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Chemical Leslie effect in a chiral smectic-C� film: Nonsingular target patterns
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We analyze experimentally and theoretically the winding and unwinding of the �c director in a chiral smectic-C�

film crossed by an ethanol flow. This leads to a target pattern under crossed polarizers when the +1 defect
imposed by the boundary conditions is pinned on the edge of the film. We show that the target is deformed at the
center of the film when it is subjected to a flow of ethanol because of the presence of two recirculation vortices
of chemohydrodynamical origin. This deformation and the two vortices disappear during the unwinding of the
target when the ethanol flow is stopped. This unambiguously shows that the target deformation is due to the
vortices and not to the elastic anisotropy. These two points are confirmed theoretically. An estimate of the two
so-called chemomechanical and chemohydrodynamical Leslie coefficients is also derived from this study.
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I. INTRODUCTION

The introduction of chiral molecules into a liquid crys-
talline phase can give it new properties since certain
symmetries, including the mirror symmetries and the center
of inversion, are broken. This is the case in the cholesteric
phase which is a chiral nematic phase with a spontaneous
twist of its director field but also in the smectic-C� phase
studied here, which is the chiral—and so twisted—version of
the smectic-C phase. The first experimental observation of this
symmetry breaking dates back to the pioneering experiments
of Lehmann in 1900, who observed the rotation of the internal
texture of cholesteric drops when subjected to a temperature
gradient [1]. Lehmann also noticed that by changing the chi-
ral impurity, it was possible to change both the sign of the
spontaneous twist and the sense of rotation of the drops [2].

If Lehmann understood the role of chirality in the rotation
of the drops, he was however unable to explain this effect
which bears his name today. It was only much later, in 1968,
that Leslie proposed the first theoretical explanation for the
Lehmann effect. Based on the symmetries of the cholesteric
phase, Leslie demonstrated the existence of a torque pro-
portional to the local temperature gradient acting on the
molecules of the liquid crystal (LC) [3]. According to Leslie,
this torque makes the molecules rotate, which causes the inter-
nal texture of the cholesteric drops observed by Lehmann to
also rotate. This explanation was at the time—and until very
recently—unanimously accepted by the scientific community
and became a veritable paradigm.

It was not less than 40 years after Leslie’s discovery that
new experiments on the Lehmann effect were performed, first
by one of us (P.O.) and Dequidt [4,5], and then a few years
later by the groups of Tabe and Sano [6,7]. These authors
reproduced Lehmann’s original experiment, which they first
interpreted within the framework of Leslie’s theory [4,5].
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After further quantitative studies, it was nevertheless shown
that the rotation velocity of the drops could not be explained
by Leslie’s theory. It was shown, in particular, that the ve-
locities predicted by this theory were much too small [8,9],
and sometimes even of the wrong sign in certain cholesteric
mixtures [10]. But the final blow to Leslie’s theory was given
by Ignés-Mullol et al. [11] when they discovered that it was
also possible to induce rotation in drops of the nematic—
and so achiral—phase of a chromonic lyotropic liquid crystal
(provided that the director field inside the drops is twisted,
as required by symmetries). We mention that the same phe-
nomenon was also observed recently in the nematic phase of
a thermotropic LC made of bent-shaped molecules [12,13].

If it is now proven that the Leslie torque cannot ex-
plain quantitatively the rotation of the internal texture of the
Lehmann drops, it is nevertheless certain that this torque
exists. This was shown by one of us (P.O.) and Dequidt by
performing a sliding planar sample experiment [4], as orig-
inally proposed by Leslie [3]. In this dynamic experiment,
the cholesteric was confined between two plates treated for
planar sliding anchoring. The experiment showed that in the
presence of a thermal gradient perpendicular to the plates, the
cholesteric helix was rotating at constant speed, as predicted
by Leslie [3]. In this experiment, the Leslie thermomechanical
coefficient was directly deduced from the measurement of the
rotation velocity of the helix, knowing the rotational viscosity
of the LC. The Leslie torque was also measured indirectly
in a static experiment first performed by Eber and Janossy
in 1982 with a compensated cholesteric phase [14–16] and
reproduced later by Dequidt and one of us (P.O.) [17,18]. In
this experiment, the director field does not rotate continuously,
but is simply distorted by the Leslie torque. The problem
here is that another torque, coming from the variation with
temperature of both the elastic constants and the spontaneous
twist of the cholesteric phase, is added to the thermomechani-
cal torque, which made interpretations delicate and subject to
controversy.

Let us conclude this revision on cholesterics by recall-
ing that Leslie’s theory also predicts the existence of a
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FIG. 1. Structure of the Smectic C� phase (a) and definition of
the �n and �c directors (b).

thermohydrodynamic effect. To this second effect is asso-
ciated a stress proportional to the temperature gradient that
should cause flows in the samples. To the best of our knowl-
edge, this effect has not yet been observed. We refer the
reader to the review article [19] for the description of possible
experiments that could be carried out to observe this effect in
cholesterics.

We now recall, as noted by de Gennes, that similar ef-
fects could be observed in cholesterics when the flow of
heat is replaced by a flow of particles or an electric cur-
rent [20]. In this context, only one experiment was attempted
in 1993 by Padmini and Madhusudana [21] to detect the Leslie
electromechanical effect. It was nevertheless shown later by
Dequidt and one of us (P.O.) that the texture rotation observed
by these authors under electric field was not due to a Leslie
electromechanical effect, but to the more classical flexoelec-
tric effect [22].

In practice, similar effects should also exist in the smectic-
C� phase since the director field �n inside is also twisted as
shown in Fig. 1(a). In this figure, �n gives the average orien-
tation of the LC molecules, �k is the unit vector normal to the
layers, and �c is the unit vector that gives the orientation of the
molecules in the plane of the layers. With these definitions one
has

�n = sin θt �c + cos θt �k, (1)

where θt is the tilt angle of the molecules with respect to
the normal to the layers. Importantly, in a smectic-C�, �n and
−�n are equivalent. As a result, all the equations must be
invariant under the transformation (�k, �c) → (−�k,−�c). To the

best of our knowledge, no thermomechanical effects have
been reported in the literature so far in this phase. In contrast,
there are several experimental evidences for a chemomechan-
ical effect—and to some extent for a chemohydrodynamical
effect—in this phase. These effects have been observed in
two distinct systems: in chiral Langmuir monolayers when the
LC is deposited at the surface of an isotropic liquid (water in
general) and in free-standing films of the smectic-C� phase.
In the two cases, the Leslie effects are due to the presence of
a flow of particules accros the films and are thus of chemical
nature.

Historically, the chemical Leslie effect was studied experi-
mentally for the first time by Tabe and Yokoyama in 2003 in
Langmuir monolayers [23]. It should however be emphasized
that the first observation of the rotation of the molecules in
such a monolayer is due to Adams et al. in 1993 [24]. How-
ever, these authors failed to identify the cause of this rotation.
In their experiments, Tabe and Yokoyama deposited a chiral
LC on the surface of a water-glycerol bath. The molecules,
by covering the surface, formed a monolayer with long-range
orientational order as in a layer of a smectic-C� phase. Ob-
servation with a polarized Brewster angle microscope then
revealed the formation of concentric rings with the reflected
intensity oscillating in the middle of the pattern. These phe-
nomena are due to the rotation of the molecules in large
areas of the monolayer when it is subjected to the evaporation
flow of the water contained in the subphase. These targetlike
patterns were explained as due to the Leslie chemomechanical
torque, which is formally equivalent to the thermomechanical
torque. In addition, Tabe and Yokoyama showed that the ro-
tation velocity of the molecules in the center of a target was
proportional to the water evaporation flow rate and changed
sign when the water flow direction was reversed.

The work of Tabe and Yokoyama prompted several re-
searchers to work on the chemical Leslie effect. Starting with
Tabe’s group that carried out molecular dynamics simula-
tions emulating Langmuir monolayers with different chiral
compounds [25,26]. Tsori and de Gennes also published an
article on the motion of defects in the targetlike patterns [27]
and Svenšek et al. performed numerical simulations to show
the influence of thermal fluctuations on the observed pat-
terns [28]. In addition, they predicted that spirals should form
when the rotation begins with a +1 defect in the center of
the zone where the molecules can freely rotate. This predic-
tion was later confirmed experimentally by Gupta et al. [29].
Hołyst et al. also reproduced Tabe’s experiment with new chi-
ral compounds and found that the rotation was not systematic
for all of them, contradicting Tabe’s initial statement that any
chiral liquid crystal [30,31] should feature the Leslie rotation.
Finally, we reproduced ourselves these experiments [32] and
proposed a complete characterization of the chemomechanical
effect in these monolayers by using the Leslie theory.

It must be emphasized that in the Langmuir monolayers,
no flow is observed. This is mainly due to the large vis-
cosity of the subphase with respect to the viscosity of the
monolayer itself. For this reason, this system is not suitable
for studying the chemohydrodynamical effect, i.e., the flows
induced by a flux of particles crossing the LC. The situation
is different in the free-standing films of smectic-C� in which
the LC can easily flow. This was demonstrated by Seki and
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Tabe in 2011 [33,34]. By subjecting a film to a flow of vapor
of alcohol, they observed that the rotation of the molecules
was accompanied by flows. They also observed the advection
of tracers (small solid particles) deposited on the film and
measured the force acting on them using optical tweezers.
This method allowed them to estimate the efficiency of the
chemohydrodynamical coupling. Unfortunately, their results
were not interpreted within the framework of Leslie’s theory
and the lack of explanations and experimental details on their
measurements did not allow such an analysis to be done a
posteriori.

For this reason, we redid experiments on the freestanding
films of smectic-C�, while seeking to quantify the experimen-
tal results as best as possible. We then applied the Leslie
theory to explain our results. In practice, we observed two
types of patterns. The targetlike pattern already widely men-
tioned, and another one consisting of spiraling targets partially
wound with a +1 defect in their center. In this paper, we
focus on the nonsingular targetlike pattern, and we refer the
reader to a forthcoming paper [35] for the description of the
singular spiraling-target-like patterns with a +1 defect in
the center of the film. We mention here that similar patterns
were already observed in nonchiral smectic-C films when the
phase winding and the flows are produced by a fiber that
pierces the film in its center [36]. To complete our historical
survey, we also underline the existence in cholesteric LCs of
a diffusomechanical coupling that was interpreted by using
the analogy with the Leslie thermo- or chemomechanical cou-
pling [37].

This paper is divided in five sections: A material and
methods section (Sec. II), an experimental section (Sec. III),
a theoretical section (Sec. IV), a section in which we com-
pare the theoretical and experimental results (Sec. V), and
a conclusion (Sec. VI). In Sec. II, we give essential details
on the LC chosen and the setup used to stretch, observe and
subject the films to a controlled flow of ethanol vapor. In
Sec. III, we present the main experimental results concerning
the formation of a target pattern when the film is subjected to a
flow of ethanol and its disappearance when the flow of ethanol
is stopped. Particular attention will be paid to the flows which
are present in the film during the phase winding, but also in
the stationary regime when the target is formed. In Sec. IV
we will recall the equations which govern the dynamics of
the film and we will solve them numerically (and analytically
when possible) in the framework of a simplified model for
the viscosity tensor allowing us to satisfactorily reproduce the
experimental results. We will see that, even if the agreement
is not perfect, the Leslie theory explains in a convincing way
all the experimental results. In Sec. V, a first estimate of the
ratio between the chemomechanical and chemohydrodynami-
cal coefficients will be given. Finally, we will summarize our
work in the conclusion (Sec. VI) and will present some ways
to improve the agreement between theory and experiment.

II. MATERIAL AND METHODS

A. Liquid crystal mixture

All of our measurements were performed with the com-
mercial mixture FELIX M4851-100 (Merck, Germany). This

FIG. 2. Oven used in our experiments.

LC has the advantage of being in the Smectic C� phase over a
wide range of temperature as shown by the phase sequence:

Cr<-20◦C–Sm C�–67◦C–Sm A–71◦C–Chol–76◦C–Iso.
This makes this mixture very easy to use since it is in

the Smectic C� phase at room temperature. Its main charac-
teristics are given in Ref. [38]. At room temperature (25◦C)
its pitch is P ≈ 5 µm, its spontaneous polarization is Ps ≈ 20
nC/cm2 and the tilt angle of the molecules in the layers is
θt ≈ 28◦.

B. Experimental setup

All of our experiments were performed inside a custom-
made copper oven (see Fig. 2). Its temperature was fixed at
25 ◦C and regulated within ±0.1 ◦C thanks to a RKC CB100
temperature controller (TC Direct, France). The room temper-
ature was kept at a slightly lower temperature, around 21 ◦C.
The film was observed under a reflection microscope (Labor-
lux 12Pol, Leica) through a glass slide which ensured the
thermal insulation of the film. This window was slightly tilted
to prevent the light reflected on its surface from entering the
microscope objective. A second box with a pinhole fixed on
its top was placed inside the oven. The pinhole was purchased
from Edmunds Optics (France). Most of our experiments were
performed with a pinhole with a diameter of 0.6 mm made in
a stainless steel sheet 200 µm thick. As the film attaches to
the frame via a meniscus, the result was a film of constant
thickness with a slightly smaller diameter, close to 0.5 mm.

To observe the chemical Leslie effects, we chose to subject
the film to a flow of ethanol. With this alcohol, these effects
are very strong, which made them easy to observe. Moreover,
ethanol does not seem to degrade the LC, even over long
period of time, which was a valuable asset. Note that we also
observed Leslie effects with water, oxygen and nitrogen, but
the intensity of the effects observed was much weaker, be-
cause these molecules are much less miscible than ethanol in
the LC. In contrast, a Leslie effect stronger than with ethanol
was observed with acetone, very soluble in the LC, but we
did not study it systematically because the films broke very
often. In practice, the compositions of the atmospheres inside
and outside the box were controlled independently via two
gas circuits (Fig. 3). More precisely, an air-ethanol mixture
was injected inside the box (under the film) and dry air was
injected outside (above the film). The air-ethanol mixture
was prepared by bubbling dry air (here, synthetic air sup-
plied by a pressurized bottle) in a sealed compartment filled
with ethanol. The latter was placed in a Julabo thermostated
circulating bath to maintain it at a constant temperature of
18 ◦C. In this way, we obtained at the outlet air saturated
with ethanol vapor at its saturation vapor pressure Psat =5.16
kPa at 18 ◦C. Note that using a temperature lower than the
room temperature (here always close to 21 ◦C) allowed us to
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FIG. 3. Scheme of the device used to produce the air-ethanol
mixture.

avoid the condensation of ethanol in the rest of the circuit. The
ethanol-saturated air was then mixed with dry air in a mixing
compartment. Two Bronkhorst EL Select F-201CV mass flow
controllers driven by a LabView program made it possible to
control the respective flow rates of dry air and air saturated
with ethanol at the inlet of the mixer and therefore to pre-
cisely set the composition of the mixture. Another Bronkhorst
controller made it possible to fix the flow of dry air injected
above the film. With this device, it was therefore possible to
control both the flow rates above and below the film and the
percentage of ethanol vapor in the air injected into the box
under the film.

Finally, let us make two remarks on this setup.
First, its proper functioning was checked by replacing

ethanol with water and by measuring the humidity at the outlet
of the mixer using a precision hygrometer Testoterm 6010.
The expected values were in very good agreement with the
values given by the hygrometer.

Second and more importantly, we checked that our exper-
imental results were independent of the flow rates of dry air
and of ethanol-air mixture injected on either side of the film, at
least between 10 and 100 ml/min. To realize the importance of
the flow rate, note that the internal volume of the box under the
film is of the order of 3 ml. With a flow rate of 50 ml/min, its
atmosphere is completely renewed after approximately 4 s. In
practice, most of our experiments were performed using a flow
rate of 20 ml/min. The box was also filled with cotton to at-
tenuate the air currents inside and therefore limit the parasitic
flows in the film as much as possible. With this precaution,
no significant flow was observed in the film when dry air was
injected on both sides of the film, even at the highest flow
rates. These precautions turned out to be fundamental and
allow us to affirm that the flows observed in the films are only
due to the Leslie forces and/or to the backflow effects and are
not artifacts due to air currents in the vicinity the film.

Last but not least, we highlight the two reasons why in-
jecting dry air above the film is important. First, because the
ethanol vapors that flow through the film must be flushed to
maintain the good concentration gradient of ethanol across the
film. Second, it was necessary to prevent the water contained
in the air of the room from creating an uncontrolled parasitic
Leslie effect by diffusing through the film.

In the following, we will use as a control parameter for the
chemical Leslie effect the difference in ethanol vapor pressure
P between the two sides of the film. As P = 0 on top of the

FIG. 4. Diagram of the optical device employed to visualize the
film and its texture.

film, the latter is expressed as

�P = %×Psat, (2)

where % is the percentage of ethanol vapor below the film and
Psat the saturation vapor pressure of ethanol equal to 5.16 kPa
at 18 ◦C.

C. Film characterization

To visualize the film and its texture, we used a polarized
reflection microscope (see Fig. 4). The film was illuminated
with a mercury vapor lamp equipped with a green filter
(546 nm) or a blue filter (436 nm). A black absorbent pad, the
surface of which is tilted with respect to the horizontal plane,
was placed under the film to eliminate all the reflections other
than those coming from the film. The position of the film in
the oven was adjusted with an XY stage, which made it easy
to select the study area. The film could also be rotated at will
since the oven was placed on the microscope rotating stage.
The images were acquired with an sCMOS camera (Zyla 4.2
MP, Andor) with a resolution of 0.51 µm with a ×10 objective
or of 0.25 µm with a ×20 objective. To be sensitive to the ori-
entation of the molecules, the microscope was equipped with a
polarizer and an analyzer. We measured the intensity reflected
from the film as a function of the orientation of the �c director.
For this purpose, we used a sheet of mylar of thickness 200 µm
in which a hole of dimension 4×0.5 mm was drilled. On
the sheet, we glued two metal electrodes parallel to the large
side of the hole and separated by a distance of 8 mm. Once
the film was stretched and equilibrated, the molecules were
oriented by applying a DC electric field and the film was then
rotated using the microscope rotating stage. As the smectic-
C� phase is ferroelectric with its spontaneous polarization
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FIG. 5. Reflected intensity as a function of the orientation of the
�c director when the polarizer and the analyzer are crossed (a) and
slightly uncrossed by 5 ◦ (b).

perpendicular to the �c director [39,40], the latter orients per-
pendicularly to the electric field. These measurements allowed
us to calibrate the reflected intensity I (φ) (Fig. 5) making it
possible the determination of the orientation of the molecules
on the images.

In particular, we observed that the �c director aligns parallel
to the meniscus. This anchoring condition is incompatible
with a director field uniformly aligned and shows us that the
film always contains a +1 defect or several defects whose
total topological rank is equal to +1. In practice, the defects
are often localized on the edge of the meniscus as can be
seen in Fig. 6(a) where a single +1 defect is present or in
Fig. 6(b) where two +1/2 defects diametrically opposed are
visible.

More rarely, the +1 defect detaches from the edge of the
meniscus. In this case, the defect is placed in the center of the
film when it is at rest, which minimizes the elastic energy of
the system [Fig. 6(c)]. In this paper, we will only study the
film behavior when the defect is attached to the meniscus and
cannot move, which happens when it is pinned on a dust parti-
cle. The last important parameter is the film thickness, which
can vary greatly depending on how the film is stretched. As the
film properties, and the Leslie effect, in particular, are strongly
dependent on it, this quantity must be measured accurately.
The simplest method is to measure the film reflectivity under
the microscope without polarizers. The reflectivity of the film

(a)

(b)

(c)

FIG. 6. The three configurations frequently encountered.
(a) With a +1 defect at the edge of the film; (b) with two 1/2 defects
at the edge of the film; (c) with a +1 defect in the center of the film.
Photos taken between polarizer and analyzer slightly uncrossed.

reads

R(λ) = Ir (λ)

Ii(λ)
= sin2 H

E + sin2 H
, (3)
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FIG. 7. Film thickness as a function of the number of layers.

where Ii is the incident intensity, Ir the reflected intensity and

H = 2πnH

λ
and E = 4n2

(n2 − 1)2
, (4)

with n(λ) the average refractive index of the LC, H the film
thickness, and λ the light wavelength in vacuum. To measure
the index dispersion, we measured with a motorized Jobin
Yvon monochromator the reflectivity curves R(λ) of several
thick films and we fitted them with Eq. (3) by assuming that
the optical index was given by a simplified Cauchy law:

n(λ) = A + B

λ2
. (5)

From these fits with three parameters (H, A, B), we obtained

A = 1.503 ± 0.005 and B = 6500 ± 100 nm2. (6)

We then measured the thickness of a large number of films.
Assuming that each film has a thickness multiple of the layer
thickness, we obtained the graph of Fig. 7, from which we
deduced the layer thickness at 25 ◦C: 2.60 nm.

These data being known, we then plotted in Fig. 8 the film
reflectivity as a function of the film thickness given in number
of layers at the two wavelengths λ = 436 nm and λ = 546 nm.
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FIG. 8. Film reflectivity as a function of its thickness given in
number of layers for two different wavelengths.

These two wavelengths correspond to two intense lines of the
mercury vapor lamp used in our experiments to observe the
films. This graph shows that measuring the reflectivity of a
film at these two wavelengths is now enough to measure its
thickness without ambiguity. This simplified procedure was
used to measure the film thickness in all of our experiments.

III. EXPERIMENTAL RESULTS

In this section, we separately describe the problem of phase
winding when a flow of ethanol is established and that of
phase unwinding when this flow is stopped.

A. Phase winding and target formation

In this section we describe the behavior of a film of uni-
form thickness when it is subjected to a flow of ethanol. The
control parameters are the film thickness and the percentage
of ethanol vapor or, equivalently, the difference in ethanol
vapor pressure �P across the film given by Eq. (2). In all
the experiments reported here, the defect is trapped on the
meniscus and immobile.

1. Transient regime

The first thing to notice when a film initially at rest is
subjected to a flow of ethanol is a rotation of the molecules.
This is particularly visible in the center of the film between
slightly uncrossed polarizers where the reflected intensity be-
gins to vary periodically over time. This rotation is rapidly
accompanied by the formation of a target-shaped pattern as
can be seen in the sequence of snapshots shown in Fig. 9 and
in the Supplemental Movie SM1 [41].

The second observation is the presence of significant flows
in the film, visible to naked eye, with velocities that can be as
large as 2 mm/s for a percentage of ethanol vapor of 50% [42].
These flows arise everywhere in the film, and even before the
rotation of the molecules begins. They are shown by the red
arrows in Fig. 9. As we have already said above, but it is worth
repeating here, these flows are not due to an artefact, i.e., to air
flows on either side of the film, but to the presence of a flow of
ethanol to which is associated a chemohydrodynamical Leslie
effect. This can be checked immediately since the flows and
the rotation of the director stop almost instantaneously when
the flow of air with ethanol is replaced by a flow of dry air
with the same rate of flow. It must be noted that these flows
strongly influence the rotation of the director, in particular,
near the edge of the film where they can prevent the rotation
of the director, at least at the beginning of the winding
process. This phenomenon is clearly visible in Fig. 9(f) where
we can see that the bands do not reach the edge of the film. To
characterize the transient regime, we measured the winding
angle of the �c director in the center of the film as a function
of time for the film of Fig. 9. The corresponding curve for
a percentage of ethanol vapor of 50% is shown in Fig. 10.
This curve shows that φ increases, meaning that the �c director
rotates counterclockwise when the flow of ethanol vapor is
directed upwards. We also see that the rotation velocity was
maximum at the beginning and remained constant as long as
the number of revolutions of the director was small, typically
less than 5. This means that, in this regime, the elasticity is
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)f()e()d(

FIG. 9. Sequence of snapshots showing the winding of the �c director under a flow of ethanol. At time t = 0 a 50% ethanol flow is imposed
to the film; (a) t = 9 s; (b) t = 12.1 s; (c) t = 13.2 s; (d) t = 14.1 s; (e) t = 14.8 s; (f) t = 17.4 s. The red arrows drawn on snapshots (a) and
(d) show the direction of the flows. The blue arrows on snapshot (b) show the sense of rotation of the director. The film is 10 layers thick.

negligible, and that the Leslie torque generated by the flow of
ethanol equilibrates with the viscous torque. We shall see in
the theoretical section that the Leslie torque is proportional
to �P while the viscous torque is proportional to the rotation
velocity of the director, provided that the flows can be
neglected. As a consequence, the initial rotation frequency f
should be proportional to �P in first approximation. To check
to what extent this prediction was verified, we measured f as a
function of �P in the same film. The result is shown in Fig. 11
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φ 
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π

FIG. 10. Time course of the phase φ in the center of the film for
a percentage of ethanol vapor of 50%. The slope of the dashed line
gives the initial rotation frequency f . This curve has been obtained
from the images shown in Fig. 9.

for the film of Fig. 9. We see that the curve presents an affine
behavior, but does not pass through the origin, because no
winding was observed for a percentage of ethanol vapor lower
than 15%. For these low vapor rates, the film remained in the
configuration of Fig. 9(a). We did, however, observe flows
inside near the edge of the film, which we believe probably
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FIG. 11. Rotation frequency as a function of the percentage of
ethanol vapor. These measurements have been performed at the
beginning of the winding with the film shown in Fig. 9. The solid
line is the best linear fit of the experimental points ignoring the first
two. The error bars correspond to variations observed over several
measurements.
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)c()b()a(

(d)

FIG. 12. Experimental evidence of a flow in the center of the target during the winding of the �c director. (a–c) The circles and the arrows
indicate the position and the direction of the particle at different times: (a) t = 0 s, (b) t = 1.8 s; (c) t = 3.5 s. The film is 10 layers thick and
the percentage of ethanol vapor is 50%. (d) Trajectory followed by the particle during one turn (about 20 s here).

prevented the rotation of the director in the current configu-
ration. Other configurations, with a +1 defect in the center of
the film, in which flows are present while the director does not
or very little winds, will be presented in a forthcoming paper.

These preliminary observations show that the flows play
an important role in the freestanding films, at least at the
beginning of the winding, contrary to what was observed in
Langmuir monolayers [32].

We now return to the curve of Fig. 10. When the number of
turns is larger than five, the rotation velocity starts to decrease.
This is clearly due to an increase of the elastic torque when
the turns accumulate. In this regime, the pattern looks more
and more like a target between slightly uncrossed polarizers.
But contrary to what is observed in Langmuir monolayers, the
center of this target is not circular, but oval as can be seen
in the photos of Fig. 12 taken during the transient regime.
The question that then arises is to find the origin of this
deformation. Is it due to elastic anisotropy or to the presence
of flows?

To try to answer this question, we investigated whether
there were still significant flows near the center of the target
at this stage of the winding. For this purpose, we followed the
trajectory of a dust particle which had accidentally fallen onto
the film. This trajectory is shown in Fig. 12 and Supplemental

Movie SM2 [41]. We see that the particle performs a back and
forth movement in the central area while rotating globally in
the same direction as the director in the center of the film.
More precisely, during one turn, the particle goes back and
forth three times and practically returns to its initial position.
During this sequence, the observed maximum velocity of the
particle is of the order of 0.02 mm/s and the director takes
about 20 s to rotate by 2π . This observation shows that the
flows in the center of the pattern are complex and not marginal
at all. We now note that this trajectory cannot be explained
solely by the backflow produced by the rotation of the di-
rector, because, in that case, we should only observe circular
flows in the same direction as the winding. This observation
suggests that the chemohydrodynamic Leslie force must be
largely responsible for these flows and probably responsible
for the deformation of the target. This point will be confirmed
later.

2. Stationary regime

At very long time (typically after a quarter of an hour),
a stationary regime is reached. In this limit, the target re-
mains unchanged under the microscope, meaning that the
director stops to rotate. A typical target at equilibrium is
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(a)

(b)
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φ 
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π

FIG. 13. Target pattern observed at equilibrium. The film is 10
layers thick. The percentage of ethanol vapor injected under the film
is 50%. (b) Phase profile measured along a radius of this film. The
solid red line is the best parabolic fit.

shown in Fig. 13(a). We note that its center is still deformed,
which suggests that there are still flows in this steady state.
In Fig. 13(b) we plotted the phase φ measured along a ra-
dius as a function of r/R where R is the film radius. This
graph shows that the phase is well fitted with a parabolic
law, as already observed in the Langmuir monolayers [32].
Figure 14 shows the equilibrium targets for various values of
the percentage of ethanol vapor. This graph shows that the
smaller the percentage, the less the target is wound. However,
the center of the targets is always strongly deformed, which
means that the flows play an important role whatever the
percentage of ethanol vapor. Finally, we measured the number
of turns at equilibrium nmax = φmax/2π . Figure 15 shows that
nmax is proportional to �P and Fig. 16 shows that it decreases
when the film thickness increases at fixed �P (corresponding
here to a percentage of ethanol vapor of 50%). Such a behavior
is expected as the flow of ethanol must decrease when the film
thickness increases.

The dependence with the thickness is not trivial. Indeed
one might expect nmax to vary as 1/H since nmax must be

FIG. 14. Images of the target pattern obtained with different
percentages of ethanol vapor. From top to bottom, the percentage
is 10%, 20%, 50%, and 100%.

proportional to �P/H , by assuming that all the material
constants integrated over the film thickness are just propor-
tional to the film thickness. This dependence is not observed
experimentally as shown by the 1/H curve plotted in Fig. 16.
This means that the material constants integrated over the film
thickness, and in particular the elastic constants, are probably
not proportional to the film thickness. This interpretation is
plausible because the films studied are very thin, with less
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FIG. 15. Number of turns at equilibrium as a function of the
percentage of ethanol vapor for the 10-layers-thick film of Fig. 13.
The error bars correspond to the variations observed by mak-
ing several measurements. The solid line corresponds to the best
linear fit.
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FIG. 16. Number of turns at equilibrium as a function of the film
thickness for films of 0.5 mm in diameter. The percentage of ethanol
vapor is 50%. The error bars have been calculated from the variations
observed with different films. The lines correspond to the best fits
with the functions given on the graph.

than 20 layers in general, meaning that the surface effects are
certainly important as already noted by several authors in
other materials (for a review, see Ref. [39]). Another compli-
cation could come from the formation of a thin boundary layer
of thickness δ in the vicinity of the film in which the concen-
tration of ethanol changes. In that case, a simple calculation
shows that nmax must vary as 1/(H + δ) by assuming that
the material constants are proportional to the film thickness.
The details of the model are given in Ref. [43]. The best fit
of the experimental data with this law leads to δ = 29 nm,
but the fit is not yet perfect as can be seen in Fig. 16. In
practice, all these effects must act at the same time, and it
would be necessary to measure all the material constants as a
function of the film thickness to be able to disentangle them.
This is an enormous task that goes well beyond the scope of
this study. Note in passing that a best fit was obtained with a
power law in 1/Hn with n ≈ 1/2 as can be seen in Fig. 16,
but we have no model to explain this dependence. We finally
add to conclude that the defect sometimes detaches from the
meniscus, in particular, at large percentage of ethanol vapor,
and starts moving along the edge of the film. In that case,
a new stationary regime is reached when the defect and the
director rotate at the same angular velocity. An example is
shown in Supplemental Movie SM3 [41]. In this regime, the
final number of turns is always less than that reached when the
defect is fixed, but it can vary from one experiment to another
because it depends on the mobility of the defect in the vicinity
of the meniscus. For this reason we did not study this regime
in detail.

B. Phase unwinding

If the flow of ethanol is stopped and replaced by a flow
of dry air once the target is formed, then the latter unwinds
to relax the elastic energy it has stored. In practice, it is also
possible to prepare a target by blowing air on the film with a
small fan or by using a rotating electric field. After stopping
the fan or the electric field, the target unwinds in the same way
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t (s)

φ 
/2

π

FIG. 17. Angle φ in the center of the film as a function of time
measured during the phase unwinding when the flow of ethanol is cut
off. The solid line is the best fit with an exponential law. The inset
shows the target pattern observed during the phase unwinding. The
film is 20 layers thick.

as when stopping the flow of ethanol. In all the cases, the only
forces involved during the unwinding are the elastic and vis-
cous forces. We observed that at the start of the unwinding, the
relaxation was not exponential and depended on the way the
target had been wound. For this reason, we did not study this
initial regime in detail. By contrast, we observed that after a
few turns, the unwinding process was always the same, and no
longer depended on the initial conditions. More precisely we
observed that the phase φ measured in the center of the film
relaxed exponentially over time as can be seen in Fig. 17 and
Supplemental Movie SM4 [41]. We also observed that in this
regime, the center of the target was much less deformed than
during the winding process in the presence of the ethanol flow.
This can be seen by comparing the targets in Figs. 14 and 17.
This observation is important because it seems to show that
it is indeed the flows created by the Leslie force, and not the
elastic anisotropy, that are responsible for the oval deforma-
tion of the target in the center of the film. This interpretation
will be confirmed later by our numerical simulations. We also
observed by following under the microscope the movement
of small smoke particles deposited on the film, that there
were backflow effects inside the film. The orthoradial velocity
profile normalized with the number of turns measured in the
center of the film is shown in Fig. 18(a). This graph shows
that this ratio is constant over time, which indicates that
the velocity decreases with the same exponential law as the
phase as a function of time. We also show in Fig. 18(b) how
the maximum velocity measured in the film decreases (in
absolute value) as a function of time. This value is reached
at a distance of the order of 0.6R from the center of the
film, by denoting by R the radius of the film. As expected,
this curve is well fitted by an exponential law with the same
characteristic time as for the phase measured at the center of
the film. For the 20-layers film shown in Fig. 17 the half-
unwinding time τ1/2 is of the order of 67 s and the maximum
velocity measured when the number of turns is equal to 10 is
−0.06 mm/s.
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FIG. 18. (a) Velocity profile measured along a radius during the
phase unwinding. Each color corresponds to a different tracer. For
each tracer, the different points with the same color correspond to dif-
ferent times. The solid line is a fit with a law in r − r3. (b) Maximal
velocity as a function of time measured during the phase unwinding
and its fit with an exponential law.

IV. THEORETICAL SECTION

In this section, we will begin by recalling the fundamental
equations that govern the dynamics of freestanding films in
the presence of a chemical Leslie effect. Then we will see how
to solve them, first in the case of the winding in the presence
of a vapor flow, and second in the case of the unwinding when
the flow is removed. In each case, we will treat the problem
first in a simplified way by neglecting the elastic anisotropy
and the flows, and then in a more complete way by taking into
account either the elastic anisotropy or the flows.

A. Governing equations

The hydrodynamic variables are the �c director defined by
the angle φ it makes with the x axis, the velocity �v and the
pressure P in the film. As the films are always very thin, we
will assume that these quantities are homogeneous in the film
thickness and only depend on the (x, y) coordinates.

The two equations which govern the dynamics of a film are
the torque equation and the Cauchy equation. The first one
mainly governs the rotation of the director while the second
allows one to calculate the velocity. These two equations are

nevertheless coupled and strongly nonlinear, which makes the
problem difficult to solve.

Formally, the torque equation reads

�
E + �
V + �
cm = 0, (7)

and the Cauchy equation reads

�∇ · σV + �∇ · σ E + �∇ · σ ch − �∇P = �0. (8)

In these equations, �
E , �
V , and �
cm are the elastic, viscous,
and chimiomechanical components of the torque acting on the
�c director and σV , σ E , and σ ch are the elastic, viscous, and
chimiohydrodynamical components of the stress tensor. As
for P, it is the pressure in the film given by the incompress-
ibility condition

�∇ · �v = 0. (9)

Note that we neglected the inertial term in the Cauchy equa-
tion because the Reynolds number in our experiments is
always small with respect to 1, of the order of 10−3–10−2.

We now give the expression of these different torques and
stresses as a function of the constants of the material.

The elastic torque and the elastic stress are equilibrium
quantities which derive directly from the expression of the
elastic free energy of deformation of the director field �c. For a
film whose the thickness is very small compared to the helical
pitch of the smectic-C�, the elastic energy is reduced to the
following expression:

f [�c] = 1
2 KS

( �∇ · �c
)2 + 1

2 KB
( �∇ × �c

)2
. (10)

In this expression, KS is the splay constant and KB is the bend
constant. Note here that KB is renormalized by the presence
of the polarization charges since the Smectic C� phase is
ferroelectric [44–46]. For this reason, one may expect that KB

is larger than KS in our films since the LC FELIX used in our
experiments has a large spontaneous polarization (of the order
of 20 nC/cm2 according to Ref. [47]). In practice, we can split
the elastic energy into two parts: an isotropic part that reads
as a function of φ:

f i[φ] = 1
2 K ( �∇φ)2, (11)

and an anisotropic part, of expression:

f a[φ] = 1
2 Kε

[
cos(2φ)

(
φ2

,x − φ2
,y

) + 2 sin(2φ)φ,xφ,y
]
. (12)

In these equations, K = KS+KB
2 is the average elastic constant

and ε = KB−KS
KB+KS

is a dimensionless coefficient that character-
izes the elastic anisotropy. From these equations the elastic
torque and the elastic stress can be calculated. For simplicity,
we only give here their expressions in the case of isotropic
elasticity when ε = 0:

�
E = K∇2φ �k, (13)

where �k is the unit vector normal to the film directed upwards,
and

σ E = −K

(
φ2

,x φ,xφ,y

φ,xφ,y φ2
,y

)
(14)

in cartesian coordinates (x, y).
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In a smectic-C� film, the most general form of the nonequi-
librium viscous stress tensor reads [48]:

σV
i j = μ0Ai j + μ3(ckAkl cl )cic j + λ2(ciCj + c jCi )

+ λ5(ciCj − c jCi ) + μ4(cickAk j + c jckAki )

+ λ2(cickAk j − c jckAki ). (15)

In this expression, �C is the corotational time derivative of the
�c director with respect to time:

�C = D�c
Dt

− �� × �c, (16)

where D/Dt denotes the total derivative with respect to time,
�� = 1

2
�∇ × �v and Ai j is the strain rate tensor:

Ai j = 1

2

(
∂vi

∂x j
+ ∂v j

∂xi

)
. (17)

In practice, this tensor can be rewritten as in the nematic phase
in the form:

σV
i, j = α4 Ai, j + α1(ckAk,l cl )cic j + α2 c jCi + α3 ciCj

+ α5 c jckAk,i + α6 cickAk, j, (18)

with the correspondence:

α1 = μ3

α2 = λ2 − λ5

α3 = λ2 + λ5

α4 = μ0

α5 = μ4 − λ2

α6 = μ4 + λ2. (19)

We will use this form in the following. Note that, as in
nematics, the viscosity coefficients must satisfy the Parodi
relation [49]

α2 + α3 = α6 − α5. (20)

From this expression, the nonequilibrium viscous torque can
be calculated by using the relation 
V

i = −εi jkσ
V
jk where εi jk

is the Levi-Civita tensor. The calculation gives as in nematics

�
V = −γ1 �c × �C − γ2 �c × A�c, (21)

where γ1 = α3 − α2 and γ2 = α3 + α2 = α6 − α5 are the two
rotational viscosities of the phase. In cartesian coordinates,
this torque reads �
V = 
V �k with


V = −γ1

[
Dφ

Dt
+ 1

2
(u,y − v,x )

]

− γ2

2
[cos(2φ)(u,y + v,x ) + sin(2φ)(v,y − u,x )] (22)

by denoting by u and v the two components vx and vy of
the velocity and their derivatives with respect to x or y by a
subscript x or y after a comma. In the presence of a gradient
of chemical potential, which is caused in our experiments by
the flow of ethanol, new terms appear in the expressions of the
nonequilibrium torque and the stress tensor. These terms have
been calculated for the first time by Leslie in cholesterics in
the presence of a thermal gradient [3], but they also exist in

the smectic-C� phase because of its chirality and the absence
of mirror symmetries. A complete derivation of these terms in
the simplified case of a smectic-C� film, using a generalization
of the Akopyan and Zel’dovich method [50,51], can be found
in Refs. [43,52]. When the flow of particles is normal to the
film, this calculation shows the existence of a new nonequilib-
rium chemomechanical torque of expression

�
cm = ν �P �k, (23)

and of a new nonequilibrium chemohydrodynamical stress of
expression

σ ch = μ�P
2

([�c × �k] ⊗ �c + �c ⊗ [�c × �k]), (24)

where the symbol ⊗ denotes the dyadic product between
two vectors [(�a ⊗ �b)i j = aib j]. Here, �P is the difference in
vapor pressure between the bottom and the top of the film. In
cartesian coordinates (x, y) this stress reads

σ ch = μ�P
2

(
sin(2φ) − cos(2φ)

− cos(2φ) − sin(2φ)

)
. (25)

Note that a nonequilibrium chemomechanical stress of
components σ cm

i j = −εi jk

cm
k is associated with the chemo-

mechanical torque (23). As this stress has zero divergence, it
does not enter into the Cauchy equation and so it will not play
any role in our study, knowing that we will fix angle (or phase)
φ at the edge of the film in all of our calculations.

In the following, we solve these equations first in the wind-
ing case and then in the unwinding case. Each time, we will
proceed in a progressive way, by first analyzing the solution
when the elastic anisotropy and the flows are neglected. We
will then analyze separately the role of elastic anisotropy and
of flows.

B. Phase winding

1. Analytical solution in isotropic elasticity
and in the absence of flow

Phase dynamics is particularly simple to analyze when
the elastic anisotropy and the flows are neglected (ε = 0 and
�v = 0). In that case the equations reduce to the torque equa-
tion of simplified form:

γ1
∂φ

∂t
= K∇2φ + ν�P . (26)

This equation was already used to study the phase winding
in Langmuir monolayers [32]. It shows that, at the beginning,
when the flow of ethanol is switched on, the phase uniformly
winds as

φ(�r, t ) = 2π f t, (27)

with an initial rotation frequency f given by

f = ν�P
2πγ1

. (28)

This formula shows that f is proportional to �P . It is im-
portant to note here that this formula remains valid in the
presence of a defect since Eq. (26) is linear. It is indeed
possible to add to solution (27) the stationary solution to
equation �φ = 0 corresponding to the defect. In practice, this
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behavior is not strictly observed experimentally (see Fig. 11)
because of the complications coming from the flows and the
elastic anisotropy. This law must also rapidly fail because the
director cannot rotate on the edge of the film. By assuming
that φ = 0 at the edge of the film [53], this condition leads to
an equilibrium target pattern at time t → ∞ when ∂φ/∂t = 0
given by

φ(�r, t → ∞) = 2πn

[
1 −

(
r

R

)2]
, (29)

where we have set

n = ν�PR2

8πK
. (30)

Here, r is the polar coordinate by taken the origin in the center
of the film and R is the film radius and n represents the number
of turns at equilibrium. This quantity will be chosen as the
control parameter in the following, instead of �P . This law
shows that, at equilibrium, the phase profile along a radius
is parabolic. This dependence is again pretty well observed
experimentally as shown in Fig. 13.

In the intermediate regime, Eq. (26) must be solved with
all the terms. With the boundary conditions φ(�r, 0) = 0 and
φ(R, t ) = 0, this equation has a solution that can be expressed
using Bessel functions. We show the results graphically in
Fig. 19.

2. Numerical solution in anisotropic elasticity
and in the absence of flow

The previous calculation leads to perfectly circular targets.
However, experimentally, targets are deformed in the center
not only during the transient regime, but also in the stationary
regime, as can be seen in Figs. 12–14. In this paragraph, we
analyze which role plays the elastic anisotropy in the defor-
mation of the targets when the flows are negligible.

This problem is unfortunately much more complex than in
the isotropic case. To solve it, we could have solved the torque
equation in anisotropic elasticity, but this is difficult because
φ now depends not only on r but also on the polar angle
θ . For this reason, we adopted another strategy consisting in
minimizing an effective energy.

To find this energy, let us return to the torque equation of
general expression when �v = 0:

γ1
∂φ

∂t
= 
E + ν�P . (31)

In this equation 
E = δ f /δφ is the elastic torque calculated
by taking f [φ] = f i[φ] + f a[φ] where f i[φ] and f i[φ] are
given by Eqs. (11) and (12).

By setting φ(t ) = φt and φ(t + δt ) = φ, and by approxi-
mating Eq. (31) by an implicit Newton type scheme,

∂φ

∂t
	 φ − φt

δt
, (32)

it is possible to create two new functionals corresponding
respectively to the temporal term,

t[φ, φt ] = γ1

2δt
(φ − φt )

2, (33)
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FIG. 19. Solution of Eq. (26) for a final winding of five turns.
(a) Winding angle in the center as a function of time scaled using 1/ f
as the characteristic time. (b) Radial angle profiles at different times.
Each colored curve corresponds to a point of the same color in panel
(a). The dashed curve corresponds to the equilibrium curve obtained
when t → ∞. (c) Aspect of the target between slightly uncrossed
polarizers when n = 5. The local intensity is calculated by taking
I = sin2 φ.

and to the Leslie term,

l[φ] = −νGφ, (34)

the derivative with respect to φ of which gives back the asso-
ciated torques. The torque equation can then be rewritten in

024703-13



FÉLIX BUNEL AND PATRICK OSWALD PHYSICAL REVIEW E 107, 024703 (2023)

the form

δe

δφ
= 0, (35)

where e[φ] is an effective energy of the form

e[φ, φt ] = t[φ, φt ] + l[φ] + f i[φ] + f a[φ]. (36)

In the following, we will take R as a unit length and τ = R2/D
as a unit of time, where D = K/γ1 is the average orientational
diffusion coefficient. All our calculations will be made using
dimensionless variables:

x̃ = x

R
, ỹ = y

R

ṽ = R

D
v

P̃ = R2

K
P (37)

and we will set

ai = αi

γ1
and X = μ

ν
. (38)

With these variables, the effective energy is written in the
dimensionless form as follows:

ẽ[φ, φt ] = 1
2δ̃t

(φ − φt )
2 − 8πnφ + 1

2

(
φ2

,x̃ + φ2
,ỹ

)
+ 1

2ε
[
cos(2φ)

(
φ2

,x̃ − φ2
,ỹ

) + 2 sin(2φ)φ,x̃φ,ỹ
]
,

(39)

where n is defined in Eq. (30) and corresponds to the numbers
of turns at equilibrium calculated by neglecting the anisotropy
and the flows.

The next step to solve the torque equation for each time
step was to minimize this functional with respect to φ =
φ(t + δt ) knowing φt = φ(t ). In addition, it was possible to
directly calculate the final equilibrium state by just omitting
the time term in this equation.

From a practical point of view, the energy functional was
developed on a Finite Element space using the C++ library
deal.II [54]. This energy was then minimized thanks to a
confidence region algorithm ensuring both a global and rapid
convergence towards the minimum energy. All the details on
this numerical method are given in Refs. [43,55]. It should
just be noted that the main numerical limitations came from
the execution time. Indeed, it was necessary to have a suf-
ficiently fine grid to correctly describe the terms in cos(2φ)
and sin(2φ) in the anisotropic part of the energy. In partic-
ular, the use of an adaptive grid could not help to solve this
problem, because the gradients of φ are important everywhere
in the film. To overcome this problem, we therefore limited
ourselves to low winding simulations (n ranging from 2 to
20) and we worked with grids with the highest level of refine-
ment possible. In practice, the equilibrium target calculations
were made on a grid containing 5 million cells on which
a revolution of the director is described by 200 points (for
n = 5). The computation time necessary to solve the prob-
lem was typically 10 hours and increased up to one day
for the largest values of the anisotropy. As for the dynamic
calculations on the winding of a target, there were performed
using a coarser grid (50 points per revolution for n = 5)

0 π 2π

(a)

(b)

FIG. 20. Target pattern at equilibrium calculated for n = 5
and two different values of the elastic anisotropy: (a) ε = 0.7;
(b) ε = 0.95.

so that each time step could be calculated over a duration
of the order of a minute. Using this method, we calculated
equilibrium targets for different values of the anisotropy. The
result for ε = 0.7 (KB/KS = 5.7) and ε = 0.95 (KB/KS = 39)
are shown in Fig. 20 when n = 5. These images show that
the targets are little deformed in the center, even at very
large anisotropy, and bear little resemblance to the targets
observed experimentally (see Figs. 13 and 14). We also plotted
in Fig. 21 the number of turns at equilibrium nmax divided
by n as a function of the anisotropy. This number increases,
but not so much, since we find nmax ≈ 1.2 n at ε = 0.95.
We also studied the influence of the anisotropy on the phase
winding process. The results are shown in Fig. 22 where we
plotted the evolution of the angle measured in the film center
scaled to its maximal value as a function of the dimension-
less time for different values of the anisotropy. This graph
shows that the curves are not very different. Additionally, we
plotted the dimensionless half-winding time as a function of
the anisotropy in Fig. 23. These two graphs show that the
winding process slows down when the anisotropy increases,
but this slowing down is not considerable, even at the strongest
anisotropies.

All these results show that the elastic anisotropy is not so
crucial in our system. In particular, it cannot alone explain the
deformation of the targets in the center of the film during the
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FIG. 21. Number of turns at equilibrium divided by n as a func-
tion of the elastic anisotropy when the flows are neglected. The curve
has been plotted for n = 5 but it should be emphasized that this curve
is almost independent of n.

winding. For this reason, and also to simplify the calculations,
we neglected the elastic anisotropy in the study of flows that
we present now.

3. Numerical solution in isotropic elasticity
and in the presence of flow

In the presence of flows, the previous minimization method
can no longer be used and it is necessary to directly solve
the three fundamental equations of the dynamics, namely the
torque equation (7), the Cauchy equation (8), and the incom-
pressibility equation (9).

From a mathematical point of view, these equations re-
semble Boussinesq’s equations which describe the flow of a
fluid whose density varies with temperature. In our problem,
the angle φ plays the same role as the temperature in the
Boussinesq problem since the torque equation is a diffusion

0.0 0.1 0.2 0.3 0.4 0.5
t

0.0

0.2

0.4

0.6

0.8

1.0

φ /
φ

m
ax ε = 0.0

ε = 0.2

ε = 0.4

ε = 0.6

ε = 0.8

FIG. 22. Angle φ in the center of the film scaled by φmax =
2πnmax as a function of the dimensionless time when the flows are
nglected. Simulations were performed with n = 5 for different values
of the elastic anisotropy ε. Angle φmax corresponds to the final value
of φ during the winding. nmax is given in Fig. 21.
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FIG. 23. Half-winding time as a function of the elastic
anisotropy when the flows are neglected. These results have been
obtained by taking n = 5 but it should be emphasized that they
depend very little on this parameter.

equation in which the Leslie forcing term is equivalent to a
heating term in the heat equation. Our problem is nevertheless
more complicated since it also involves two coupling terms
between the director and the velocity proportional to γ1 and
γ2 which are not present in the usual heat equation. As for
our Cauchy equation, it is formally equivalent to the Stokes
equation for the velocity in the Boussinesq problem, the Leslie
chemohydrodynamical force and the elastic force replacing
the buoyancy force in our case.

If this analogy seems a little artificial, it is nevertheless
relevant from a numerical point of view. As for the Boussinesq
system, we are dealing with two coupled fields φ(�r, t ) and
�v(�r, t ). The first, scalar, is governed by a diffusion equation.
The second, vectorial, satisfies a Stokes type equation. For this
reason, the same general techniques of resolution as in the
Boussinesq problem can be used here.

In particular, the fact of neglecting the inertial term in the
Cauchy equation makes it possible to treat it separately from
the torque equation. In other words, the absence of the inertial
term in the Cauchy equation implies that to a given orientation
field φ(�r, t ) is associated a single velocity field �v(�r, t ). A
method to solve a time step is therefore to solve successively
and independently these two equations.

In practice, we will use the velocity field of the previous
time step to solve the torque equation with φ as the only
unknown. In this way, a new estimate of φ is obtained, which
can be used in the Cauchy equation to calculate a new, more
precise estimate of �v. Repeating this process allows one to
refine the general solution (φ, �v) until it satisfies the two
equations.

The analogy with the Boussinesq problem also allowed us
to simply answer complicated numerical questions. In par-
ticular, it is well known that the choice of the finite element
space is crucial to correctly solve the Stokes equation. Using
a pair of unstable spaces for the velocities and the pressure
will result in a potentially false and nonphysical solution. In
our case, and by analogy with other similar numerical prob-
lems [56], we used the mixed space Q2

2×Q1, that was proven
to be stable for solving the Stokes equation.
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In practice, our equations were made dimensionless before
to be solved numerically. With the variables given in Eq. (37),
the torque and Cauchy equations are written in dimensionless
form as

Dφ

Dt̃
= �̃φ + 8πn − 1

2

(
ũ,ỹ − ṽ,x̃

)
− γ

2
[cos (2φ)(ũ,ỹ + ṽ,x̃ ) + sin (2φ)(ṽ,ỹ − ũ,x̃ )], (40)

and

�̃∇ · σ̃V + �̃∇ · σ̃ E + �̃∇ · σ̃ ch − �̃∇P̃ = �0. (41)

In these equations, we set γ = γ2/γ1 and the σ̃ are the dimen-
sionless stresses. The expressions of the components of σ̃V as
a function of φ and �̃v = (ũ, ṽ) are given in Appendix. In the
rest of this section and in the Appendix, and to simplify the
notation, we will remove the tilde symbol and assume that we
are working with dimensionless variables.

In practice, our numerical code was implemented in C++
using the deal.II finite element library. All the details about it
are given in Ref. [43]. We just mention here an important point
used to accelerate its convergence. Indeed we noticed that the
elastic force could be expressed in the following form:

�F E = �∇ · σ E = −�∇φ �φ − �∇ f i, (42)

where

f i = 1
2

(
φ2

,x + φ2
,y

)
(43)

is the elastic energy in isotropic elasticity. The elastic force
can therefore be rewritten as the sum of the elastic energy
gradient and a term proportional to �φ. By grouping the
term in energy gradient with the pressure term and by setting
P = P + f i, and by replacing in the Cauchy equation �φ by
its expression calculated from the torque equation,

�φ(u, v) = Dφ

Dt
− 8πn + 1

2
(u,y − v,x )

+ γ

2
[cos(2φ)(u,y+ v,x )+ sin(2φ)(v,y − u,x )],

(44)

it was possible to greatly improve the code convergence.
To perform the calculations, the values of the nine con-

stants n, X, γ , and the six ai must be given, knowing that
only 6 of them are independent since a3 − a2 = 1 and γ =
a2 + a3 = a6 − a5. In practice, we did not know the material
constants, in particular, the viscosities which are difficult to
measure in smectic-C�. For this reason, we used a reduced set
of viscosities allowing us to qualitatively reproduce our exper-
iments while making the calculations as simple as possible.
In the literature two sets of viscosities have been proposed.
The first one is due to Pieranski et al. [39,57,58] and consists
of taking a1 = a5 = a6 = γ = 0, the “ordinary” viscosity
a4 > 0 and a2 = −a3 = −0.5. With this choice the equa-
tions considerably simplify, but they did not allow us to
reproduce the experiments, in particular, the complex trajec-
tory of the particle during the transient regime. For this reason,
we will not use this model in the following, referring the
reader to Ref. [43] for more information about it. The second
set of viscosities was proposed by Stannarius et al. [59] and
consists of taking a1 = a3 = a6 = 0, a2 = −a5 = −1, a4 > 0

and γ = 1. This choice is more realistic in comparison to the
viscosities measured in usual nematics and we will use it be-
cause it allowed us to reproduce qualitatively our experiments.
In practice, we varied a4 between 0.5 and 4, X between −5
and +5 and n between 0 and 10.

We now describe our results. As before, we start by study-
ing the final state of the system when the phase winding has
reached its equilibrium. Figure 24 shows the target patterns
and the associated velocity fields calculated for n = 5 and
a4 = 1 by taking X = 2.5 and X = −2.5. The first obvious
remark is that the number of turns and the shape of the target
at equilibrium strongly depends on the sign of X . This is
the direct consequence of the flows induced by the Leslie
chemohydrodynamical stress in the film. If X > 0, then the
flows are almost circular and do not deform significantly
the target which remains circular in the center. As the flows
are counterclockwise, they also favor the phase winding, lead-
ing to a number of turns larger than five in the stationary
regime. This is obviously not what we have observed as
the target remains almost circular in this calculation. The
situation is very different when X < 0 and much more in-
teresting because the target is this time strongly deformed
in its center due to more complex flows with recirculation
loops. In that case, the target deforms and becomes oval
near the center, in agreement with our observations. This
is a clear evidence that the flows induced by the Leslie
chemomechanical stress are largely responsible for the central
deformation of the target and that X is negative in our system.
For completeness, we plotted in Fig. 25 the number of turns
in the center of the film divided by n and the magnitude of
the maximal velocity in the film in the stationary regime as
a function of X for different values of the “ordinary” vis-
cosity a4. As expected, the larger the viscosity a4, the less
important are the flows and the less the number of turns
deviates from n.

In a second step, we studied the role of the flows on the
transient regime. Figure 26(a) shows the time evolution of the
phase measured in the film center for X = ±2.5 and X = 0
and by neglecting the flows (�v = 0) when n = 5. The first
remark is that the curve obtained by taking X = 0 is not very
different from the curve calculated by neglecting the flows
(�v = 0). This shows that the backflow effects do not play
a considerable role. By contrast, the flows induced by the
Leslie chemohydrodynamic stress, in addition to changing
the number of turns at equilibrium also changes the shape of
the curves, in particular, in the initial regime. Indeed, at
X = 2.5, the rotation velocity first increases before de-
creasing when the turns accumulate whereas, at X = −2.5,
the rotation velocity constantly decreases from the be-
ginning. Figure 26(b) shows the same curves when the
phase is scaled with its maximal value reached in the sta-
tionary regime. These curves show that the half-winding
time is almost the same for X = 0 and X = 2.5 and
is shorter for X = −2.5. In all the cases this time is
shorter than when the flows are neglected, which shows
again that they play an important role in the winding
process.

In a third step, we tried to reproduce the complex tra-
jectory of the particle observed during the transient process.
Experimentally, we have seen that the particle rotates on
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FIG. 24. Target patterns and corresponding velocity fields in the
stationary regime when n = 5, a4 = 1, ε = 0, and X = 2.5 (a, b) and
X = −2.5 (c, d). Only the central part of the film, where the flows are
the most important, is shown in panels (b) and (d), with the texture
in background.

average clockwise while going back and forth. It is not dif-
ficult to convince oneself that this back-and-forth motion is
impossible if the flows are everywhere circular as in Fig. 24(b)

FIG. 25. Number of turns scaled to n in the center of the film
(a) and maximal value of the norm of the velocity (b) as a function
of X for n = 5 and different values of a4 when the stationary regime
is reached. In these simulations, ε = 0.

when X is positive. Conversely, the presence of recirculating
vortices in the velocity field of Fig. 24(d) explains this motion
when the particle is trapped on one of these vortices. The aver-
age rotation of the particle in this case results of a continuous
rotation of the velocity field which accompanies the rotation
of the director during the transient state.

To reproduce our observation, it would be necessary to
calculate the velocity field for a value of n much larger than
those we are able to calculate with our computer. It was there-
fore not directly possible for us to reproduce the experiment.
However, we were able to reproduce the observed trajectory
in a qualitative way starting from a numerically calculable less
wound target. By then rotating this target and the associated
velocity field at a constant and well-chosen rate of rotation,
it became possible to numerically reconstruct a trajectory that
was very similar to the one observed experimentally. The re-
sult is shown in Fig. 27 and in Supplemental Movie SM5 [41].
This semiquantitative calculation confirmed that it was well
the recirculation vortices coming from the conflict between
the backflow effects and the Leslie flows of chemohydrody-
namic origin which were responsible for the back-and-forth
motion of the particle near the center of the target. This again
confirmed that X was negative in our product.
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FIG. 26. Number of turns in the center of the film scaled to n
(a) or to nmax (b) as a function of the dimensionless time. In these
simulations, n = 5, ε = 0, and a4 = 1.

C. Phase unwinding

If the flow of alcohol is stopped, then the target unwinds
to decrease its elastic energy. The governing equations for the
unwinding process are the same as before without the Leslie
forcing terms since now �P = 0. As in the previous section,
we will proceed by successive approximations to analyze this
problem and we will use the dimensionless variables (without
the tilde for simplicity).

1. Analytical solution in isotropic elasticity
and in the absence of flow

In isotropic elasticity and if the backflow is neglected, the
torque equation reduces to

∂φ

∂t
= �φ = ∂2φ

∂2r
+ 1

r

∂φ

∂r
(45)

in cylindrical coordinates. By taking for initial condition
φ(0, 0) = φmax and by imposing φ(1, t ) = 0 on the edge of
the film, the solution is given by

φ(r, t ) = φmaxJ0

(
r√
τ

)
exp

(
− t

τ

)
, (46)

where J0 is the Bessel function of order 0. This equation shows
that φ decreases exponentially over time with a characteristic

time τ given by

J0

(
1√
τ

)
= 0. (47)

From this equation, the half-unwinding time was deduced:
τ1/2 = ln(2) τ = 0.12. In this calculation, the target remains
circular over time.

2. Numerical solution in anisotropic elasticity
and in the absence of flow

Second, we investigated the role of the elastic anisotropy
during the unwinding, in the absence of backflow. As the
anisotropy makes the problem no longer tractable analytically
(angle φ now depends on r and the polar angle θ ), we solved
the torque equation numerically. The resolution was done by
using the same method as for the winding. We first calculated
the target at equilibrium by taking n = 5 and we then calcu-
lated its time evolution when the flux of ethanol was stopped.
Calculations showed that the target remained almost circular
during the relaxation. The curves of the ratio φ/φmax measured
in the center of the target as a function of the dimensionless
time are shown in Fig. 28 for different values of the anisotropy
ε. The corresponding half-unwinding times τ1/2 are reported
as a function of ε in Fig. 29. These graphs show that the
larger the anisotropy, the slower is the relaxation. This effect
is nevertheless not so large since τ1/2 varies from 0.12 to
0.135 when ε varies from 0 (KB = KS) to 0.8 (KB = 9KS). Our
conclusion is that the anisotropy plays a negligible role during
the unwinding, as during the winding. For this reason, we will
neglect anisotropy in the following.

3. Numerical solution in isotropic elasticity
and in the presence of flow

We have seen that flows play an important role during the
winding of a target. In this case, however, the flow induced by
the chemohydrodynamic force adds to the backflow induced
by the rotation of the director. This can lead, when they act
in opposite directions, to recirculation vortices responsible for
the complex trajectory of the particle observed in Fig. 12. The
situation is simpler during the unwinding because only the
backflow is present. This case was already analyzed in detail
by others, in particular, by Stannarius et al. [59] and Pieranski
et al. [39,57,58]. In practice, we used the same code as before
and simulated the unwinding of a target by taking a4 = 1 and
starting from a target at equilibrium with n = 5. We observed
that during the unwinding, the initial oval deformation of the
target in the center of the film rapidly disappeared as we can
see in the simulation of Fig. 30(b) showing the velocity field
and the target in background when it is half unwound. This is
well observed experimentally (see the inset in Fig. 17) and due
to the fact that the flows induced by the rotation of the director
are also circular. Because the fluid and the director rotate
in the same sense (here clockwise), the unwinding process
is faster when the backflow effects are present. This is clear
in Fig. 30(a) where the relaxation curves of the phase in the
center of the film are plotted with and without backflow. Note
that in this example, τ1/2 passes from 0.15 to 0.12 when the
backflow is taken into account.
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FIG. 27. Simulation of the complex trajectory of the particles. (a)–(d) The red dot shows the position of the particle at different times and
the corresponding velocity field. (e) Trajectory of the particle during a full rotation of the director in the center of the film.

Rather than showing more numerical results, we show in
the next paragraph that it is possible to make a more complete
analytical calculation of this solution without making any as-
sumptions about the viscosities, on the condition of assuming
that the target and the streamlines are circular, as suggested by
the numerics and the experiments.

4. Approximate analytical solution

In this paragraph, we neglect the elastic anisotropy (ε = 0)
but we make no assumptions about the viscosities which we
normalize with viscosity γ1 as before. However, we assume
that the phase φ and the velocity �v do not depend on the polar
angle θ and are only functions of r and t . Under these condi-
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FIG. 28. Angle φ in the center of the film scaled by φmax as a
function of the dimensionless time when the backflow is neglected.
Simulations were performed with n = 5 for different values of the
elastic anisotropy ε. Angle φmax = 2πnmax corresponds to the initial
value of φ at the start of the unwinding. nmax is given in Fig. 21.

tions the general equations simplify considerably. Again, we
use dimensionless variables in this paragraph.

The first equation is the torque equation. In the general
case, it is written in the form

Dφ

Dt
= �φ + 1

2

(
vθ

r
+ ∂vθ

∂r

)

− γ

2
cos [2(θ − φ)]

(
∂vθ

∂r
− vθ

r

)
. (48)

If φ and �v are independent of θ , then Dφ

Dt = ∂φ

∂t because the
fluid particles are advected in a zone where the director keeps
the same orientation. In addition, the term in cos[2(θ − φ)] is
equal to 0 on average over θ and can be neglected. With these
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FIG. 29. Half-unwinding time as a function of the elastic
anisotropy when the backflow is neglected. These results have been
obtained by taking n = 5 but it should be emphasized that they
depend very little on this value.
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FIG. 30. (a) Normalized phase as a function of the dimensionless
time calculated when �v = 0 (dashed line) and �v �= 0 (solid line)
by taking a4 = 1 and ε = 0. At time t = 0, φ = φmax = 10π (five
turns); (b) velocity field when φ = �max/2 = 5π with the target
pattern in background.

simplifications the torque equation becomes

∂φ

∂t
= �φ + 1

2

(
vθ

r
+ ∂vθ

∂r

)
. (49)

The second equation is the Cauchy or momentum equation.
A simplified integral form of this equation can be found by
writing that the momentum of the forces acting on a disk of
radius r is equal to zero in the absence of external forces. Note
here that we have neglected the inertia of the film, which is
justified at low Reynolds number. This equation reads

∫ 2π

0
r
(
σV

θr + σ E
θr

)
rdθ +

∫ 2π

0

∂φ

∂r
rdθ = 0, (50)

where the term in the second integral corresponds to the
surface elastic torque. From the general expression of the
orthoradial component of the viscous and elastic stresses (see
Appendix), one obtains after integration over θ the following

equation:

β

(
∂vθ

∂r
− vθ

r

)
− 1

2

∂φ

∂t
+ 1

4

(
vθ

r
+ ∂vθ

∂r

)
+ 1

r

∂φ

∂r
= 0,

(51)
where β is the dimensionless viscosity

β = a1

8
+ a4

2
+ a5

4
+ a6

4
. (52)

Note that in the simplified model used before, β = a4/2 +
1/4. Note also that under this integral form, the pressure term
disappears from the momentum equation, while the incom-
pressibility condition becomes

∂ (rvr )

∂r
= 0, (53)

which imposes that the radial velocity vr vanishes.
The solution of Eqs. (49) and (51) can be sought in the

form

φ(r, t ) = �(r)e−t/τ and vθ (r, t ) = V (r)e−t/τ . (54)

We note now that this form, in particular, the exponential
decrease, is compatible with the experimental data when
the target is almost circular. With the boundary conditions
φ(0, 0) = φmax, φ(1, t ) = 0, vθ (0, t ) = vθ (1, t ) = 0 the solu-
tion reads

�(r) = CJ0

(
r

r0

)
− τ

T
(55)

and

V (r) = − C

2βr0
J1

(
r

r0

)
+ r

T
, (56)

where J0 and J1 are Bessel functions of zero and first order,
respectively, and r0 =

√
τ (1 + 1

4β
). Note that the condition

V (0) = 0 is automatically satisfied here and that V (r) =
−4φmax(r − r3) when β = 0. The constants τ , T , and C are
given by the other boundary conditions which yield

C − τ

T
= φmax,

CJ0

(
1

r0

)
− τ

T
= 0,

− C

2βr0
J1

(
1

r0

)
+ 1

T
= 0. (57)

This system can be solved analytically when β = 0. In that
case, the solution reads simply

φ(r, t ) = φmax(1 − r2)e−8t ,

vθ (r, t ) = −4φmax(r − r3)e−8t . (58)

When β �= 0, we have found the numerical solution using
Mathematica. Note that according to the Ericksen inequal-
ities on viscosities [60], we must always have β > −0.25.
In practice, a negative value of β corresponds to materials
with a very low ordinary viscosity, whereas large value of β

corresponds to very viscous materials. Note in passing that
making β infinite in the calculations means neglecting the
backflow.
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FIG. 31. Phase profiles analytically calculated at t = 0 when
φ = 10π at the center of the film for different values of β̄. The
elastic anisotropy is neglected (ε = 0). The profiles φ(r, t ) at time
t are obtained by multiplying these profiles by e−t/τ .

With these equations, we calculated the phase profile for
four values of the viscosity β when φmax = 10π in the center
of the film (five turns) (t = 0 by convention). These profiles
are plotted in Fig. 31. Note that the profiles at time t are
obtained by multiplying the latter by exp(−t/τ ) according to
Eq. (54). These curves show that the backflow tends to deform
the target by widening the homogeneous central zone and by
tightening the fringes on the edge of the film. This effect is
stronger the smaller β is and the stronger the backflow is. This
is well observed experimentally as can be seen qualitatively in
the image of Fig. 17.

We also calculated the velocity profiles for the same values
of β. They are plotted in Fig. 32(a). Again the profiles at
time t are obtained by multiplying the latter by exp(−t/τ ).
These profiles are all very close to a profile in r − r3 and pass
through a maximum (in absolute value) at a distance from the
center r ∼ 0.6. This is compatible with experiment as can be
seen in Fig. 18 where the experimental profile was well fitted
with a profile in r − r3. Figure 32(b) also shows that vmax

strongly increases in absolute value because of the backflow
when β decreases and becomes negative.

We also calculated the half-unwinding time τ1/2 = ln(2) τ

as a function of β. The curve is shown in Fig. 33. As expected,
we observe that the backflow accelerates the unwinding of the
target since τ1/2 decreases when the viscosity β decreases.

V. COMPARISON BETWEEN THE THEORY
AND THE EXPERIMENT

Before concluding, we will estimate the order of magnitude
of the material constants in our system. This is complicated
because they do not trivially depend on the thickness of the
film as we have seen when studying the winding of a target
as a function of the thickness. In practice only experiments
carried out at the same thickness can be directly compared.
This is not the case of all of our experiments. Despite this
difficulty we can attempt to give the orders of magnitude of
the main constants for 10 layers-thick films for which we
have the most data. We will assume that a4 = 1 (α4 = γ1) and
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FIG. 32. (a) Velocity profiles analytically calculated at t = 0
when φ = 10π at the center of the film for different values of β̄. The
profiles vθ (r, t ) at time t are obtained by multiplying these profiles
by e−t/τ . The elastic anisotropy is neglected (ε = 0). (b) Maximal
velocity at time t = 0 reached at r ∼ 0.6 as a function of β.

X = −2.5 since these values explain pretty well the central
deformation of the target during the winding.

First, we can give the approximate value of the ratio ν/K .
This ratio is given by measuring the slope of the curve in
Fig. 15 obtained with a 10 layers-thick film. Correcting for
the effect of flows given in Fig. 25(a), we find

ν

K
∼ 8.3×109 kPa−1m−2.

Second, we can give the value of the ratio ν/γ1. According
to Eq. (28), this ratio is given by the slope of the curve in
Fig. 11 also obtained with a 10 layers-thick film. Correcting
for the effect of flows shown in Fig. 26(b), we find

ν

γ1
∼ 2.7×109 kPa−1s−1.

From these two estimates, we deduce the value of the
diffusion coefficient D for a 10 layers-thick film:

D ∼ 3.2×10−4 mm2s−1.

This value can be compared with the value of D deduced by
measuring the half-unwinding time τ1/2 of a target. With the
film of Fig. 9 which was also 10-layers thick, we measured

024703-21



FÉLIX BUNEL AND PATRICK OSWALD PHYSICAL REVIEW E 107, 024703 (2023)

0.0 0.5 1.0 1.5 2.0

β

0.04

0.06

0.08

0.10

0.12

τ 1 /
2

FIG. 33. Half-unwinding time as a function of the dimensionless
viscosity β when ε = 0.

τ1/2 = 65 s for R = 0.56 mm. By using the value of τ1/2 given
in Fig. 33 for β = 0.75 (corresponding to a4 = 1) we found

D ∼ 1.2×10−4 mm2s−1.

This value is smaller than the previous one, but of the same
order of magnitude. This difference is not surprising consid-
ering the approximations made.

To conclude this paragraph, we can look for the order of
magnitude of the velocities during the winding and unwinding
of the phase. In our calculations, the velocity is scaled by D/R.
By taking for D the average of the values found previously, we
find that the reference velocity D/R is about 10−3 mm/s for a
film of radius 0.25 mm. In the experiment on the trajectory of
the particle (Fig. 12), the maximum velocities measured at the
center of the target are typically of the order of 0.02 mm/s.
In the simulations, the velocities found are of the order of
a few tens of D/R (see Fig. 25), i.e., of the order of 0.02–
0.03 mm/s, which is well of the right order of magnitude.
For the maximum velocity found during the unwinding of
a target, we find it to be about 0.03 mm/s from Fig. 18(a)
measured with a film of 20 layers when φmax = 10π (five
turns), while the theory predicts a maximum velocity of the
order of 7 D/R which gives rather 0.007 mm/s. This value is
obviously too small by a factor of 4, even if it is of the good
order of magnitude. This last comparison must however be
considered with caution because the films used do not have the
same thickness and therefore have not necessarily the same
diffusivity and more generally the same materials constants.

VI. CONCLUSION

In this article, we have studied the phase winding in a film
of smectic-C� subjected to a transverse flow of ethanol. We
have experimentally shown that when the +1 defect imposed
by the anchoring conditions at the edge of the film is trapped
by the meniscus, a target pattern forms when the film is
observed between crossed polarizers. This pattern is due to
the winding of the phase φ which mainly accumulates in the
center of the film, since the director is blocked on the edge
of the film due to the anchoring of the molecules on the

meniscus. An analogous phenomenon was already observed
in Langmuir monolayers when the water evaporates through
them. In the two cases, the target formation is mainly due
to the existence of a chemomechanical torque predicted by
Leslie’s theory for chiral materials.

There are, however, important differences between these
two systems. In Langmuir monolayers, the targets are circular
and flows are strongly damped due to the viscosity of the
subphase. In the films, however, the targets are deformed near
the center, and flows are present because they are no longer
damped by the presence of a subphase.

In practice, these flows could come from a backflow ef-
fect. This is indeed what happens during the unwinding of a
target, when the flow of ethanol is cut off. In this case, the
target is almost circular and the velocity field lines are also
circular. As the fluid particles rotate in the same direction
as the director, the relaxation is faster, as if the rotational
viscosity had decreased. This is a well-known effect in ne-
matics where the backflow makes it possible to reduce the
dissipation in the system. By contrast, the situation is very dif-
ferent during the winding process, because we observed more
complex flows with recirculation vortices localized near the
center of the target. These vortices were revealed by following
the trajectory of a particle that accidentally fell onto a target.
This experiment showed that the particle rotated on average
in the same direction as the director, but also performed a
back and forth movement, proving that it was trapped on a
recirculation vortex. If the average rotation can be explained
in terms of backflow, then it is not the same for this back
and forth movement. This experiment therefore revealed the
existence of another source of flows, clearly linked to the
flow of ethanol since the phenomenon is not observed dur-
ing the unwinding. In other words, this experiment directly
revealed the existence of the Leslie chemohydrodynamical
force, also predicted by Leslie’s theory for chiral materials.
We also observed that the target was strongly deformed in the
center during the winding and was almost circular during the
unwinding. This observation suggested that the deformation
of the target was not due to elastic anisotropy, but rather to the
existence of these recirculation vortices.

To explain these observations, we wrote the equations that
govern the dynamics of the films, taking into account the
chemomechanical and chemohydrodynamical coupling terms
of Leslie. We then solved these equations, analytically in
simple cases when the elastic anisotropy and the flows are
neglected, and numerically, when one of these two effects
is taken into account. We showed that the elastic anisotropy
alone could not explain the deformation of the targets during
the winding, according to our observations. For this reason
and to simplify the calculations, we neglected the anisotropy
when we studied the flows. We also used an approximate
model for the viscosities due to Stannarius et al., as they are
all unknown in our system. With this model, we were able to
show that recirculation vortices develop in the center of the
film only when the two coefficients ν and μ describing the
chemical Leslie effects are of opposite signs (X < 0). More
precisely, the observation of the direction of rotation of the
director in our experiments showed us that, with our defini-
tions, the thermomechanical coefficient ν is positive while the
thermohydrodynamical coefficient μ is negative.
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If the agreement between experiment and theory is qualita-
tively good, there are still problems to explain quantitatively
all of our observations.

The first difficulty was the near impossibility to do all
measurements with films of the same thickness. From this
point of view, it would be very interesting to develop a method
to thin the films in a controlled way like the one used in
Ref. [61] by locally heating the film with a heating wire.
This method is, however, difficult to implement here because
the FELIX mixture melts at high temperature and, also, for
technical reasons related to the difficulty of introducing the
heating wire under the film in the experimental device used to
control the flow of ethanol.

The second difficulty came from the complexity of the
model itself and from the large number of material constants.
In particular, the approximations made on the viscosity tensor
are certainly too simplistic. This problem is unfortunately
difficult to improve without any additional information on the
different viscosities. Solving the equations taking into account
both the elastic anisotropy and the flows could also improve
things, but this problem is complicated numerically because

the weak formulation of the anisotropic elastic terms is par-
ticularly difficult. It would also be important to change the
boundary conditions in our numerics by introducing a defect
near the edge of the film. This could certainly explain why it
was impossible to wind a target at very low ethanol flow.

Nevertheless, there is no doubt that in our system μ and
ν are of opposite signs and of the same order of magnitude,
to within a factor of 2 or 3. This result is important and
confirms our intuition that the differences of several orders of
magnitude reported in the literature between the thermome-
chanical and thermohydrodynamical coefficients of Akopyan
and Zel’dovich in nematics are likely due to artifacts (for an
in-depth discussion of this issue, see Ref. [19]).
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APPENDIX: COMPONENTS OF THE STRESS TENSOR IN CARTESIAN AND CYLINDRICAL COORDINATES

We first give the components of the viscous stress tensor in cartesian coordinates:

σV
xx = [a4 + (a5 + a6 + a1 cos2 φ) cos2 φ]u,x + a1

4
sin2 (2φ)v,y +

(
a1

2
cos2 φ + a5 + a6

4

)
sin (2φ)(v,x + u,y)

+ a2 + a3

2
sin (2φ)

[
−Dφ

Dt
+ 1

2
(v,x − u,y)

]
, (A1)

σV
yy = [a4 + (a5 + a6 + a1 sin2 φ) sin2 φ]v,y + a1

4
sin2 (2φ)u,x +

(
a1

2
sin2 φ + a5 + a6

4

)
sin (2φ)(v,x + u,y)

+ a2 + a3

2
sin (2φ)

[
Dφ

Dt
− 1

2
(v,x − u,y)

]
, (A2)

σV
xy =

[
a4

2
+ a5

2
sin2 φ + a6

2
cos2 φ + a1

4
sin2 (2φ)

]
(v,x + u,y) +

[
a5

2
sin (2φ) + a1

2
sin (2φ) cos2 φ

]
u,x

+
(

a6

2
sin (2φ) + a1

2
sin (2φ) sin2 φ

)
v,y + (a3 cos2 φ − a2 sin2 φ)

[
Dφ

Dt
− 1

2
(v,x − u,y)

]
, (A3)

σV
yx =

[
a4

2
+ a5

2
cos2 φ + a6

2
sin2 φ + a1

4
sin2 (2φ)

]
(v,x + u,y) +

[
a5

2
sin (2φ) + a1

2
sin (2φ) sin2 φ

]
v,y

+
[

a6

2
sin (2φ) + a1

2
sin (2φ) cos2 φ

]
u,x + (a2 cos2 φ − a3 sin2 φ)

[
Dφ

Dt
− 1

2
(v,x − u,y)

]
. (A4)

In cylindrical coordinates, we only need the expressions of σ E
θr and σV

θr to derive Eq. (51). They read as follows in isotropic
elasticity and by assuming that the velocity is independent of θ :

σ E
θr = −K

r

∂φ

∂r

∂φ

∂θ
(A5)

and

σV
θr =

{
α4

2
+ α5

2
cos2 (θ − φ) + α6

2
sin2 (θ − φ) + α1

4
sin2 [2(θ − φ)]

}(
∂vθ

∂r
− vθ

r

)

+ [α2 cos2 (θ − φ) − α3 sin2 (θ − φ)]

[
Dφ

Dt
− 1

2

(
vθ

r
+ ∂vθ

∂r

)]
. (A6)
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For completeness, we also give the component σ L
θr of the chemohydrodynamical stress:

σ L
θr = −μ�P

2
cos[2(θ − φ)]. (A7)
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