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Transition from susceptible-infected to susceptible-infected-recovered dynamics
in a susceptible-cleric-zombie-recovered active matter model
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The susceptible-infected (SI) and susceptible-infected-recovered (SIR) models provide two distinct represen-
tations of epidemic evolution, distinguished by whether or not the number of susceptibles always drops to zero at
long times. Here we introduce a new active matter epidemic model, the “susceptible-cleric-zombie-recovered”
(SCZR) model, in which spontaneous recovery is absent but zombies can recover with probability γ via
interaction with a cleric. Upon colliding with a zombie, both susceptibles and clerics enter the zombie state
with probability β and α, respectively. By changing the initial fraction of clerics or their healing ability rate γ ,
we can tune the SCZR model between SI dynamics, in which no susceptibles or clerics remain at long times,
and SIR dynamics, in which a finite number of clerics and susceptibles survive at long times. The model is
relevant to certain real world diseases such as HIV where spontaneous recovery is impossible but where medical
interventions by a limited number of caregivers can reduce or eliminate the spread of infection.
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I. INTRODUCTION

Understanding the propagation of infectious diseases is an
intensely studied issue, and a variety of different epidemic
models and methods to simulate the spread of disease have
been developed [1–4]. Two of the most widely used dis-
ease propagation models are the susceptible-infected (SI) and
susceptible-infected-recovered (SIR) models [1–4]. In the SI
model, illustrated in Fig. 1(a), there are only susceptibles (S)
and infectives (I) present. There is no spontaneous recovery,
and the model contains only a single probability β for an S
to transform to an I . As shown in Fig. 1(b), the SIR model
adds a spontaneous recovery process with rate μ for an I to
become recovered (R). A key difference between the SI and
SIR models is that in the SI model the amount of S present
always drops to zero at long times, but in the SIR model the
amount of S can remain finite. A wide range of diseases can
be described using these two models. Diseases with lifelong
transmittivity and no recovery are captured by the SI model,
while situations where reinfection is impossible but sponta-
neous recovery occurs can be represented with the SIR model.
Numerous variations of the SI and SIR models have been
considered over the years [2–5], including epidemic spreading
on networks [6], memory effects [7], adding vaccination [8],
spatial heterogeneity [9,10], social distancing [11], diffusion
[12], and models that include details on mobility patterns
in attempts to more accurately portray real world epidemics
[13,14].

It would be interesting to identify a model in which a
transition from SI to SIR behavior naturally emerges. Such
transitions could arise for certain types of infectious disease
where spontaneous recovery does not occur but where direct
medical intervention can result in recovery or a reduced rate

of infectiousness. For example, in the human immunodefi-
ciency virus (HIV), an untreated patient remains contagious,
but when appropriate medical interventions are applied, the
patient becomes effectively cured and has a rate of infectious-
ness that drops dramatically or even reaches zero. In such
cases, if there is an insufficient supply of resources or treating
agents (doctors), the course of the epidemic will follow the
SI model, but if there are ample resources or treating agents,
the epidemic will instead fall in the SIR regime. We note that
there have already been studies of several epidemic models
that take into account additional medical constraints such as
limited vaccine supply [14,16], resulting in the emergence
of multiple equilibrium states [17] or explosive epidemics
[18,19]. Various methods have been proposed to maximize
the effectiveness of different courses of action in treating an
epidemic to account for such constraints [20].

Standard SI and SIR models assume homogeneous mixing
of infectious and susceptible individuals, either across the
entire population or within strata. For many diseases, that
assumption is known to fail and in Refs. [21,22], the impact
of the failure of the homogeneity assumption is studied. In our
previous work [23], we showed that a run-and-tumble active
matter model combined with SIR dynamics produces different
regimes of behavior when quenched disorder is introduced,
due to the lack of homogeneous mixing in the system. For
low infection rates, the quenched disorder strongly affects the
duration of the epidemic as well as the final epidemic size or
fraction of S that survive to the end of the epidemic. When the
infection rate is high, the quenched disorder has little impact
and the epidemic propagates as waves through the system.

The term “active matter” encompasses self driven systems
such as an assembly of self-motile particles that undergo
contact interactions with each other [24,25]. In our previous
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FIG. 1. (a) In the SI model, there is no spontaneous recovery,
and susceptibles (S, yellow) that come into contact with infectives
(I , red) become infected with probability β. (b) The SIR model adds
a spontaneous recovery process in which an I transitions to recovered
(R, blue open circle) at a rate μ. (c) In the living-zombie-recovered
model employed in Ref. [15], a zombie (Z , green) interacting with S
recovers with probability κ and turns the S into Z with probability β.
(d) In our SCZR model, we divide the susceptible population into S
and clerics (C, brown). Z can only recover when in contact with C
with probability γ , but interaction with Z causes S to turn into Z with
probability β and C to turn into Z with probability α.

work [23], we considered run-and-tumble particles moving in
two dimensions and subjected to rules of how an infection
spreads when a contact interaction occurs between an S and
an I particle. Active matter systems are attractive for epidemic
modeling since they allow real world effects such as spatial
heterogeneity to be incorporated easily because density het-
erogeneities arise naturally from the interactions among the
particles, and there have now been several studies in which
active matter is used to study epidemics [26–28]. There have
also been several experimental realizations of active matter
systems that can mimic social dynamics through the activity
and tracking of individual active particles, so the type of active
matter epidemic systems we consider here should be feasible
to create experimentally [29,30].

Here we introduce a new model for epidemic spreading
featuring multiple susceptible species and no spontaneous
recovery, and show that in this model, an easily tunable tran-
sition between SI and SIR behavior occurs. We specifically
consider a modification of the susceptible-zombie-removed
(SZR) model previously studied by several groups [15,31–
33]. The modeling of zombie epidemics has been performed
in a variety of contexts, with the first studies [31–33] focusing
on how such an epidemic would spread based on portrayals
of zombies in the popular media [34,35]. In these scenarios,
the zombies generally win, but various modifications such
as a rapid attack to eliminate zombies can result in situa-
tions where the nonzombies prevail. Such models are not
only useful for educational purposes in teaching methods of
representing epidemic spreading, but can with certain modifi-
cations actually represent real-world diseases where infection
is irreversible.

Figure 1(c) shows the dynamics of the SZR model. Unlike
the SIR model, the SZR model has no spontaneous recovery.
Instead, when an S and a zombie (Z) interact, the Z transitions
to recovered (R) with probability κ , while the S transitions

to Z with probability β. In our modification of the model,
there is again no spontaneous recovery, but we break the
susceptible population into two portions: susceptibles (S) and
clerics (C). As illustrated in Fig. 1(d), when an S interacts
with a Z , the S becomes a Z with probability β, as in the
SZR model; however, the S cannot cause the Z to recover.
Instead, only an interaction between a C and a Z can cause
the Z to recover with probability γ , while with probability
α, the C becomes a Z . We call this the susceptible-cleric-
zombie-removed or “SCZR” model. Although, as in Ref. [15],
we have placed the model in a zombie framework, the model
can be rephrased in terms of certain real world diseases such
as HIV which, if left untreated, confer a lifelong ability to
infect; however, under medical treatment from a health care
provider, the infection rate can be reduced or dropped to zero,
resulting in an effectively recovered individual. In this case,
the zombie class would be simply be labeled as infected (I)
while the cleric class would represent some form of health
care provider or medical resources. As we show below, the
SCZR model exhibits SI behavior when the initial fraction of
C or the healing rate γ is low, since in this case the Z wipe out
both the C and the S so that a finite fraction of Z remains at
the end of the epidemic. In contrast, when the initial fraction
of C or the healing rate γ is high enough, the C are able to
eliminate the Z so that a finite fraction of S and C remain at
the end of the epidemic, which is behavior associated with an
SIR model.

II. MODELING AND CHARACTERIZATION
OF THE SCZR DYNAMICS

We consider a two-dimensional assembly of N = 5000
run-and-tumble active particles in a system of size L × L
where L = 200.0 and where there are periodic boundary con-
ditions in both the x and y directions. The motion of the
particles is obtained by integrating the following overdamped
equation of motion in discrete time:

αd vi = Fdd
i + Fm

i . (1)

Here vi = dri/dt is the velocity and ri is the position of
particle i, and the damping constant αd = 1.0. The interaction
between two particles, each of radius ra = 1.0, is mod-
eled with a harmonic repulsive potential Fdd

i = ∑N
i �= j k(2ra −

|ri j |)�(|ri j | − 2ra)r̂i j , where � is the Heaviside step function,
ri j = ri − r j , r̂i j = ri j/|ri j |, and the repulsive spring force
constant is k = 20.0.

Each particle is subjected to an active motor force Fm
i =

FMm̂i of magnitude FM applied in a randomly chosen direction
m̂i during a continuous run time of τl ∈ [1.5 × 104, 3.0 ×
104] before instantaneously changing to a new randomly cho-
sen direction. This type of run-and-tumble dynamics of active
particles has been used extensively to model active matter
systems [24,25,36], active ratchets [37], active jamming [38],
and motility-induced phase separation [36,39]. In another ver-
sion of active matter, the particles undergo driven diffusion;
however, many of the generic phases are the same for both
run-and-tumble and driven diffusive active matter [36,40], so
we expect that our results will also be relevant to driven dif-
fusive systems. For sufficiently large density or activity, both
run-and-tumble and driven diffusive active particles begin to
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exhibit self-clustering, leading to what is known as motility-
induced phase separation (MIPS) [24,25,36,41–44].

We select the run length range and motor force value
such that the system is in the MIPS regime, and thus creates
large connected active clusters similar to those employed in
our previous active matter epidemic model [23], where the
spontaneous recovery rate was μ = 2 × 10−5. Each particle
tracks which one of the four possible states, S, Z , C, or R, it
is currently occupying. These states are linked together by the
following equations:

dS = −βSZ, (2)

dZ = αCZ + βSZ − γCZ, (3)

dC = −αCZ, (4)

dR = γCZ. (5)

According to these equations, when an S particle encounters
a Z particle, it changes its label to Z with rate β. More inter-
estingly, when a C and Z particle come in contact, a change
in state occurs with rate α + γ . For interactions in which a
state change occurs, with probability α/(α + γ ) the C particle
becomes a Z , and with probability γ /(α + γ ), the Z morphs
into R. In our simulation we discretize time in �-sized steps,
and in the above dynamic, rates are changed into probabilities.
Specifically, the probability that an S particle in contact with
a Z particle morphs into a Z particle is 1 − e−�β . Similarly,
the probability that a change occurs during a Z and C particle
encounter is 1 − e−�(α−γ ). The probability of transitions from
C to Z and Z to R remains unchanged.

If at a given time step an S particle is in contact with mul-
tiple Z particles, or a Z particle is in contact with multiple C
or S particles, then every possible pair interaction is computed
independently using the unmodified states of all particles, and
the state of each particle is updated simultaneously at the
end of the computation when we apply all S → Z , Z → R,
and C → Z transitions. There are no concurrency issues since
each type of particle can undergo only one type of transition.

The R state is absorbing since the R particles experience no
further state transitions, but there is no mechanism to replen-
ish the initial pool of either S or C particles. The epidemic
ends when either there are no more S and C particles or there
are no more Z particles. Therefore, there are only two possible
types of final state for the SCZR model: an SI-like situation in
which all S and C particles have been transformed into Z and
R particles (indicating that the zombies or the clinical cases
prevail), and an SIR-like situation in which all Z particles have
been extinguished by becoming R particles (indicating that the
medical community prevails and no zombies or clinical cases
remain). While the time td to reach the final state is finite, we
observe in simulations that td can become very long because,
for the epidemic to come to a conclusion, it is necessary for
the remaining S and C or the remaining Z particles to come
into contact with Z or C particles, respectively.

We initialize the system by randomly placing the particles
at nonoverlapping positions in the sample. Initially all of the
particles are set to the S state. We allow the system to evolve
for 5 × 105 simulation time steps until a large MIPS cluster

emerges, and we define this state to be the t = 0 condition.
We then randomly select five particles and change their state
to Z . We choose five particles rather than one particle to lower
the probability of a failed outbreak. We also randomly select
a fraction ranging from 10% to 100% of the S to change
into C. The system continues to evolve under both the mo-
tion of the particles and the reactions between states S, C,
Z , and R until there are either no S or C particles or there
are no Z particles, indicating that further epidemiological
change is impossible. We consider different values of α, β,
and γ in addition to varying the fraction of C in the initial
population.

III. RESULTS

In Figure 2 we illustrate the spatial evolution of our system
under the SCZR model at fixed α = 5 × 10−6, β = 1 × 10−5

and γ = 1.9 × 10−5. For Figs. 2(a)–2(c), the initial fraction
of C is c0 ≡ C(t = 0)/N = 0.2, and over time we find an
SI-like behavior in which the zombie outbreak prevails and
the populations of S and C drop to zero. When c0 is raised to
c0 = 0.4, Figs. 2(d)–2(f) shows an SIR-like behavior in which
recovery prevails and the population of Z drops to zero. The
initial condition of the MIPS cluster is identical for the two
cases, and the motion of the particles is not influenced by
their epidemiological state. The peak of the zombie outbreak
is shown in Figs. 2(b) and 2(e), and the particle positions are
different for the two cases only because the peak in Fig. 2(e)
occurs at a later time of t = 9.67 × 105 compared to the peak
in Fig. 2(b), which falls at t = 4.85 × 105. In general we find
that the progression of an SIR-like epidemic is significantly
slower than that of an SI-like epidemic. The end state of
the epidemic is illustrated in Fig. 2(c) when the last C is
eliminated after a time of t = 1.606 × 106, and in Fig. 2(e)
when the last Z is eliminated after a time of t = 2.277 × 106.
In the well-mixed mean field limit, when β > α we would
expect that all of the S are eliminated prior to the elimination
of the last C for the c0 = 0.2 system. In practice, due to the
heterogeneity of our system, we found that out of all the SI
simulations we considered, the S were eliminated prior to the
C 78% of the time, and the C were eliminated prior to the S
22% of the time.

In Fig. 3(a) we plot the epidemic curves s = S/N , c =
C/N , z = Z/N , and r = R/N versus simulation time for the
c0 = 0.2 system in the SI regime from Figs. 2(a)–2(c). At
first, r and z increase at roughly the same rate until z passes
through a local peak. Meanwhile, since β > α, s decreases
more rapidly than c, and at longer times z undergoes a mod-
est decrease from its peak value so that, at the end of the
epidemic, s = 0, c = 0, z = 0.25, and r = 0.75. Figure 3(b)
shows the epidemic curves for the SIR regime with c0 = 0.4
from Figs. 2(d)–2(f). Here the evolution to the final state oc-
curs much more slowly, and to show the behavior of z clearly
we plot z on a separate y axis scale, which is why the curve
has a noisy appearance. Both s and c decrease with time, but
after passing through a peak, z drops to z = 0 at the end of the
epidemic while the values of s, c, and r all remain finite. At
late times during the epidemic in Fig. 3(b), where all of the
epidemic curves become relatively flat, a strongly stochastic
process occurs in which the surviving C and Z need to come
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FIG. 2. Snapshots of the time evolution of the SCZR system for
α = 5 × 10−6, β = 1 × 10−5, and γ = 1.9 × 10−5. Yellow disks are
susceptibles (S), brown disks are clerics (C), green disks are zombies
(Z), and open blue circles are recovered (R). Panels (a)–(c) are for an
initial cleric fraction of c0 = 0.2, and panel (d)–(f) are for c0 = 0.4.
(a), (d) The t = 0 moment where the MIPS cluster is present. (b), (e)
The peak of the zombie outbreak, which occurs at t = 4.85 × 105 in
panel (b) and at t = 9.67 × 105 in panel (e). (c), (f) The final state,
which is reached at t = 1.606 × 106 in panel (c) and t = 2.277 × 106

in panel (f). Panels (a)–(c) show an SI-like evolution in which all S
and C are eliminated in the final state, while panels (d)–(f) show an
SIR-like evolution in which all Z are eliminated in the final state.

into contact with each other to end the epidemic. Since the
motion of both C and Z is diffusive in nature, this slows the
progression of the epidemic and introduces more stochasticity.
For late times in Fig. 3(a), as the surviving Z transform the
remaining C into Z , z increases with each transformation and
so there is a higher probability of making contact with the
remaining C, shortening the epidemic. In contrast, for late
times in Fig. 3(b), the surviving C transform the remaining
Z into R, which are epidemiologically inert, so there is no
increase in c with each transformation and the total duration
td of the epidemic is longer.

We next consider how changing the values of the model
parameters c0, α, β, and γ affects the epidemic outcomes. To
characterize the outcome of a given simulation, we introduce

FIG. 3. Epidemic curves for the individual runs illustrated in
Fig. 2 with α = 5 × 10−6, β = 1 × 10−5 and γ = 1.9 × 10−5 show-
ing the fractions of susceptible s (yellow), cleric c (brown), zombie
z (green), and recovered r (blue) particles versus time t . (a) SI-like
progression at c0 = 0.2 corresponding to the system in Figs. 2(a)–
2(c). Here, s = c = 0 in the final state. (b) SIR-like progression at
c0 = 0.4 corresponding to the system in Figs. 2(d)–2(f). The value
of z is plotted on a separate y axis for better visibility. In the final
state, z = 0.

the quantity

υ = (s f + c f )/(s0 + c0), (6)

where s0 = S(t = 0)/N is the initial fraction of susceptibles,
s f = S(t = td )/N is the final fraction of susceptibles at time
t = td equal to the duration of the epidemic, and c f = C(t =
td )/N is the final fraction of clerics. Using υ we can determine
what fraction of the initial population of S and C survive the
epidemic. In the SI-like regime, υ = 0, and in the SIR-like
regime, υ remains finite.

From an epidemiological point of view, υ gives an in-
dication of how effective the medical intervention by the
clerics is at suppressing the epidemic. High values of υ are
desirable since this indicates that a smaller fraction of the
population caught the disease. For any individual simulation
with a given set of parameters, it is possible to have either
SI or SIR behavior emerge due to the stochasticity, so we
average υ over an ensemble of 50 runs for each parameter
choice, where each run has a different random seed for the
initial particle positions and placement of Z and C particles.
When 〈υ〉 remains high, the SIR behavior is dominant and
the Z are usually eliminated from the system, while when 〈υ〉
becomes small, the SI behavior is dominant and the S and C
are usually eliminated from the system so that the zombies
prevail.

In Fig. 4 we plot phase diagrams of υ as a function of
c0, the initial cleric fraction, versus γ , the probability of
the transition C + Z → C + R. Each diagram contains 160
points, and each point is averaged over 50 different initial
realizations. In the blue region, υ is high and we find SIR-like
behavior where S and C survive while Z are eliminated, while
in the green region, υ is low and the system is SI-like, with
Z persisting to the end of the epidemic and all of the S and C
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FIG. 4. Phase diagrams showing heat maps of 〈υ〉, the average
fraction of the initial population of S and C that survive the epidemic,
as a function of initial cleric fraction c0 vs the probability γ of the
transition C + Z → C + R. Blue indicates SIR behavior in which Z
are eliminated, and green indicates SI behavior in which S and C are
eliminated. In general, as γ increases, the SIR behavior emerges at
a lower value of c0. (a) Samples of the type shown in Figs. 1–3 with
α = 5 × 10−6 and β = 1 × 10−5. (b) Samples with the same β =
1 × 10−5 where α, the probability for C + Z → Z + Z , has been
halved to α = 2.5 × 10−6. (c) Samples with the same β = 1 × 10−5

in which α has been doubled to α = 1 × 10−5. (d) Samples with the
same α = 5 × 10−6 in which β, the probability for S + Z → Z + Z ,
is doubled to β = 2 × 10−5. The solid lines in the figures are fits
of the form c0 ∝ a(γ + b)−1 where (a) a = 7.77 × 10−6 and b =
3.781 × 10−6, (b) a = 6.912 × 10−6 and b = 5.696 × 10−6, (c) a =
9.056 × 10−6 and b = 9.498 × 10−7, and (d) a = 1.212 × 10−5 and
b = 8.381 × 10−6.

vanishing. Figure 4(a) shows the phase diagram for samples
with α = 5 × 10−6 and β = 1 × 10−5, as in Figs. 2 and 3.
At higher γ , the zombies are more effectively healed by the
clerics, and the initial fraction c0 of C needed to produce
SIR-like behavior drops to lower values, as shown by the
solid line which is a fit of the SI-SIR transition to the form
c0 ∝ a(γ + b)−1. For a simple way to understand the general
form of this curve, consider the early time behavior of an
individual Z particle. As it moves, the Z encounters a C with
probability c0 and an S with probability 1 − c0. The Z always
survives an encounter with S, but it only survives an encounter
with C with probability 1 − γ . Thus, the probability that the Z
survives is Zsurvive = (1 − γ )c0 + (1 − c0) and the probability
that the Z is destroyed by turning into an R is Zdestroy = γ c0.
At the SI-SIR transition, we have Zsurvive = Zdestroy, meaning
that the transition line is expected to fall at c0 = 0.5(γ )−1.

The actual location of the SI-SIR transition line is affected
by the values of α and β because these control the way in
which the populations of S, C, Z , and R evolve over time. If we
cut the probability α of the C + Z → Z + Z transition in half
to α = 2.5 × 10−6, the phase diagram in Fig. 4(b) indicates
that the SI-SIR transition line shifts to lower values of c0 since
it becomes more difficult for the Z to eliminate all of the C. If
we instead double α to α = 1 × 10−5, as in Fig. 4(c), we reach
the limit in which α = β and the S and C particles are both
equally likely to be infected upon encountering a Z . Here, not
only does the SI-SIR transition line shift to higher c0, but for

small values of γ only SI behavior can occur even if the entire
population apart from the zombie index cases is initialized to
state C. If we leave α unchanged but double β, the probability
of the S + Z → Z + Z transition, to β = 2 × 10−5, Fig. 4(d)
shows that at low γ , the location of the SI-SIR transition does
not change very much, but at higher γ , it shifts to higher c0.

To illustrate some representative averaged epidemic
curves, in Fig. 5(a) we reproduce the phase diagram of
Fig. 4(a) for α = 5 × 10−6 and β = 1 × 10−5 with a black
line indicating the location of a horizontal cut. Figure 5(b)
shows 〈υ〉 versus γ at the cut location of c0 = 0.5. When
γ < 9 × 10−6, there are no realizations in which SIR behavior
occurs; instead, the Z always wipe out all of the S and C. Sim-
ilarly, for γ > 1.1 × 10−5, there are no realizations in which
SI behavior occurs, and the Z are always fully eliminated. The
kink in the curve marks the transition to fully SIR behavior.
The value of 〈υ〉 indicates how effective the clerics are at
suppressing the epidemic. When 〈υ〉 increases, it means that
a greater fraction of the population was never infected by the
disease. For γ just above the transition into fully SIR behavior,
over 75% of the population still becomes infected before the
zombies are eliminated, whereas for higher γ , the majority of
the population is able to avoid becoming infected.

For the three points highlighted in black in Fig. 5(b), we
show averaged epidemic curves with s, c, z, and r plotted
as a function of normalized time t̃ = t/td in Figs. 5(c)–5(e).
For γ = 9 × 10−6 in Fig. 5(c), we are still in the SI dom-
inated regime and the z curve is higher than the s and c
curves. Although in any individual run we either have z =
0 or s = c = 0, for the ensemble average s and c are fi-
nite since SIR behavior emerges 10% of the time. Since we
are working at c0 = 0.5, we have s = c at the beginning of
the epidemic, and although s drops more rapidly than c as
the epidemic progresses, by the end of the epidemic s ≈ c,
due in large part to the many SI runs for which s = c = 0. In
Fig. 5(d) at γ = 1.2 × 10−5, all 50 simulations are in the SIR
regime so that z = 0 at the end of the epidemic, while the final
value of r ≈ 0.5 shows that on average half of the population
becomes infected before the zombies are extinguished. Since
we have β = 2α, the value of s drops approximately twice
as fast as the value of c at early times in the epidemic, but
as the supply of Z is depleted through healing by the clerics,
both s and c reach a plateau, and in the final state c > s. For
γ = 1.9 × 10−5 in Fig. 5(e), well within the SIR regime, z
remains quite small throughout the epidemic. Although we
still find c > s at the end of the epidemic, both quantities have
dropped only slightly from the original levels and are not very
different from each other, and 90% of the population is able
to avoid becoming infected.

As shown in Fig. 6(a), we next consider a vertical cut at
γ = 1 × 10−5 from the phase diagram in Fig. 4(a) for α =
5 × 10−6 and β = 1 × 10−5. In Fig. 6(b) we plot 〈υ〉 versus c0

along this cut. For c0 < 0.5, all of the realizations are in the SI
regime and the Z prevail, while for c0 � 0.6, all of the realiza-
tions are in the SIR regime and there are no Z remaining at the
end of the epidemic. The black points in Fig. 6(b) correspond
to the values of c0 at which the averaged epidemic curves in
Figs. 6(c)–6(e) were obtained. At c0 = 0.4 in the SI regime,
Fig. 6(c) shows that at the end of the epidemic, s = c = 0 and
the average fraction of zombies is z = 0.28. When c0 = 0.5 in
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FIG. 5. (a) The phase diagram with a heat map of 〈υ〉 as a function of c0 vs γ from Fig. 4(a) with α = 5 × 10−6 and β = 1 × 10−5. (b) A
horizontal slice of 〈υ〉 vs γ taken at c0 = 0.5 along the black line in panel (a). (c)–(e) Epidemic curves averaged over 50 runs taken at the black
points in panel (b) showing s (yellow), c (orange), z (green), and r (blue) vs the rescaled time t̃ = t/td . (c) At γ = 9 × 10−6, SI behavior occurs
90% of the time, so the averaged values of s and c do not reach zero but are lower than the averaged value of z. (d) At γ = 1.2 × 10−5, all
runs are in the SIR regime and on average 50% of the population is never infected. (e) At γ = 1.4 × 10−5, the clerics become more effective
at reducing the impact of the epidemic, and on average 90% of the population is never infected.

Fig. 6(d), the system is in the SI regime 36% of the time, so
that the final value of z is greater than zero. Although c and s
approach each other toward the end of the epidemic, we find
that c > s by a small amount since the s = c = 0 behavior of
the SI regime is no longer dominant. In Fig. 6(e), for c0 = 0.6
the system is fully in the SIR regime, and throughout the
epidemic we find not only that c > s but that the difference
between c and s remains constant. This is an indication of
the importance of the stochastic diffusive process that occurs
in our model to permit Z to come into contact with S or C.
For c0 = 0.4 in Fig. 6(c), at early times in the epidemic a Z
encounters an S 60% of the time but a C only 40% of the
time. Since S are twice as likely as C to be infected, s drops
much more rapidly than c in this regime. When c0 is increased
to c0 = 0.5 in Fig. 6(d), a Z is equally likely to encounter an
S or a C at early times, and we see that the doubled infection
probability causes s to drop about twice as fast as c, as also
shown in Figs. 5(c)–5(e). Further increasing c0 to c0 = 0.6 in
Fig. 6(e) means that at early times a Z encounters a C 60%
of the time and an S only 40% of the time. Since the C are
more resistant to infection, the relative fraction of C and S
in the population remains nearly constant. Increasing c0 even

further produces many short-lived epidemics in which s and c
do not change very much from their initial values.

We can analytically evaluate υ for well mixed systems
whose dynamics is described through Eqs. (2)–(5). Rewrite
Eqs. (2) and (4) as

α · d

dt
log S(t ) = −(αβ ) · Z (t ), (7)

β · dt

dt
logC(t ) = −(αβ ) · Z (t ), (8)

to conclude that

d

dt
log S(t )α = d

dt
logC(t )β. (9)

Integrating both sides, and using the initial conditions to fix
the integration constants yields (after suitable division by N)

(
s

s0

)α

=
(

c

c0

)β

. (10)
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FIG. 6. The phase diagram with a heat map of 〈υ〉 as a function of c0 vs γ from Fig. 4(a) with α = 5 × 10−6 and β = 1 × 10−5. (b) A
vertical slice of 〈υ〉 vs c0 taken at γ = 1 × 10−5 along the black line in panel (a). (c)–(e) Epidemic curves averaged over 50 runs taken at the
black points in panel (b) showing s (yellow), c (orange), z (green), and r (blue) vs t̃ . (c) At c0 = 0.4, only SI behavior occurs. (d) At c0 = 0.5,
we find mixed behavior, with an SI response occurring 36% of the time and an SIR response appearing in the remaining 64% of runs. (e) At
c0 = 0.6, all runs are in the SIR regime.

This provides us with the opportunity to compute a target
for υ:

υ = (s f + c0(s f /s0)α/β )/(s0 + c0). (11)

Failure to hit that target in simulations is an indication that
the homogeneous mixing assumption failed. From the data
in Figs. 5(c)–5(e) and 6(c)–6(e), we find that the predicted
value of υ is higher than the actual value of υ, as shown in
Table I, but that the agreement between predicted and actual

TABLE I. Predicted value of υ from Eq. (10) compared to the
actual value of υ observed in the simulations from Figs. 5 and 6.

Predicted Actual

Fig. 5(a) 0.2 0.1
Fig. 5(b) 0.57 0.55
Fig. 5(c) 0.92 0.9
Fig. 6(a) 0 0
Fig. 6(b) 0.32 0.25
Fig. 6(c) 0.68 0.62

improves as we move deeper into the SIR regime. This could
be an indication that the SIR regime is better mixed than the SI
regime, possibly due to the faster dynamics that tend to occur
for SI behavior.

In Fig. 7 we plot the distribution P(td ) of the duration td
of the individual epidemics for the runs in all of the phase
diagrams in Fig. 4. The data is split into two distributions,
with the first for simulations that ended in the SI regime with
a finite number of Z remaining, and the second for simulations
that ended in the SIR regime with no Z remaining. For the SI
case, there are no epidemics of short duration. This is because
all C and S must be eliminated in the SI regime, and the elimi-
nation process requires a minimum amount of time to occur. In
the inset we show the same data on a log-linear scale, indicat-
ing that some of the SI epidemics last for an extremely long
time before reaching a final state. These lengthy epidemics
occur for values of c0 and γ at which the behavior is evenly
split between SI and SIR on average. There is also a peak in
P(td ) near td = 1.5 × 105 simulation time steps. In the SIR
regime, there is a large peak in P(td ) at small td corresponding
to failed outbreaks in which the C can rapidly encounter and
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FIG. 7. The distribution P(td ) of epidemic durations for the runs
presented in the phase diagrams of Fig. 4. Blue: runs in which the
final state was in the SIR regime with all of the Z eliminated. Green:
runs in which the final state was in the SI regime with a finite
population of Z surviving at the end of the epidemic. The darker
shade of green indicates areas in which the distribution functions for
the SIR and SI regimes overlap. Inset: The same data plotted on a
log-linear scale.

cure the small number of Z present at early times before the
epidemic gets going. This is followed by a gap similar to what
we observed previously in SIR simulations [23], and then by a
second peak representing epidemics that involve a substantial
portion of the population. Here we find that if the epidemic in
the SIR regime is able to become established, it lasts longer
than the typical epidemic in the SI regime, but that there is
a high probability for the SIR epidemic to be extinguished
before it can become established.

IV. DISCUSSION

As we noted earlier, although we have cast our SCZR
model in terms of zombies and clerics, it could also be
rephrased so that the zombies are disease-spreading individ-
uals that cannot spontaneously recover from the disease they
have caught, and the clerics are medical care providers who
can cure the infected individuals or at least render them non-
infectious. In this picture, when we take α < β but α > 0, this
would mean that the medical care providers are more careful
than the general population and take more precautions against
becoming infected, but that they are not immune from becom-
ing infected. The transition between SI and SIR behavior is
significant because it indicates that by introducing a larger
number of medical care providers (increasing c0) or giving
the medical care providers more effective treatment protocols
(increasing γ ), the disease can be prevented from entering the
SI regime in which the entire population winds up getting
infected eventually, and it can instead be held in the SIR
regime, ideally in the limit where td is short and the epidemic
never becomes established in the population. Some of the next
steps for our SCZR model would be to consider the effect of
adding fixed spatial heterogeneity such as quenched disorder.

For example, the C might be confined to only certain regions
of the system, as in real world scenarios where impassable ter-
rain or military blockades are present. Other situations include
considering the case where the R are not epidemiologically
inert but can produce infection at greatly reduced rates β ′ �
β and α′ � α, to represent situations in which the medical
care givers only reduce the infectiousness rather than fully
eliminating it. Active matter models in general also readily
allow other effects to be captured, such as introducing a small
fraction of very active particles with increased motor force
FM embedded in a population of reduced mobility or much
smaller FM to represent different types of mobility patterns in
social systems.

Another question that could be explored with the SCZR
model is what is the nature of the transition from the SI to
the SIR regime. Although the transition is somewhat sharp
in our phase diagrams, it may be only a crossover. Note that
in the limit c0 = 1, the SCZR model becomes equivalent to
the SZR model of Ref. [15]. In this limit, Fig. 4 shows that
for certain parameter regimes there is still a transition from
SI to SIR behavior; however, it is much more intuitive from
a medical intervention point of view to tune between the two
regimes using the c0 and γ parameters of the SCZR model
than by using the parameter α (which is written as β in the
SZR model). Epidemic models show various types of critical
phenomena associated with directed percolation transitions
[45,46]; however, such transitions can be screened or modified
by the introduction of quenched disorder [47], so we expect
that there could be various types of critical behavior in our
system.

V. SUMMARY

We have introduced a model for epidemics that we call the
susceptible-cleric-zombie-removed or SCZR model, and we
demonstrate the use of this model with active matter run-and-
tumble particles. In the SCZR model, the infectious agents are
the zombies, and there is no spontaneous recovery. There is an
initial population of susceptibles and clerics. With probability
α for clerics and β for susceptibles, interaction with a zombie
causes infection into the zombie state, while with probability
γ , a cleric interacting with a zombie causes the zombie to
enter an epidemiologically inert recovered state. We show that
by varying the initial density of clerics or their healing rate γ ,
we can tune the SCZR model between SI and SIR regimes.
If the initial cleric density or the healing rate γ is low, then
the zombies eliminate all of the clerics and susceptibles to
give SI behavior, while if the initial cleric density or healing
rate γ is high enough, then the clerics are able to heal all of
the zombies and SIR behavior emerges. Our model has impli-
cations for real-world diseases where infections are lifelong
and spontaneous recovery does not occur, but where medical
intervention can produce recovery or at least drive the rate of
infectiousness to zero. One example of this type of disease
is the human immunodeficiency virus (HIV). In this case,
the zombies would be infected persons and the clerics would
represent medical caregivers that can provide treatment. The
SCZR model could provide a good staring point for creating
new types of epidemic models where treatment is needed for
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recovery and there are finite or limited treatment resources
available.
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