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Configurational temperature in active matter. II. Quantifying the deviation
from thermal equilibrium
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This paper proposes using the configurational temperature Tconf for quantifying how far an active-matter
system is from thermal equilibrium. We measure this “distance” by the ratio of the systemic temperature Ts to
Tconf , where Ts is the canonical-ensemble temperature for which the average potential energy is equal to that of the
active-matter system. Tconf is “local” in the sense that it is the average of a function, which depends only on how
the potential energy varies in the vicinity of a given configuration. In contrast, Ts is a global quantity. The quantity
Ts/Tconf is straightforward to evaluate in a computer simulation; equilibrium simulations in conjunction with a
single steady-state active-matter configuration are enough to determine Ts/Tconf . We validate the suggestion that
Ts/Tconf quantifies the deviation from thermal equilibrium by data for the radial distribution function of the
3D Kob-Andersen and 2D Yukawa active-matter models with active Ornstein-Uhlenbeck and active Brownian
Particle dynamics. Moreover, we show that Ts/Tconf , structure, and dynamics of the homogeneous phase are all
approximately invariant along the motility-induced phase separation boundary in the phase diagram of the 2D
Yukawa model. The measure Ts/Tconf is not limited to active matter and can be used for quantifying how far any
system involving a potential-energy function, e.g., a driven Hamiltonian system, is from thermal equilibrium.
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I. INTRODUCTION

Temperature is fundamental in thermodynamics and statis-
tical mechanics. Generalizations of the temperature concept
to deal with nonequilibrium systems have been discussed
in several publications, useful reviews of which are given
in Refs. [1–5]. Nonequilibrium temperatures generally at-
tempt to relate the nonequilibrium system to the its thermal-
equilibrium properties. This paper and its companion [6],
henceforth referred to as Paper I, propose two applications
of the so-called configurational temperature Tconf [2,7–9] to
active-matter models, both of which are based on a differ-
ent philosophy than relating to thermal equilibrium. Paper I
shows that Tconf defines an energy scale, which can be used
for tracing out lines of approximately invariant physics of
the 3D Kob-Andersen binary Lennard-Jones (KALJ) model
with active Ornstein-Uhlenbeck dynamics. The present paper
shows that a similar procedure applies for the 2D Yukawa
model with active Brownian dynamics (ABP), after which we
proceed to the main focus: using Tconf for measuring how far
an active-matter system is from thermal equilibrium.

For an ordinary Hamiltonian system in thermal equilib-
rium, the temperature T is identical to the configurational
temperature Tconf that is defined [2,8] as follows. If the sys-
tem consists of N particles with collective coordinate vector
R ≡ (r1, . . . , rN ) and potential-energy function U (R), one
defines kBTconf ≡ 〈(∇U )2〉/〈∇2U 〉. Here kB is the Boltzmann
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constant, ∇ is the gradient operator, and the sharp brackets
denote canonical-ensemble averages. It is straightforward to
prove that T = Tconf in equilibrium [7]; see, e.g., Paper I.
Approaching the thermodynamic limit, the relative fluctua-
tions of both the numerator and the denominator of Tconf go
to zero. Thus if one defines an R-dependent configurational
temperature by

kBTconf (R) ≡ [∇U (R)]2

∇2U (R)
, (1)

the identity Tconf (R) ∼= T applies in thermal equilibrium in
the sense that deviations vanish as N → ∞. Because con-
figurations with ∇2U (R) � 0 become less and less likely as
N → ∞, the fact that Eq. (1) is negative or not defined for
such configurations does not present a problem.

The derivation and justification of the configurational tem-
perature Tconf is based on the fact that the probability of
configuration R in the canonical ensemble is proportional
to exp[−U (R)/kBT ] [2,6,7]. That is irrelevant, however, for
the property demonstrated in Paper I that Tconf (R) may be
used for tracing out lines of invariant structure and dy-
namics in the phase diagram of active-matter models that
involve a potential-energy function obeying hidden scale in-
variance [10]. This is the symmetry that the ordering of
configurations according to their potential energy at a given
density is maintained if these are scaled uniformly to a dif-
ferent density. Hidden scale invariance applies to a good
approximation for many well-known potentials, e.g., systems
defined by the Lennard-Jones, Yukawa, and EXP pair inter-
actions, density-functional derived atomic interactions, and
simple molecular models [11–15].
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The present paper proposes an application of Tconf to
active-matter models, which addresses the problem of quan-
tifying how far a system is from ordinary canonical-ensemble
thermal equilibrium. This question is important because only
if the system in question is close to thermal equilibrium,
does it make good sense to refer to the temperature of the
corresponding canonical-ensemble equilibrium system as a
characteristic of the active-matter system. As discussed in the
next section, the ratio between the global “systemic” temper-
ature Ts and the configuration-space local temperature Tconf

provides such a measure. Section III sets the stage by detailing
one example, the 2D Yukawa model with active Brownian
particle dynamics. Section IV presents data for the radial dis-
tribution function of the 3D Kob–Andersen and 2D Yukawa
active-matter models, confirming that when Ts/Tconf is close
to unity, the structure is close to that of thermal equilibrium.
Also, Sec. IV evaluates a standard entropy-production-based
measure of deviations from thermal equilibrium and com-
pares to the proposed new measure. Section V shows that the
new measure is roughly constant along the motility-induced
phase-separation (MIPS) line, which is consistent with the
reasonable assumption that all state points close to this line in
the non-motility-induced phase separation phase are equally
far from equilibrium. Finally, Sec. VI summarizes Papers I
and II.

II. HOW FAR IS A GIVEN ACTIVE-MATTER SYSTEM
FROM THERMAL EQUILIBRIUM?

The investigations of Papers I and II are limited to active-
matter point-particle models characterized by a potential-
energy function. Quantifying the degree of nonequilibrium is
usually done by calculating some form of dissipation (entropy
production). The idea is that since the entropy production
is zero in thermal equilibrium, this quantity measures how
far a given system is from thermal equilibrium [16–18]. A
fundamental issue with this measure is the following. Using
a quantity that goes to zero in some limit to quantify the
degree of deviation from that limit does not in an obvious
way make possible the identification of when deviations from
equilibrium are to be regarded as “large.” If deviations from
thermal equilibrium are instead quantified by means of a
quantity that goes to unity in the equilibrium limit, deviations
from equilibrium are “small” whenever that quantity does not
deviate substantially from unity and “large” otherwise.

The configurational temperature is local in the sense that
when regarded as a function of R, it only depends on how the
potential energy U (R) varies in the immediate surroundings
of the configuration. Note that “local” here refers to the 2N
or 3N dimensional configuration space, not to the two- or
three-dimensional space in which the particles move. This
locality means that by evaluating Tconf for a passive system’s
configuration at a given time, one cannot determine whether
the system is in thermal equilibrium corresponding to the
temperature T = Tconf (R). For instance, for an aging glass
annealed at temperature T , already after a time on the phonon
scale does Tconf (R) ∼= T apply, i.e., long before equilibrium
has been reached [2].

A completely different, global temperature concept is the
systemic temperature Ts. This quantity was introduced for

generalizing isomorph theory of systems with hidden scale
invariance to nonequilibrium conditions [19]. However, Ts

may be introduced for any nonequilibrium system as the equi-
librium canonical-ensemble temperature of the Hamiltonian
system at the same density and average potential energy as
that of the system in question. In thermal equilibrium one has
Tconf = Ts = T .

The idea is now to use the ratio of global to local tempera-
ture, Ts/Tconf , for quantifying how far an active-matter system
is from thermal equilibrium. We showed in Paper I that the
ratio Ts/Tconf is predicted to be constant along active-matter
isomorphs. Since structure and dynamics are also invariant
along both active-matter isomorphs and the corresponding
Hamiltonian-system isomorphs, it is consistent to assume that
Ts/Tconf measures how far the system is from thermal equilib-
rium.

III. THE YUKAWA ACTIVE BROWNIAN-PARTICLE
MODEL IN TWO DIMENSIONS

This section details the ABP model in two dimensions
based on the single-component Yukawa pair potential [20,21],

v(r) = Q2 σ

r
e−r/(λσ ). (2)

This potential obeys hidden scale invariance [10,22,23], so a
procedure for identifying active-matter isomorphs analogous
to that introduced in Paper I for the active Ornstein-Uhlenbeck
particle (AOUP) model should apply here as well. The idea is
that Ts/Tconf , as mentioned, is predicted to be invariant along
active-matter isomorphs where the deviations from thermal
equilibrium are also expected to be invariant.

If ri is the position vector of particle i, the ABP equa-
tions of motion in two dimensions are

ṙi = μFi + ξi(t ) + v0 oi(t ). (3)

Here μ is the mobility, Fi(R) = −∇iU (R) is the force on
particle i, ξi(t ) is a Gaussian random white-noise vector,
v0 is a constant speed and oi(t ) = (cos[θi(t )], sin[θi(t )]) is
a stochastic unit vector. The direction vector angle θi(t ) is
controlled by a white Gaussian noise of magnitude Dr ,

〈θ̇i(t )θ̇ j (t
′)〉 = 2Drδi j δ(t − t ′), (4)

and the white Gaussian-noise vector has magnitude Dt ,〈
ξα

i (t )ξβ
j (t ′)

〉 = 2Dtδi jδαβδ(t − t ′). (5)

The ABP model has four parameters. Regarding μ as a
system-specific constant, the dimensionless versions of the
three other parameters must be constant in order to have
invariant physics when the density is changed. Following
the procedure of Sec. III of Paper I, we take as length unit
l0 = ρ−1/2 (the exponent is −1/2 and not −1/3 as in Paper
I because the model here is 2D) and as time unit t0 = 1/Dr ,
and write the equation of motion in terms of the corresponding
reduced variables. Substituting ri = ρ−1/2r̃i and t = t̃/Dr into
Eq. (3) and making use of Eq. (8) of Paper I and the following
identity for the systemic temperature Ts [12,19],

Ts(R) ≡ Teq(ρ,U (R)), (6)
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FIG. 1. Structure and dynamics of the Yukawa ABP model in two dimensions. (a) The left panel shows the RDF as a function of the pair
distance r along the active-matter isomorph, the middle panel shows the same data in reduced units, and the right panel shows the reduced
RDF for the same parameters (Table I) at the reference state-point density ρ = 1.0. (b) The left panel shows the MSD as a function of time t
along the active-matter isomorph, the middle panel shows the same data in reduced units where the dashed line marks slope unity, i.e., ordinary
diffusion; the right panel shows the reduced MSD for the same parameters at the reference state-point density ρ = 1.0.

we get

˙̃ri = −μρ(Ts/Dr )∇̃iSex(R̃) + ξ̃i(t ) + ṽ0 oi(t ). (7)

Here ṽ0 = (ρ1/2/Dr )v0, ξ̃i = (ρ1/2/Dr )ξi, Ts is brief for
Ts(R), 〈

ξ̃
α

i (t )ξ̃
β

j (t ′)
〉 = 2ρ(Dt/Dr )δi jδαβδ(t̃ − t̃ ′), (8)

and dots now mark the derivative with respect to t̃ ,

〈θ̇i(t )θ̇ j (t
′)〉 = 2δi j δ(t̃ − t̃ ′). (9)

These equations are invariant under a change of density if
μρTs/Dr , ρDt/Dr , and ṽ0 do not vary. Since μ is a (system-
specific) constant, this implies [where the subscript zero refers
to a reference state of density ρ0 and Ts(ρ) ≡ Teq(ρ, Sex(R̃))
can be used instead of Ts(R) because fluctuations go to zero
in the thermodynamic limit]

Dr = Dr,0
ρ

ρ0

Ts(ρ)

Ts(ρ0)
,

Dt = Dt,0
Ts(ρ)

Ts(ρ0)
,

v0 = v0,0

(
ρ

ρ0

)1/2 Ts(ρ)

Ts(ρ0)
. (10)

By the same argument as in Sec. III of Paper I one can
here replace the Ts ratios by Tconf ratios referring to a single
configuration, leading to

Dr = Dr,0
ρ

ρ0

Tconf [(ρ0/ρ)1/2R0]

Tconf (R0)
,

Dt = Dt,0
Tconf [(ρ0/ρ)1/2R0]

Tconf (R0)
,

v0 = v0,0

(
ρ

ρ0

)1/2 Tconf [(ρ0/ρ)1/2R0]

Tconf (R0)
. (11)

In passing we note that while the Péclet number
v0/

√
2DrDt [24,25] is invariant along the active-matter

isomorph, this requirement is not enough to determine how to
scale the model parameters—thus Péclet number invariance
is a necessary, but not sufficient condition for identifying an
active-matter isomorph.

To validate the existence of active-matter isomorphs ac-
cording to the above prediction we simulated N = 10 000
particles of the 2D Yukawa system with Q = 50, λ = 0.16,
σ = 1 defining the length unit, and a cutoff at 4.5σ . The time
step used is given by 	t = 	t̃ (Dt/v0

2), where 	t̃ = 0.0625
so that 	t = 0.0001 at the reference state point defined by
(ρ, Dr, Dt , v0) = (1.0, 3.0, 1.0, 25.0). The simulations were
carried out on GPU cards using a home-made code. An active-
matter isomorph was traced out for densities varying a factor
of three using Eq. (11) for a configuration R0 selected from
a steady-state simulation at the reference state point. Table I
gives the parameters obtained by means of Eq. (11).

Figure 1(a) shows the radial distribution function (RDF).
The left two panels show the RDF along the active-matter iso-
morph as a function of r and r̃, respectively. For comparison,
the right panel shows the results for the same parameters at the
reference state-point density ρ = 1.0. We find a good invari-
ance of the reduced RDF along the active-matter isomorph.
The same applies for the reduced mean-square displacement
(MSD) shown in the middle panel of Fig. 1(b).

TABLE I. Values of ρ, Dr , Dt , v0, and Tconf along the active-
matter isomorph of the 2D Yukawa ABP model determined by
Eq. (11). By means of Eq. (1) the configurational temperature
Tconf (ρ ) is determined from a single configuration R0 scaled to den-
sity ρ.

ρ Dr Dt v0 Tconf

1.0 3.000 1.000 25.00 1.489
1.5 12.37 2.750 84.20 4.093
2.0 30.43 5.072 179.3 7.550
2.5 58.13 7.751 306.4 11.54
3.0 95.82 10.65 461.0 15.85
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FIG. 2. Determination of the ratio of systemic to configurational temperature, Ts/Tconf , quantifying how far an active-matter system is from
thermal equilibrium. (a) Data for Ts and Tconf for the 3D Kob-Andersen AOUP model (Paper I, [6]) as functions of τ with the remaining model
parameters kept fixed. (b) Ts/Tconf for the same data. For τ values around 10−4 the system begins to move away from equilibrium, and for
τ > 10−3 significant deviations from equilibrium are predicted. (c) Data for Ts and Tconf for the 2D Yukawa AOUP model as functions of τ

with the remaining model parameters kept fixed. (d) Ts/Tconf for the same data. For τ values above 10−4 the system starts to deviate from
equilibrium. (e) Data for Ts and Tconf for the 2D Yukawa ABP model as functions of v0 with the remaining model parameters kept fixed. (f)
Ts/Tconf for the same data. For v0 values around 10 the system begins to move away from equilibrium.

IV. DEVIATIONS FROM THERMAL EQUILIBRIUM
QUANTIFIED BY Ts/Tconf

We now turn to this paper’s main focus. Figure 2
gives data for the systemic and configurational tempera-
tures of different active-matter models, starting with the
Kob-Andersen model studied in Paper I. Figure 2(a) shows
the systemic temperature Ts (black symbols) and the
configurational temperature Tconf (red symbols) for the Kob-
Andersen AOUP active-matter model (Paper I) as functions
of the colored-noise correlation time τ for fixed values of

the other model parameters. Ts is determined by identify-
ing the equilibrium temperature at which the system for
a standard MD simulation has the same average potential
energy as the AOUP system (Eq. (6)). The system ap-
proaches an equilibrium system for τ → 0, corresponding
to the canonical-ensemble temperature T = 1.6. Figure 2(b)
plots the ratio Ts/Tconf . We see that for values of τ above
10−4, the system starts to move away from thermal equi-
librium. Figure 2(c) shows Ts and Tconf as functions of τ

for the 2D Yukawa AOUP model for fixed values of the
other model parameters. Both Ts and Tconf converge to 5 as
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FIG. 3. RDFs of active-matter states predicted to be close to and not close to thermal equilibrium (left and right column, respectively). The
red curves are the active-matter data and the black dashed lines are the RDFs of the corresponding equilibrium system for T = Ts. (a–d) Results
for the AA and BB RDFs of the Kob-Andersen AOUP model for τ = 10−4 and τ = 4 × 10−2 (red curves) corresponding to Ts/Tconf = 1.13
and Ts/Tconf = 6.59. (e, f) Results for the 2D Yukawa AOUP model for τ = 10−4 and τ = 8 × 10−3 corresponding to Ts/Tconf = 1.09 and
Ts/Tconf = 2.59. (g, h) Results for the 2D Yukawa ABP model for v0 = 10 and v0 = 50 corresponding to Ts/Tconf = 1.13 and Ts/Tconf = 2.18.
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FIG. 4. Using the ratio of systemic to configurational temperature to quantify how far the 2D Yukawa ABP system is from thermal
equilibrium [corresponding to v0 = 0 in Eq. (3)]; the parameters kept fixed here are ρ = 1, Dr = 3, and Dt = 2. (a) shows how the dissipation
(“Power”) varies with v0 (MD units). From Fig. 2(e) we see that when v0 → 0, the two temperatures become identical (equal to 2 because
Dt = 2 corresponds to that thermal equilibrium temperature); at the same time the dissipation goes to zero. (b, c) Power as a function of Ts/Tconf

(black points). The quantity Ts/Tconf goes to unity as thermal equilibrium is approached, which presents an advantage compared to using the
dissipated power for quantifying deviations from thermal equilibrium. The red points in (b) give the power in reduced units.

τ → 0, confirming the fact that T = 5 is the equilibrium
Brownian-dynamics temperature corresponding to the param-
eters Dt = 5, μ = 1. Figure 2(d) shows Ts/Tconf ; for τ above
10−4 the system begins to deviate from thermal equilibrium.
Figures 2(e) and 2(f) show Ts and Tconf and their ratio for the
2D Yukawa ABP model as functions of v0 for fixed values of
the other model parameters; here v0 > 10 is the approximate
criterion for deviations from equilibrium.

By reference to the data in Fig. 2, Fig. 3 compares the RDF
of states predicted to be close to and not close to thermal
equilibrium (red full curves). Results for the cases where
Ts/Tconf is close to unity are found in the left column and the
cases predicted not to be close to equilibrium are found in
the right column. The RDFs are compared to the equilibrium
RDF for T = Ts, i.e., the temperature corresponding to the
potential energy of the active-matter configurations (black
dashed curves). Figures 3(a)–3(d) show data for RDFAA and
RDFBB of the Kob-Andersen AOUP model studied in Pa-
per I; RDFAB data are similar to the AA data (not shown).
Figure 3(e) and Fig. 3(f) give data for the 2D Yukawa
AOUP model, while Figs. 3(g) and 3(h) give data for the 2D
Yukawa ABP model (Sec. III). Overall, Fig. 3 confirms that

when the ratio Ts/Tconf is close to unity, the configurations
of the active-matter model are close to thermal equilibrium
configurations.

Next we compare to a previously proposed measure of
deviations from thermal equilibrium, focusing on the 2D
Yukawa ABP model. Figure 4(a) shows the dissipated “active”
power, i.e., the average of the scalar product of the particle ve-
locity with the v0 oi(t ) term of Eq. (3), plotted as a function of
v0, keeping the three other model parameters constant. From
data like these one cannot easily determine when the system is
close to thermal equilibrium. Figure 4(b) shows the dissipated
power plotted against Ts/Tconf , demonstrating a one-to-one
correspondence between the two measures of deviations from
thermal equilibrium (black points). Figure 4(b) also includes
data for the reduced-unit power (red points), which shows
an interesting almost linear proportionality to Ts/Tconf − 1 for
which we have no good explanation. Finally, Fig. 4(c) plots
the same data in a log-linear scale, which further illustrates
that measuring deviations from thermal equilibrium in terms
of a quantity that is zero in equilibrium is not useful for
distinguishing between weak and stronger deviations from
equilibrium.
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FIG. 5. (ρ, Dt ) phase diagrams showing MIPS state points as
red stars and homogeneous state points as black squares (the green
circles are gaslike states of minor relevance here). The MIPS phase
consists of coexisting phases that differ in density, the denser phase
being a “solid” phase of hexagonal crystal structure. The reference
state point (ρ, Dr, Dt , v0 ) = (1.01, 3, 1, 367) is located in the ho-
mogeneous (solid) phase close to the phase boundary. From this an
active-matter isomorph was traced out using Eq. (11) (black line).
The figure gives data in the (ρ, Dt ) phase diagram with Dr and v0

given by Eq. (11) at density ρ. The blue dashed lines mark ±5%
variations in density. We see that the phase-transition line is an
approximate active-matter isomorph, which is consistent with the
expectation that the degree of deviation from thermal equilibrium is
constant along this line.

V. THE MIPS BOUNDARY OF THE 2D ABP
YUKAWA MODEL

For certain parameters of the 2D ABP Yukawa model
motility-induced phase separation (MIPS) is observed, the
striking active-matter phenomenon that even a purely repul-
sive system may phase separate into high- and low-density
phases [26–32]. It is reasonable to assume that, when the
phase transition is approached from the homogeneous phase,
the deviations from thermal equilibrium are the same for all
parameter values. Thus if Ts/Tconf indeed provides a mea-
sure of the deviation from equilibrium, this quantity should
be roughly constant approaching the MIPS phase transition.
Since the 2D Yukawa ABP model obeys hidden scale in-
variance, this means that the phase transition approximately
follows an isomorph (because the physics is approximately
invariant along an active-matter isomorph, such a curve cannot
cross the MIPS boundary; compare Refs. [11] and [33,34]).
Thus if one has identified a state point in the homogeneous
solid phase close to the MIPS boundary and uses this as refer-
ence state point for generating an active-matter isomorph, all
state points identified by Eq. (11) should be close to the MIPS
boundary. A similar line of reasoning has been validated for
the melting line of the ordinary Lennard-Jones system [33,34].

We studied the 2D Yukawa model with parameters Q =
1000 and λ = 0.12 with a cutoff at 4.2σ and (Dr, Dt , v0) =
(3, 1, 367), by systematically decreasing the density from a
high value well within the homogeneous solid phase. Initially,
a system of 40 000 particles was simulated for 40 million

time steps. The occurrence of MIPS was detected by visual
inspection. The lowest density before observing MIPS was
ρ = 1.01. We then used (ρ, Dr, Dt , v0) = (1.01, 3, 1, 367) as
reference state point for generating an active-matter isomorph
according to Eq. (11). This is the black full line in Fig. 5,
which shows the results of investigating the existence of
MIPS in a (ρ, Dt ) phase diagram [along the active-matter
isomorph the remaining parameters Dr (ρ) and v0(ρ) are given
by Eq. (11)]. The black squares denote state points of the ho-
mogeneous solid phase, the red stars denote state points where
MIPS appears, and the green circles denote gas-phase state
points. The blue dashed lines mark the active-matter isomorph
±5% in density. We see that the phase transition line is pre-
dicted reasonably well though not accurately; this is consistent
with the approximate nature of the argument. Nevertheless,
the simulations demonstrate that Eq. (11) can be used for
roughly identifying the MIPS phase boundary. This confirms
the physical expectation that the deviation from thermal equi-
librium is virtually constant along the phase-transition line
because it is an approximate active-matter isomorph charac-
terized by constant Ts/Tconf .

In order to confirm that the black line of Fig. 5 is a line
of approximately invariant physics, i.e., an active-matter iso-
morph, we show in Fig. 6 how structure and dynamics vary
along it. The upper figures show the RDF and MSD in stan-
dard units; the lower figures show the same data in reduced
units, demonstrating a good collapse.

VI. SUMMARY OF PAPERS I and II AND OUTLOOK

The configurational-temperature concept has tradition-
ally been used in connection with liquid models based on
Newton’s laws of motion with forces derived from a potential-
energy function U (R) [2]. Indeed, the derivation of Tconf refers
to the canonical ensemble, and for this reason it is not obvious
that Tconf has relevance also for non-Hamiltonian and non-
time-reversible systems like those of active matter. We have
shown that the configurational temperature may be used also
in the latter context and have presented two applications of
Tconf . Paper I demonstrates how Tconf may be used for tracing
out lines of approximately invariant structure and dynamics in
the phase diagram of models described by AOUP dynamics if
the potential-energy function obeys hidden scale invariance;
such lines are referred to as active-matter isomorphs. Specifi-
cally, Paper I gives the equations for how to change the model
parameters with density in order to have invariant physics,
while Paper II derives a similar procedure for ABP models.
In both cases, by effectively reducing the number of model
parameters by one, this approach provides a tool for simplify-
ing the exploration of phase diagrams of active-matter models
with hidden scale invariance of the potential-energy function.

For the AOUP and the ABP models the ratio of systemic
to configurational temperature is predicted to be constant
along an active-matter isomorph. Since both the active-matter
physics and the corresponding passive-matter physics are in-
variant along their common systemic isomorph (defined as
the thermal equilibrium isomorph mapped into the density
systemic-temperature phase diagram [19]), this is consistent
with the present paper’s proposal that Ts/Tconf quantifies how
far a given active-matter system is from thermal equilibrium.
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FIG. 6. Structure and dynamics probed along the active-matter isomorph approximately delimiting the MIPS phase boundary of the 2D
ABP Yukawa system, slightly into the homogeneous phase (Fig. 5). Panels (a) and (b) show log-log plots of the RDF and MSD, respectively;
panels (c) and (d) show the same data in reduced units.

The ratio Ts/Tconf is defined for any active-matter system
based on a potential-energy function, whether or not hidden
scale invariance applies. In the present paper we suggested
that an active-matter system may be regarded as “close to
thermal equilibrium” whenever Ts/Tconf is close to unity and
“far from thermal equilibrium” when this is not the case.
We illustrated the use of Ts/Tconf for quantifying deviations
from thermal equilibrium by showing that when this quan-
tity is close to unity, the RDF of the active-matter system is
close to that of the corresponding thermal-equilibrium system
with T = Ts. Moreover, Ts/Tconf is roughly constant along the
MIPS boundary along which the deviation from equilibrium
are expected not to vary, compare Fig. 6.

The advantages of using the quantity Ts/Tconf , rather
than an entropy-production measure, for quantifying how
far an active-matter system is from thermal equilibrium are
twofold:

(i) A measure that converges to unity when the system in
question approaches thermal equilibrium allows for answer-
ing the question: how to quantify the deviation from thermal

equilibrium? This is not the case for a measure that converges
to zero when equilibrium is approached.

(ii) Ts/Tconf is easy to evaluate because it can be de-
termined from a single configuration R of a steady-state
simulation of the active-matter system in conjunction with
equilibrium simulations of the corresponding Hamiltonian
system.

It should be noted that Ts/Tconf is a general measure, which
is defined for any system characterized by a potential-energy
function, whether or not in the context of an active-matter
model. For instance, in the case of a nonlinear steady-state
shear flow of an ordinary Hamiltonian system, it is also pos-
sible to quantify the deviation from thermal equilibrium by
means of Ts/Tconf . An interesting question that remains to be
explored is the following: What is the fundamental difference
between the cases Ts/Tconf > 1 and Ts/Tconf < 1?
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