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Macroscopic forces in inhomogeneous polyelectrolyte solutions
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In this paper, we present a self-consistent field theory of macroscopic forces in spatially inhomogeneous
flexible chain polyelectrolyte solutions. We derive an analytical expression for a stress tensor which consists
of three terms: isotropic hydrostatic stress, electrostatic (Maxwell) stress, and stress rising from conformational
entropy of polymer chains—conformational stress. We apply our theory to the description of polyelectrolyte
solutions confined in a conductive slit nanopore and observe anomalous behavior of disjoining pressure and
electric differential capacitance.
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I. INTRODUCTION

Modern electrochemical devices, such as batteries and
supercapacitors, extensively utilize porous electrodes impreg-
nated with low molecular weight electrolyte solutions or room
temperature ionic liquids (RTILs) [1,2], although from general
considerations one can expect a higher electric double layer
charge when dealing with long polyelectrolyte chains. We
have recently proposed [3,4] a theoretical model describing
charged polymer chains near an electrified electrode and ob-
served a substantial increase in differential capacitance values
when considering the case of their solution in a polar organic
solvent.

Turning back to the case of low molecular weight charge
carriers, electrosorption of small ions into porous materials is
known to be accompanied by deformation of the latter [5],
which in turn is closely related to such an important quantity
as disjoining pressure if we talk about slit pores or solvation
pressure—for pores of an arbitrary geometry [6,7]. Thus, an
obvious extension of the above-mentioned work is an inves-
tigation of both the disjoining pressure and the differential
capacitance of a polyelectrolyte solution in a slit pore with
conductive walls in order to get new insights for supercapaci-
tors design.

However, there have hardly been any works devoted
to studying the disjoining pressure in nanopores, even for
conventional electrolyte solutions and RTILs [5,8–10]. Nev-
ertheless, it is worth noting a number of important theoretical
works dealing with adsorption of both single polyelectrolyte
chains [11–14] and multiple chains from a solution [15–17]
onto oppositely charged surfaces of membranes or colloidal
particles. Despite that, none of these papers proposed a sys-
tematic approach to the calculation of macroscopic forces
acting on a dielectric or conducting body immersed into a
polyelectrolyte solution or melt.

*ybudkov@hse.ru

Below we propose a self-consistent field theory of macro-
scopic forces in inhomogeneous flexible chain polyelectrolyte
solutions. As a special case, we apply it to the investigation of
the disjoining pressure in a polyelectrolyte solution confined
in a slit conductive nanopore. We also show how disjoining
pressure behavior manifests itself on differential capacitance
profiles.

II. THEORY

Let us consider a polyelectrolyte solution consisting of
polymerized flexible cations (macroions), whose monomeric
units carry a charge q > 0 and low-molecular-weight anions
(counterions) with a charge −q. Note that promising for
applications polyelectrolyte materials, e.g., polymeric ionic
liquids, have positively charged macroions and negatively
charged counterions [3,4]. We assume the polymerization de-
gree of macroions to be very high (N � 1), which means we
can neglect the translation entropy of the mass center of the
polymer chains. The grand thermodynamic potential (GTP)
of the solution is

� =
∫

drω(r), (1)

where we have introduced the GTP density

ω = −ε(∇ψ )2

2
+ ρψ + kBT b2

6

(∇n1/2
p

)2

+ f − μpnp − μcnc. (2)

The first and second terms in the integrand are the electro-
static energy density in the mean-field approximation with the
local charge density ρ(r) = q(np(r_) − nc(r)) and electrostatic
potential ψ (r); ε is the dielectric permittivity of the solvent;
the third term is the density of the conformational free energy
[18,19] of the flexible polymer chains with a bond length b
(kB is the Boltzmann constant, T is the temperature). The
fourth term, f = f (np, nc), determines the contribution of
the volume interactions of monomeric units and counterions
to the total free energy density, with np,c(r) being the local
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concentrations of monomeric units and counterions, which we
describe within the lattice model (without attractive interac-
tions) [20–22] f = kBT v−1(φc ln φc + (1 − φc − φp) ln(1 −
φc − φp)), where φp,c = np,cv are the local volume fractions
of the counterions and monomeric units, v is the elementary
cell volume that is related to the bond length via the natural
condition, v = b3; μp and μc are the bulk chemical potentials
of the monomeric units and counterions, respectively. The
self-consistent field equations, which are simply the Euler-
Lagrange equations for functional (1), are

∂ω

∂ψ
= ∂i

∂ω

∂ (∂iψ )
,

∂ω

∂n1/2
p

= ∂i
∂ω

∂
(
∂in

1/2
p

) ,
∂ω

∂nc
= 0, (3)

where ∂i = ∂/∂xi is the partial derivative with respect to the
Cartesian coordinates xi (i = 1, 2, 3). Note that we adopted
the Einstein rule implying the summation over the repeated
indices. Using GTP density (2) introduced above, we arrive at⎧⎪⎨

⎪⎩
μ̄c(r) − qψ (r) = μc

μ̄p(r) − kBT b2

6n1/2
p (r)

∇2n1/2
p (r) + qψ (r) = μp

∇2ψ (r) = − q
ε
(np(r) − nc(r)),

(4)

where μ̄c = ∂ f /∂nc = kBT ln(φc/(1 − φc − φp)), μ̄p = ∂ f /
∂np = −kBT ln(1 − φc − φp) are the intrinsic chemical po-
tentials of monomeric units and counterions, respectively.
Taking into account that in the bulk solution, where ψ =
0, the local electroneutrality condition, np = nc = n0, is ful-
filled, we obtain the following expressions for the bulk
chemical potentials of the species μc = kBT ln(φ0/(1 −
2φ0)), μp = −kBT ln(1 − 2φ0), where φ0 = n0v is the bulk
volume fraction of the monomeric units and counterions. The
boundary conditions for the polymer concentration and elec-
trostatic potential are [15,23] np|s = 0, ψ |s = ψ0, where the
symbol |s means that the variables are calculated at the sur-
faces of immersed macroscopic conductors. These boundary
conditions mean that near the surface of a conductive wall
(with a fixed surface potential, ψ0) the monomeric units are
exposed to a strong repulsive force [15]. Note that for sim-
plicity we neglect the specific adsorption of the counterions.
The latter can be easily taken into account [24].

Turning to the theory of macroscopic forces, let us sub-
ject the system to a dilation transformation, x′

i = xi + ui(r),
where ui(r) are some arbitrary functions of coordinates. Using
Eq. (3) and assuming that the dilation is rather small, we
obtain (for technical details, see Appendix)

δ� =
∫

druikσik, (5)

where uik = (∂iuk + ∂kui )/2 is the strain tensor [25] and

σik = δ�

δuik
= ωδik − ∂in

1/2
p

∂ω

∂
(
∂kn1/2

p
) − ∂iψ

∂ω

∂ (∂kψ )
(6)

is the stress tensor satisfying the local mechanical equilibrium
condition, i.e.,

∂iσik = 0. (7)

Using Eq. (2) and excluding the bulk chemical potentials from
the final expressions based on Eq. (4), we obtain

σik = σ
(h)
ik + σ

(M )
ik + σ

(c)
ik , (8)

where

σ
(h)
ik = −Pδik (9)

is the standard hydrostatic stress tensor with the local pressure
P = npμ̄p + ncμ̄c − f = −kBT v−1(ln(1 − φp − φc) + φp),

σ
(M )
ik = ε

(
EiEk − 1

2E
2δik

)
(10)

is the electrostatic contribution described by the standard
Maxwell stress tensor [23] for the case of continuous di-
electric medium with the electrostatic field components Ei =
−∂iψ , and

σ
(c)
ik = kBT b2

3

(
1

2
∇ · (

n1/2
p ∇n1/2

p

)
δik − ∂in

1/2
p ∂kn1/2

p

)
(11)

is the contribution to the total stress tensor originating from
the conformational entropy of the polymer chains (we call
it conformational stress tensor). The expression for the con-
formational stress tensor (11) is a main result of this work.
We would like to note that the hydrostatic and Maxwell stress
tensors for low-molecular weight electrolytes were recently
obtained from the GTP in Ref. [10]. Knowledge of the stress
tensor at each point allows us to calculate the macroscopic
force acting on a conductive or dielectric body immersed in
a polyelectrolyte solution. It can be calculated as the surface
integral over the area of an immersed body (see Appendix)

Fi =
∮

S
σiknkdS, (12)

where nk are the components of external normal and dS is the
elementary area. Note that in the absence of nonelectrostatic
volume forces, due to the fact that the polyelectrolyte solution
is in mechanical equilibrium, integration in Eq. (12) can be
performed over any closed surface around a macroscopic
body [10].

III. POLYELECTROLYTE SOLUTION IN A SLIT
CHARGED NANOPORE

Now let us consider the case when a polyelectrolyte so-
lution is confined in a slit pore with identical electrified
conductive walls placed at z = 0 and z = H (H is the pore
width). Assuming the polyelectrolyte solution in the pore is
in equilibrium with the bulk liquid, we can write the self-
consistent field equations as follows{

μ̄p(z) − kBT b2

6φ
1/2
p (z)

(
φ1/2

p (z)
)′′ + qψ (z) = μp

ψ ′′(z) = − q
εv

(φp(z) − φc(z)),
(13)

with the boundary conditions ψ (0) = ψ (H ) = ψ0, φp(0) =
φp(H ) = 0; the volume fraction of the counterions can be
analytically expressed via the electrostatic potential and
volume fraction of monomeric units as follows φc = (1 −
φp)e

μc+qψ

kBT /(1 + e
μc+qψ

kBT ). The stress tensor value obtained

024503-2



MACROSCOPIC FORCES IN INHOMOGENEOUS … PHYSICAL REVIEW E 107, 024503 (2023)

FIG. 1. Disjoining pressure as a function of the distance between
the walls supplemented by the concentration profiles for monomeric
units and counterions. The data are shown for φ0 = 0.1, ψ0 = 0.1 V,
ε = 40ε0, b = v1/3 = 0.5 nm, T = 300 K, and q = 1.6 × 10−19 C.

above (8) allows us to determine the disjoining pressure in
the pore. Indeed, the local mechanical equilibrium condition
(7) simplifies to

dσzz

dz
= 0, (14)

which yields

−σzz(z) = Pb + � = const, (15)

where σzz is the normal stress, Pb is the bulk pressure,
and � is the disjoining pressure [26]. Thus, determining
σzz at z = H/2, where n′

p(H/2) = E (H/2) = 0, we ob-
tain � = −σzz(H/2) − Pb = −kBT b2n′′

p(H/2)/12 + Pm − Pb,
where we have introduced the pressure at the pore middle,
Pm = P(H/2). The latter equation can be rewritten in a form
that is more useful for applications without the second deriva-
tive of the polymer concentration. Using the first of the two
equations in (13) at z = H/2, that is, −kBT b2n′′

p(H/2)/12 =
npm(μp − μpm − qψm), we arrive at

� = npm(μp − μpm − qψm) + Pm − Pb, (16)

where ψm = ψ (H/2), npm = np(H/2), and μpm = μ̄p(H/2).
To calculate the disjoining pressure by Eq. (16), first one has
to solve self-consistent field equations (13) and then calculate
the respective variables at the midpoint of the pore.

IV. NUMERICAL RESULTS AND DISCUSSIONS

A. Disjoining pressure

Now let us turn to the results of the numerical calcu-
lations. Figure 1 demonstrates the disjoining pressure of a
polyelectrolyte solution in a polar solvent with the dielectric
permittivity ε = 40ε0 (which mimics the organic solvent like
dimethylsulfoxide; ε0 is the empty space permittivity), fixed
positive surface potential ψ0 = 0.1 V and bulk volume frac-
tion φ0 = 0.1 as a function of the pore width; b = v1/3 =
0.5 nm, T = 300 K, and q = 1.6 × 10−19 C. The insets with

FIG. 2. Disjoining pressure of polyelectrolyte solution as a
function of the distance between the walls. The inset shows the
exponential decay at large pore widths. The data are shown for
φ0 = 0.1, ψ0 = 0.1 V, ε = 40ε0, b = v1/3 = 0.5 nm, T = 300 , and
q = 1.6 × 10−19 C.

the concentration profiles of the monomeric units and coun-
terions at fixed pore widths reveal the origins of pronounced
nonmonotonic disjoining pressure behavior. In the region of
sufficiently small pore widths we observe positive disjoining
pressure due to the osmotic pressure of the counterions and
strong overlap of the electric double layers on the charged
walls. Then, at certain width of the pore it turns into negative
values, which is due to smaller average counterion concentra-
tion in the middle of the pore than that in the bulk solution
leading, in turn, to Pm < Pb or � < 0 (see Eq. (16) taking
into account that in such case npm = 0). With further increase
of the pore width, the polymer chains start to permeate into
the pore volume from the bulk solution (break of the dis-
joining pressure curve) resulting in dramatic growth in the
disjoining pressure values due to a strong increase in the
osmotic pressure of the counterions and monomeric units. In
the case of rather wide pores the disjoining pressure behaves
conventionally [26], namely, exponentially damps to zero, as
shown in Fig. 2, where we zoomed out disjoining pressure
curve depicted at Fig. 1. Note that negative disjoining pres-
sure values cannot be obtained within the self-consistent field
theory (see, for instance, [22]) without the gradient terms (de-
scribing the so-called structural interactions [27]) in the free
energy functional. However, accounting for the gradient terms
within the Cahn-Hilliard-like approach allows us to obtain the
negative disjoining pressure values [27]. In the present model,
the gradient term in the free energy functional originates from
the conformational entropy of the flexible polymer chains.

The width, at which the polymer starts to permeate the
pore, can be tuned by changing the bulk volume fraction,
surface potential, and dielectric permittivity of the solvent,
which is demonstrated at Figs. 3–5, correspondingly. The
insets in plots highlight the region of nonmonotonic disjoining
pressure behavior. As is seen, due to the steric effect, the more
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FIG. 3. Disjoining pressure of polyelectrolyte solution as a func-
tion of the distance between the walls for different values of bulk
volume fraction, φ0. The data are shown for ψ0 = 0.1 V, ε = 40ε0,
b = v1/3 = 0.5 nm, T = 300 K, and q = 1.6 × 10−19 C.

the volume fraction of the monomeric units is in the bulk
(Fig. 3), the faster, i.e., at less width, they enter the space
between the walls, despite the same sign of the surface and
monomeric unit charge. Besides, for sufficiently small pores
higher bulk volume fraction leads to stronger screening of
the surface potential resulting in lower disjoining pressure
values and deeper minimum. With increase of positive sur-
face potential we obtain the opposite picture (Fig. 4)—the
minimum shifts to the region of wider pores. This is simply
due to enforcement of the polymer-wall electrostatic repul-
sion, thus moving the width, at which the first polymer pore

FIG. 4. Disjoining pressure of polyelectrolyte solution as a func-
tion of the pore width for different values of positive surface potential
ψ0. The data are shown for φ0 = 0.1, ε = 40ε0, b = v1/3 = 0.5 nm,
T = 300 K, and q = 1.6 × 10−19 C.

FIG. 5. Disjoining pressure of polyelectrolyte solution as a func-
tion of the distance between the walls for different values of dielectric
constant ε (in ε0 units). The data are shown for φ0 = 0.1, ψ0 = 0.1 V,
b = v1/3 = 0.5 nm, T = 300 K, and q = 1.6 × 10−19 C.

penetration occurs to larger pores. With increase of the solvent
dielectric permittivity (Fig. 5) the screening of the surface
potential decreases. It leads to growth of the counterions con-
centration in the middle of the slit, which in turn results in
stronger osmotically-enforced interwall repulsion. Increase in
the counterion concentration makes it difficult for monomeric
units to penetrate the pore volume that manifest itself via the
shift of the location of the minimum on the disjoining pressure
profiles to larger slit widths.

It is also interesting to investigate how the change in the
sign of the charge on the surfaces influences the disjoining
pressure behavior. Figure 6 demonstrates the results obtained

FIG. 6. Disjoining pressure of polyelectrolyte solution as a func-
tion of distance between the walls for different values of negative
surface potential ψ0. The data are shown for φ0 = 0.1, ε = 40ε0,
b = v1/3 = 0.5 nm, T = 300 K, and q = 1.6 × 10−19 C.
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FIG. 7. Differential capacitance profiles plotted for different pore
widths. The data are shown for φ0 = 0.1, ε = 40ε0, b = v1/3 =
0.5 nm, T = 300 K, and q = 1.6 × 10−19 C.

for disjoining pressure as a function of slit separation for
different values of negative surface potentials. At small pore
widths, concentration of counterions in the pore is signifi-
cantly lower than that in the bulk due to surface-counterions
electrostatic repulsion, which leads to negative disjoining
pressure values. Similar disjoining pressure behavior was ob-
tained in paper [17] for salt polyelectrolyte solution confined
in a slit pore between two charged dielectric membranes.
Starting from the width where the monomeric units of poly-
electrolytes start to permeate the pore volume we observe
a drastic growth of disjoining pressure, revealing oscillation
behavior as in paper [12] where the author considered the
bridging interaction of the colloid particles, provided by the
oppositely charged polyelectrolyte chain, adsorbed on them.

B. Electric differential capacitance

The effect discovered for the disjoining pressure might as
well be observed for electric differential capacitance, C =
dσ/dψ0, as a function of the surface potential (σ = −εψ ′(0)
is the surface charge density of the pore walls) [21,28]. For
small pores (Fig. 7, the parameters are the same as above), the
differential capacitance profile demonstrates similar abrupt
nonmonotonic behavior, then, as the pores become wider, we
observe a satellite peak, which then flattens out resulting in a
profile similar to the one obtained for an isolated electric dou-
ble layer at the interface of a polyelectrolyte solution/charged
electrode [3]. The nature of such pronounced nonmonotonic
behavior of the differential capacitance curve for a 1 nm pore
is illustrated in the same manner as above for disjoining
pressure case (see the insets in Fig. 8). The abrupt drop in
the differential capacitance is associated with the electrostatic
repulsion-driven exclusion of the polymers from the pore at a
certain positive surface potential value; the following capaci-
tance growth is determined by the increase in the counterion
concentration in the pore with the increase in the surface
potential.

FIG. 8. Differential capacitance profile for a 1 nm pore supple-
mented by the concentration profiles at certain surface potentials.
The data are shown for φ0 = 0.1, ε = 40ε0, b = v1/3 = 0.5 nm, T =
300 K, and q = 1.6 × 10−19 C.

Moreover, similar to the disjoining pressure case, the non-
monotonic behavior of the differential capacitance profile can
be altered by the change of the system parameters. In such a
way, Fig. 9 demonstrates how the change of the bulk volume
fraction influences the shape of the differential capacitance
profile for the pore of 1 nm width. At negative surface poten-
tials bulk volume fraction increase simply means that more
species can permeate the pore volume leading to higher charge
accumulation and the growth of the capacitance values. With
the change of sign of the surface potential values, we start to
observe an abrupt drop of the differential capacitance profiles
due to the fact that the counterions screening of the surface
potential becomes insufficient to keep the polymer in the
pore volume due to the electrostatic repulsion. Thus, the clear

FIG. 9. Differential capacitance profiles for different bulk vol-
ume fractions. The data are shown for H = 1 nm, ε = 40ε0, b =
v1/3 = 0.5 nm, T = 300 K, and q = 1.6 × 10−19 C.
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FIG. 10. Differential capacitance profiles for different dielectric
constants ε (in ε0 units). The data are shown for H = 1 nm, φ0 = 0.1,
b = v1/3 = 0.5 nm, T = 300 K, and q = 1.6 × 10−19 C.

tendency is as follows: the less the bulk volume fraction,
the less counterions in the pore screen the surface potential,
which leads to lower positive values of the surface potential
needed to eject the polymer from the pore volume. Differential
capacitance profiles also demonstrate sensitivity to the solvent
dielectric permittivity change (see Fig. 10). The interpreta-
tion is the same as for the disjoining pressure – increase in
dielectric permittivity The interpretation is the same as for the
disjoining pressure — with increase in dielectric permittivity
the screening of the surface potential decreases. Thus, for the
negative surface potentials, electrostatic screening reduction
leads to the drastic increase in the polymer concentration
in the pore, and in turn results in considerable differential
capacitance growth. In the region of positive surface potential,
the more polar the solvent, the lower potential value, which
provides the polymer expelling from the pore volume.

V. CONCLUDING REMARKS

To sum it up, we formulated a self-consistent field theory
of macroscopic forces in spatially inhomogeneous equilib-
rium polyelectrolyte solutions, deriving the total stress tensor
consistent with self-consistent field equations. Alongside the
expected contributions obtained earlier for low-molecular
weight electrolytes [10] (hydrostatic and Maxwell stress ten-
sors), the total stress tensor for polyelectrolyte solutions
contains an additional term linked to the conformational
entropy of flexible polymer chainsstress. Based on the ob-
tained total stress tensor, we calculated the disjoining pressure
between two identical conductive walls immersed in a poly-
electrolyte solution. We discovered singular behavior of the
disjoining pressure as a function of slit separation for the case
when the signs of the macroions and wall charges are the
same and investigated its nature analyzing the concentration
profiles of the macroions and counterions. We also showed the
influence of the discovered effect on differential capacitance
demonstrating its jump-like behavior. The observed effect can

be tuned to appear at physically reasonable parameters, thus, it
can be potentially registered experimentally. In practice it can
be achieved for materials with significantly narrow unimodal
pore size distribution, otherwise the effect can be smoothed
out.

In conclusion, we would like to raise some issues regarding
further development of the proposed approach. First, it re-
mains unanswered, how this theory can be implemented to the
polymeric systems with more complicated chain structures,
e.g., copolymer composition, chain architectures, and charge
distribution. For this purpose, it is necessary to know the
functional of the conformational free energy, similar to the
Lifshitz one for the flexible Gaussian chains, for each poly-
meric system. Second, it is important to incorporate presented
theoretical approach into more sophisticated polymeric theo-
ries beyond the ground state dominance approximation [29],
such as the self-consistent field theory [30] and the Lifshitz
theory [19].
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APPENDIX

The grand thermodynamic potential (GTP) of the polyelec-
trolyte solution is

� =
∫

drω(r), (A1)

where the GTP density is

ω(r) = ω(ψ (r),∇ψ (r), ξ (r),∇ξ (r), nc(r), r) (A2)

with ξ (r) = n1/2
p (r). Let us subject the system to a dilation

transformation, x′
i = xi + ui(r). The variation of the GTPs is

δ� =
∫

dr′ω′(r′) −
∫

drω(r), (A3)

where

ω′(r′) = ω(ψ ′(r′),∇′ψ ′(r′), ξ ′(r′),∇′ξ ′(r′), n′
c(r′), r′).

(A4)

Assuming that the absolute value of the vector field u is
sufficiently low, we obtain a linear approximation in ui

δ� =
∫

dr(1 + uii )(ω
′(r) + ui∂iω

′(r)) −
∫

drω(r)

=
∫

dr(ω′(r) − ω(r) + ∂i(uiω(r))), (A5)

where uii = ∂iui is the strain tensor trace [25], ui j = (∂iu j +
∂ jui )/2; we have taken into account that in the linear
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approximation uiω
′(r) ≈ uiω(r). Then, we arrive at

ω′(r) − ω(r) = ∂ω

∂ψ
δψ + ∂ω

∂ (∂iψ )
∂iδψ + ∂ω

∂ξ
δξ + ∂ω

∂ (∂iξ )
∂iδξ

= ∂i

(
∂ω

∂ (∂iψ )
δψ + ∂ω

∂ (∂iξ )
δξ

)
, (A6)

where we use the Euler-Lagrange equations

∂ω

∂ψ
= ∂i

∂ω

∂ (∂iψ )
,

∂ω

∂ξ
= ∂i

∂ω

∂ (∂iξ )
,

∂ω

∂nc
= 0. (A7)

As already noted in the main text, we adopted the Einstein
rule implying the summation over the repeated indices. Taking
into account that δψ (r) = ψ ′(r) − ψ (r) = −uk∂kψ (r) and
δξ (r) = ξ ′(r) − ξ (r) = −uk∂kξ (r), we arrive at

δ� =
∫

dr∂i(ukσik ), (A8)

where

σik = ωδik − ∂ω

∂ (∂iψ )
∂kψ − ∂ω

∂ (∂iξ )
∂kξ (A9)

is some symmetric tensor. In this case, when ω does
not explicitly depend on coordinates, i.e., ω(r) =
ω(ψ (r),∇ψ (r), ξ (r),∇ξ (r), nc(r)), as it follows from
the Euler-Lagrange equations (A7) the tensor σik is
divergenceless, i.e., ∂iσik = 0. Therefore, we obtain the

following expression

δ� =
∫

druikσik (A10)

from which we conclude that σik is nothing more than the
stress tensor, i.e.,

σik (r) = δ�

δuik (r)
. (A11)

Using the divergence theorem we obtain

δ� =
∮

S
dSukniσik =

∮
S

dSPkuk, (A12)

where integration is performed over the surface of an im-
mersed in solution body, nk are the components of external
normal, and dS is the elementary area. As it follows from
Eq. (A12), variation of the GTP is mechanical work of the
body deformation under external force with surface density
Pk = niσik . Thus, knowledge of the stress tensor at each point
allows us to calculate the macroscopic force acting on a
conductive or dielectric body immersed in a polyelectrolyte
solution

Fi =
∮

S
PidS. (A13)

[1] W. Zhang, R.-r. Cheng, H.-h. Bi, Y.-h. Lu, L.-B. Ma, and X.-J.
He, New Carbon Materials 36, 69 (2021).

[2] Z. Liu, X. Yuan, S. Zhang, J. Wang, Q. Huang, N. Yu, Y. Zhu,
L. Fu, F. Wang, Y. Chen et al., NPG Asia Materials 11, 1
(2019).

[3] Y. A. Budkov, N. N. Kalikin, and A. L. Kolesnikov, Phys.
Chem. Chem. Phys. 24, 1355 (2022).

[4] N. N. Kalikin, A. L. Kolesnikov, and Y. A. Budkov, Curr. Opin
Electrochem., 36, 101134 (2022).

[5] A. L. Kolesnikov, D. A. Mazur, and Y. A. Budkov, Europhys.
Lett. 140, 16001 (2022).

[6] A. Kolesnikov, Y. A. Budkov, and G. Gor, J. Phys.: Condens.
Matter 34, 063002 (2022).

[7] G. Y. Gor, P. Huber, and N. Bernstein, Appl. Phys. Rev. 4,
011303 (2017).

[8] J. P. de Souza, K. Pivnic, M. Z. Bazant, M. Urbakh, and A. A.
Kornyshev, J. Phys. Chem. B 126, 1242 (2022).

[9] R. P. Misra, J. P. de Souza, D. Blankschtein, and M. Z. Bazant,
Langmuir 35, 11550 (2019).

[10] Y. A. Budkov and A. L. Kolesnikov, J. Stat. Mech.: Theory Exp.
2022, 053205 (2022).

[11] M. Muthukumar, J. Chem. Phys. 86, 7230 (1987).
[12] R. Podgornik, J. Polymer Sci. Part B: Polymer Phys. 42, 3539

(2004).
[13] A. G. Cherstvy and R. Winkler, J. Phys. Chem. B 116, 9838

(2012).
[14] N. V. Brilliantov, Y. A. Budkov, and C. Seidel, Phys. Rev. E 93,

032505 (2016).
[15] R. R. Netz and D. Andelman, Phys. Rep. 380, 1 (2003).
[16] J. Joanny, Eur. Phys. J. B 9, 117 (1999).

[17] J. Landman, M. P. Schelling, R. Tuinier, and M. Vis, J. Chem.
Phys. 154, 164904 (2021).

[18] I. Lifshitz, Zh. Eksp. Teor. Fiz. 55, 2408 (1968) [Sov. Phys.
JETP 28, 1280 (1969)].

[19] A. Y. Grosberg and A. R. Khokhlov, Statistical Physics of
Macromolecules (Amer Inst of Physics, 1994).

[20] I. Borukhov, D. Andelman, and H. Orland, Phys. Rev. Lett. 79,
435 (1997).

[21] A. A. Kornyshev, J. Phys. Chem. B 111, 5545 (2007).
[22] A. C. Maggs and R. Podgornik, Soft Matter 12, 1219 (2016).
[23] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Course of

Theoretical Physics VIII: Electrodynamics of Continuous Media
(Pergamon Press, 1984).

[24] Y. A. Budkov, A. L. Kolesnikov, Z. A. Goodwin, M. G. Kiselev,
and A. A. Kornyshev, Electrochim. Acta 284, 346 (2018).

[25] L. D. Landau, E. M. Lifshitz, A. M. Kosevich, and L. P.
Pitaevskii, Theory of Elasticity: Volume 7, Vol. 7 (Elsevier,
1986).

[26] B. Derjaguin, N. Churaev, and V. Muller, Surface Forces
(Springer, 1987) pp. 293–310.

[27] R. Blossey, A. C. Maggs, and R. Podgornik, Phys. Rev. E 95,
060602(R) (2017).

[28] Y. A. Budkov and A. L. Kolesnikov, Current Opinion
Electrochemistry 33, 100931 (2021).

[29] P. G. De Gennes, Macromolecules 14, 1637 (1981).
[30] G. Fredrickson et al., The Equilibrium Theory of Inhomoge-

neous Polymers, Vol. 134 (Oxford University Press on Demand,
2006).

[31] P. Kostenetskiy, R. Chulkevich, and V. Kozyrev, J. Phys.: Conf.
Ser. 1740, 012050 (2021).

024503-7

https://doi.org/10.1016/S1872-5805(21)60005-7
https://doi.org/10.1038/s41427-018-0100-z
https://doi.org/10.1039/D1CP04221A
https://doi.org/10.1016/j.coelec.2022.101134
https://doi.org/10.1209/0295-5075/ac9252
https://doi.org/10.1088/1361-648X/ac3101
https://doi.org/10.1063/1.4975001
https://doi.org/10.1021/acs.jpcb.1c09441
https://doi.org/10.1021/acs.langmuir.9b01110
https://doi.org/10.1088/1742-5468/ac6a5b
https://doi.org/10.1063/1.452763
https://doi.org/10.1002/polb.20205
https://doi.org/10.1021/jp304980e
https://doi.org/10.1103/PhysRevE.93.032505
https://doi.org/10.1016/S0370-1573(03)00118-2
https://doi.org/10.1007/s100510050747
https://doi.org/10.1063/5.0044749
http://www.jetp.ras.ru/cgi-bin/dn/e_028_06_1280.pdf
https://doi.org/10.1103/PhysRevLett.79.435
https://doi.org/10.1021/jp067857o
https://doi.org/10.1039/C5SM01757B
https://doi.org/10.1016/j.electacta.2018.07.139
https://doi.org/10.1103/PhysRevE.95.060602
https://doi.org/10.1016/j.coelec.2021.100931
https://doi.org/10.1021/ma50007a007
https://doi.org/10.1088/1742-6596/1740/1/012050

