[

sin2[ψ (kc, t )] + 1+ε
1−ε

cos2[ψ (kc, t )]
] . (38)

In practice an initial profile must be given to solve these
equations numerically. We chose a parabolic profile slightly

024704-10



CHEMICAL LESLIE EFFECT IN A CHIRAL … PHYSICAL REVIEW E 107, 024704 (2023)

0 0.2 0.4 0.6 0.8 1

0

π

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

r r

ψ v 
 /n θ

(a) (b)

0

1

2

0
1

2

3π/2

π/2

−π/2

FIG. 15. Phase (a) and velocity (b) profiles for the solutions of
order 0 (red curve), 1 (blue curve), and 2 (green curve) calculated by
taking ε = 0, a4 = 1, and X = −2.5.

deformed near the core, of the form

ψ (k, 0) = ak + A

[
1 − (ek − ekc )2

(1 − ekc )2

]
− π

2
. (39)

The different solutions were obtained by manually changing
the amplitude A. For each value of A, the constant a was
numerically calculated to satisfy the anchoring condition (38)
at t = 0. This equation has in general several solutions. For
each pair of values (A, a), we found that the solution ψ (k, t )
quickly converged to a stationary solution. The corresponding
velocity profile was then calculated by solving numerically
with Mathematica Eq. (10) with the boundary condition
vθ (1) = 0.

To perform the numerics, we initially chose a4 = 1 and
X = −2.5, which are the values used previously to explain
the main properties of the nonsingular targets [1,11].

(1) First, we performed the calculations by neglecting the
elastic anisotropy (ε = 0). In this limit, only one solution of
each order 0, 1, 2, … is found. They are shown in Fig. 15. The
angle profiles resemble the experimental ones if one neglects
the region near the core of the defect. The velocity profiles
are also very similar to those observed experimentally (see
Fig. 8). In particular, we find that the velocity goes through
a maximum—with a slightly larger value for the solution of
order 0 than for the solution of order 1—at a distance from the
center of the order of 0.4. We also find velocity inversions near
the edge of the film in the solutions of orders 0 and 1. These
results are in good qualitative agreement with experiments
(see Fig. 8).

(2) Second, we accounted for the elastic anisotropy by
taking ε = 0.5 (KB = 3KS , see Sec. IV C). We found that
two solutions of order 0 and two solutions of order 1 exist
(Fig. 16), but it could be that there are other solutions because
our search method is rather empirical. These solutions are
distinguished by the way φ varies near the core of the defect, a
phenomenon already observed at equilibrium (see Sec. IV C).
This is also consistent with experimental observations, as we
can see in Figs. 5(a) and 9. As for the velocity profiles, they are
very similar to those calculated by neglecting the anisotropy.

(3) Third, we studied how the pattern changes when n
increases. Experimentally, this leads to a widening of the
plateau and a tightening of the extinction fringes near the edge
of the film. This is clearly visible for the solution of order 0
in Figs. 9 and 10. This trend is well reproduced numerically
as can be seen in Fig. 17 calculated for the solution of order
0 with n = 10, 30, and 60 by taking a4 = 1, X = −2.5, and

0
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FIG. 16. Phase profiles, density plots of sin2(φ − π/8) and velocity profiles for the two solutions of order 0 (a, b), and the two solutions
of order 1 (c, d) calculated by taking ε = 0.5 (KB = 3KS), a4 = 1, and X = −2.5.
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FIG. 17. Phase (a) and velocity (b) profiles for the solution of
orders 0 calculated by taking ε = 0, a4 = 1, X = −2.5, and n = 10
(red curve), 30 (blue curve), and 60 (green curve).

ε = 0 (this parameter only affects the director field near the
core of the defect). It will also be noted that:

(1) the height of the plateau does not change with n in
agreement with experiments (see Fig. 10);

(2) the maximum velocity is reached at distance r ≈ 0.35
whatever the value of n, in agreement with experiments (see
Fig. 8);

(3) the maximum velocity increases slightly faster than n,
a tendency also observed experimentally as can be seen in
Fig. 11.

We also tested the role of X and a4, by taking ε = 0 for
simplicity.

(1) First, we changed the value of X by taking a4 =
1 and n = 10. The phase and velocity profiles for X =
−2,−2.5,−4,−8 are shown in Figs. 18(a) and 18(b) for the
solution of order 0 and in Figs. 18(c) and 18(d) for the solution
of order 1. These graphs show that the value of the phase on
the plateaus decreases, while the amplitude of the velocity
oscillations increases, when X decreases. In particular, the
velocity becomes more and more negative near the edge of the
film when X decreases. When X = −8 the two plateaus occur

r
0 18.06.04.02.0

r
0 0.2 0.4 0.6 0.8 1

r
0 0.2 0.4 0.6 0.8 1

−π/4

−π/2

0

0

4

−4

8

0

4

−4

8
12

−π/2

0

π/2

π

ψ ψ

v 
 /n θ v 
 /n θ

r
0 0.2 0.4 0.60.8 1

(a)

(b)

(c)

(d)

FIG. 18. Phase (a, c) and velocity (b, d) profiles for the solution
of order 0 (a, b) and of order 1 (c, d) calculated by taking ε = 0, a4 =
1, n = 10, and X = −2 (blue curves), −2.5 (red curves), −4 (green
curves), and −8 (black curves). When X = −8 the solution has two
clearly visible plateaus and the velocity presents strong oscillations.
Its density plot is shown in panel (c).
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FIG. 19. Phase profiles (a, d), density plots of sin2(φ − π/8)
(b, e) and velocity profiles (c, f) for the single solution when X = 0
(a–c) and the solution of order 0 (d–f) when X = 10 calculated by
taking ε = 0, a4 = 1 and n = 10. These solutions are not observed
experimentally.

simultaneously. This is not forbidden according to Fig. 14
because these two plateaux are stable. One example of such
a solution is shown in Fig. 18(c). Two other solutions of the
same type exist, with the same plateaus more or less wide, but
are not shown here because we never observed this type of
solution in the stationary regime. For completeness we also
show in Fig. 19 the profiles when X = 0 and X = 10. As
expected, we find that the plateaus disappear at X = 0. In
that case, there is a single solution shown in Figs. 19(a)–19(c)
which looks more like a classic target (as in Fig. 1, but without
the oval central distortion) superimposed on the defect image.
However, the plateaus reappear at X = 10. The solution of
order 0 is shown in Figs. 19(d)–19(f). For this solution, the
plateau is very low and the corresponding image is very dif-
ferent from that observed under the microscope. In addition,
the velocity does not reverse near the edge of the film, which
is incompatible with the experiment. This shows that we are
clearly not in the case X > 0 in our system, in agreement
with what we found earlier by studying the nonsingular target
patterns [1,11].

(2) Second, we tested the role of the ordinary viscosity a4

by taking X = −2.5 and n = 10. One can see in Fig. 20 that,
for the solution of order 0, the plateau lowers and the velocity
increases in absolute value when the viscosity decreases. It
will be noticed that the effect on the velocity is stronger at
the edge of the film than on the plateau. The same tendency is
observed for the other solutions.
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FIG. 20. Phase (a, c) and velocity profiles (b, d) for the solutions
of order 0 (a, b) and the solutions of order 1 (c, d) calculated by
taking ε = 0, X = −2.5, n = 10, and a4 = 1 (red curves), a4 = 0.5
(green curves), and a4 = 0.25 (blue curves).

4. Quantitative comparison between the theory and the experiment

To end this study, let us verify if the order of magnitude
of the velocities predicted by this model is compatible with
the experiment. In our previous study on nonsingular targets,
we found that D is of the order of 2.2 × 10−4 mm2/s for a
film of 10 layers and that X ≈ −2.5 by using the Stannar-
ius viscosity model with a4 = 1. According to Fig. 11, the
maximum velocity measured for the solution of order 0 in
a film of 17 layers of radius R ≈ 0.24 mm is of the order
of 0.3 mm/s for a percentage of ethanol vapor of 50%. Ac-
cording to Fig. 16 of Ref. [1], nmax ≈ 20, where nmax is the
number of turns observed in a nonsingular target in the sta-
tionary regime. This gives according to Fig. 25(a) of Ref. [1],
n ≈ nmax/0.6 ≈ 33 by taking a4 = 1. With these values, we
find that D/R ≈ 0.9 × 10−3 mm/s and by using the results of
Fig. 16 we find vmax ≈ 9 n ≈ 300 in dimensionless unit which
gives a maximal velocity of the order of 0.27 mm/s. This is
the right order of magnitude, which confirms the validity of
our analysis.

V. CONCLUSION

This study confirms our previous findings on the nonsin-
gular targets and on the major role of the flows induced by
the chemohydrodynamic Leslie effect. The originality here
lies in the existence of several solutions when the defect is
in the center of the film. These solutions look like partially
wound spiraling targets with a wide plateau in the middle part
of the film and a strongly wound area at the edge of the film.
It should be noted that it is the flows of chemohydrodynamic
origin which prevent the winding of the phase in the plateau
zone. These solutions are actually observed experimentally,
even if the high order solutions are difficult to study because of
their unstable nature. This study also confirms that the Leslie
chemomechanical and chemohydrodynamical coefficients are
of opposite signs and of the same order of magnitude to within
a factor of 2 to 3.

In the future, it would be interesting to make a complete
numerical simulation of the problem to study the stability of
these solutions by not imposing on the defect to remain in the
center of the film as in our previous calculations in polar co-
ordinates. Experimentally, it would be interesting to measure
the elasticity constants, either by light scattering [19] or by
image analysis of the fluctuations under the microscope [20].
It would also be very important to measure viscosities, but this
is an inherently complex problem that has not yet been fully
resolved experimentally in films.
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APPENDIX: VELOCITY MEASUREMENT
BY FLUCTUATION TRACKING

To obtain the velocity profile, we have developed a method
inspired by velocity measurements by particle image ve-
locimetry (PIV). However, this method does not require the
introduction of particles in the film, but just a relatively fast
acquisition of filmed images of the zone in which we want to
measure the velocity field (in practice a rate of 100 frames/s
was used). The measurement is based on the observation of
the thermal fluctuations of the director’s orientation. These
fluctuations are manifested by a flickering of the intensity on
the images. The advection of these fluctuations by the flows is
clearly visible in all of our experiments as can be seen on the
videos SM1 and SM2 [12]. We have therefore developed an
image processing program to automatically follow these fluc-
tuations (instead of the particles) and derive a measurement of
the velocity field.

The first step in this program consisted of subtracting from
each image the time-averaged value of the pattern. After this
operation, the intensity variations in each new image corre-
spond only to the orientation fluctuations. Depending on the
region of the film, the fluctuations are more or less visible.
More precisely, they are almost invisible inside the dark and
bright fringes of the pattern and well visible in areas where the
intensity changes a lot. We therefore performed all the pro-
cessing in the gray regions of the pattern where the intensity
varies the most.

The second step in the program consisted of defining a
study window in which the fluctuations were followed. The
size of this window was adjustable, but it was generally taken
in the order of 0.02 mm.

The third step in the program consisted of first measuring
the local intensity I (�r, t ) on each image and then calculating
the squared difference of the intensity between two successive
images of the video recording:

ε[�r, t, �δr, δt] = [I (�r, t ) − I (�r + δ�r, t + δt )]2. (A1)

This function was then averaged over all the pixels of the
window and over all the images of the sequence:

�[ �δr, δt] = 〈〈ε[�r, t, �δr, δt]〉�r〉t . (A2)
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FIG. 21. Example of function � obtained experimentally.
(a) Density plot of �(rδθ, δt ); (b) curves �(rδθ, δt ) at different δt .

This function � represents the correlation between all the
events taking place in the window in �r at time t and in �r + �δr
at time t + δt . In the absence of flow, this function is minimal
in �δr = �0 for any value of δt and just measures the spatial and
temporal spread of the fluctuations. In the presence of flow at
velocity �v, it must be minimal at �δr = �vδt for all δt . We used
this property to measure �v.

Written in this form, this function depends on three vari-
ables: �δr = (δx, δy) and δt . As it is also an average calculated
on 1000 images in general, its measurement and its analysis

0.02 0.04 0.06 0.08 0.100.00 0.12 0.14
δt (s)

0.000

0.003

0.006

0.009

0.012

0.015

0.018

(r
 δ

θ)
m

in
(m

m
)

FIG. 22. Value of rδθ at the minimum of � as a function of δt .
The solid line is the best linear fit of the data. Its slope gives the
velocity, here vθ = 0.114 mm/s.

are costly numerical operations. For this reason, we assumed
that the velocity profile was circular around the defect and
we only studied the function �[rδθ �eθ , δt] (with r constant),
which amounted to following only the circular displacements
of the fluctuations at distance r from the film center. Note that
the absence of radial flows stems from the incompressibility
condition when the problem has the symmetry of revolution.
We nevertheless checked the validity of this result by studying
the complete �[ �δr, δt] function for one experiment. For the
other experiments, we just measured the function �[rδθ, δt]
at each point of the film located at the distance r from the
center and we looked for their minimums to determine the
velocity at distance r from the center.

To illustrate the method, we show in Fig. 21 an example
of function � obtained experimentally. The simple fact of
observing a pattern and not only noise in Fig. 21(a) means that
the fluctuations are well measurable on our images. Visualiz-
ing a valley (in blue) outside of rδθ = 0 also proves that there
is a flow in the film. We also plotted in Fig. 21(b) a few curves
�[rδθ, δt] measured at different δt as a function rδθ . On
these curves, it is clearly seen that the minimum of � moves
along the ascending rδθ when δt increases. The depth of
the minimum also decreases when δt increases meaning that,
beyond a certain time, the intensity at time t is decorrelated
from that measured at time t + δt . The velocity is obtained by
plotting the value of rδθ at the minimum as a function of time
δt . In this way, we obtain a straight line whose slope directly
gives the velocity vθ (see Fig. 22).

[1] F. Bunel and P. Oswald, Chemical Leslie effect in a chiral
smectic-C� film: Nonsingular target patterns, Phys. Rev. E 107,
024703 (2023).

[2] P. E. Cladis, Y. Couder, and H. R. Brand, Phase Winding and
Flow Alignment in Freely Suspended Films of Smectic-C Liq-
uid Crystals, Phys. Rev. Lett. 55, 2945 (1985).

[3] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, In-
ternational Series of Monographs on Physics (Clarendon Press,
Oxford, UK, 1995).

[4] C. Chevallard, J.-M. Gilli, T. Frisch, I. V. Chikina, and P.
Pieranski, Cladis’ orbiting disclinations in smectic films sub-
mitted to a torque, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A
328, 589 (1999).

[5] P. Oswald and P. Pieranski, Smectic and Columnar
Liquid Crystals: Concepts and Physical Properties
Illustrated by Experiments, Liquid Crystals Book
Series (CRC Press, Taylor & Francis, Boca Raton, NJ,
2005).

024704-14

https://doi.org/10.1103/PhysRevE.107.024703
https://doi.org/10.1103/PhysRevLett.55.2945
https://doi.org/10.1080/10587259908026104


CHEMICAL LESLIE EFFECT IN A CHIRAL … PHYSICAL REVIEW E 107, 024704 (2023)

[6] C. D. Muzny and N. A. Clark, Direct Observation of the Brown-
ian Motion of A Liquid-Crystal Topological Defect, Phys. Rev.
Lett. 68, 804 (1992).

[7] P. E. Cladis, P. L. Finn, and H. R. Brand, Stable Coex-
istence of Spiral and Target Patterns in Freely Suspended
Films of Smectic-C Liquid Crystals, Phys. Rev. Lett. 75, 1518
(1995).

[8] K.-K. Loh, I. Kraus, and R. B. Meyer, Chiral hedgehog textures
in two-dimensional XY-like ordered domains, Phys. Rev. E 62,
5115 (2000).

[9] R. K. Gupta, K. A. Suresh, S. Kumar, L. M. Lopatina, R. L. B.
Selinger, and J. V. Selinger, Spatiotemporal patterns in a Lang-
muir monolayer due to driven molecular precession, Phys. Rev.
E 78, 041703 (2008).

[10] C. Chevallard, J.-M. Gilli, T. Frisch, I. V. Chikina, and P.
Pieranski, “Magic spiral” submitted to a torque: Topological
flows driven by Ericksen stresses in Sm C films, Mol. Cryst.
Liq. Cryst. Sci. Technol. Sect. A 328, 595 (1999).

[11] F. Bunel, Effet Leslie chimique dans les monocouches de Lang-
muir et les films libres de smectique C chiraux, Ph.D. thesis,
Ecole Normale Supérieure de Lyon, Lyon, 2021.

[12] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.107.024704 for two movies showing the
solution of order 0 (video SM1) and the solution of order 1
(video SM2).

[13] The use of a metal pinhole did not allow to impose an electric
field on the film, which is necessary to obtain an intensity
calibration curve like the one shown in Fig. 4.

[14] O. Parodi, Stress tensor for a nematic liquid crystal, J. Phys.
Paris 31, 581 (1970).

[15] K. Okano, Electrostatic contribution to the distortion free en-
ergy density of ferroelectric liquid crystals, Jpn. J. Appl. Phys.
25, L846 (1986).

[16] J.-B. Lee, R. A. Pelcovits, and R. B. Meyer, Role of electrostat-
ics in the texture of islands in free-standing ferroelectric liquid
crystal films, Phys. Rev. E 75, 051701 (2007).

[17] P. V. Dolganov, V. K. Dolganov, and P. Cluzeau, The effect
of spontaneous polarization on two-dimensional elasticity of
smectic liquid crystals, J. Exp. Theor. Phys. 116, 1043 (2013).

[18] K. Harth, A. Eremin, and R. Stannarius, Vortex flow in free-
standing smectic-C films driven by elastic distortions, Soft
Matter 7, 2858 (2011).

[19] C. Rosenblatt, R. Pindak, N. A. Clark, and R. B. Meyer, Freely
Suspended Ferroelectric Liquid-Crystal Films: Absolute Mea-
surements of Polarization, Elastic Constants, and Viscosities,
Phys. Rev. Lett. 42, 1220 (1979).

[20] Y. Galerne, I. Poinsot, and D. Schaegis, Direct absolute
measurements of the two-dimensional elastic constants in
smectic-C� liquid crystal films, Appl. Phys. Lett. 71, 222
(1997).

024704-15

https://doi.org/10.1103/PhysRevLett.68.804
https://doi.org/10.1103/PhysRevLett.75.1518
https://doi.org/10.1103/PhysRevE.62.5115
https://doi.org/10.1103/PhysRevE.78.041703
https://doi.org/10.1080/10587259908026105
http://link.aps.org/supplemental/10.1103/PhysRevE.107.024704
https://doi.org/10.1051/jphys:01970003107058100
https://doi.org/10.1143/JJAP.25.L846
https://doi.org/10.1103/PhysRevE.75.051701
https://doi.org/10.1134/S1063776113060162
https://doi.org/10.1039/c0sm01040e
https://doi.org/10.1103/PhysRevLett.42.1220
https://doi.org/10.1063/1.119505

