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Swelling and shrinking of two opposing polyelectrolyte brushes
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Salt concentration and confinement effects affect the configuration of polyelectrolyte (PE) brushes due to
electrostatic interactions. In this work, we develop a new theoretical model to analyze the electrostatics and
swelling-shrinking behavior of two opposing PE brushes. By comparing three length scales, i.e., equilibrium
brush height, separation distance, and Debye length, we obtain distinct scaling laws for brush height in different
regimes. We provide explanations for the anomalous shrinkage of the PE brush with added salt reported in
experiments and simulations, the applicability of the homogeneous brush assumption, and the confinement effect
on the brush height. Our model can be used to shed light on the configuration and functionalities of PE-grafted
interfaces, which play important roles in ion selective membranes and organism lubrication. We also anticipate
that our method will be useful to understand the functionalities of other charged soft matter systems, such as
hydrogel swelling and colloidal stability.
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I. INTRODUCTION

Polyelectrolyte (PE) brushes are formed by PE chains that
are densely grafted to solid-liquid interfaces [1–3]. Due to
the electrostatic interactions among PE chains and their sur-
rounding electrolyte ions, PE brush configurations change
with ambient factors such as salt concentration [4–7] and
confinement effects [8]. The swelling-shrinking behavior of
a PE brush under stimulation of the changes in salt concen-
tration or pH value enables its applications in microfluidics
and medicine, such as the switching of ionic valves [9–12]
and encapsulation and release of targeted drugs [13–16]. The
electrostatic interactions between two opposing PE brushes,
along with their stimuli-responsive configuration, play impor-
tant roles in the lubrication properties of the functionalized
interfaces [17–20].

Scaling theories have been developed to characterize the
impact of salt concentration ns on the PE brush height H .
The salted brush (SB) regime predicts H ∝ n−1/3

s when salt
concentration far exceeds the local counterion concentrations
inside the brush layer. The osmotic brush (OsB) regime and
the Pincus brush (PB) regime state that H is independent of ns

under a salt-free assumption [21–23]. These classical scaling
laws have been verified experimentally [5,6,24,25].

However, there exists several puzzles on the PE brush con-
figuration: (i) Recent experiments and molecular dynamics
(MD) simulations have shown anomalous shrinkage of PE
brushes with added salt of H ∝ n−0.15

s and H ∝ n−0.17
s , which

cannot be captured by the SB regime [26,27]. (ii) The appli-
cability of the homogeneous brush assumption made by the
classical scaling theories (i.e., step function monomer profile)
has been questioned over the years [4,6], yet there is no defini-
tive explanation. (iii) When two opposing brushes are brought
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into close contact and remain noninterpenetrating, the inter-
action between brushes (i.e., confinement effect) becomes
non-negligible, especially in the scenarios of lubrication [20]
in medical or biological applications and measurements of the
brush height using surface forces apparatus (SFA) [8].

In this work, we propose a theoretical model to characterize
the impact of salt and confinement effect on the configura-
tion of two opposing PE brushes. We identify three length
scales, i.e., equilibrium brush height H , separation distance D,
and Debye length λ, and asymptotically obtain three scaling
regimes for the brush height. Finally, we compare our model
with the classical scaling theories, MD simulations and exper-
iments, and attempt to explain the aforementioned puzzles.

II. THEORY

We model two opposing PE brushes that are grafted to
planar substrates in a polar solvent, with bulk salt concen-
tration ns, brush height H , and separation distance between
the substrates 2D, where H < D, as illustrated in Fig. 1(a).
For either PE brush, the PE chains are identical with the same
polymerization Np (Np � 1), monomer size a, grafting dis-
tance ξ , and charge fraction ϕ. The PE chains on the substrates
are densely grafted and attain a brushlike configuration, which
requires ξ � H . Following the Alexander-de Gennes polymer
brush model [28–30], we model the PE brushes as closely
packed blobs of size ξ , and the monomers are assumed to be
homogeneously distributed and dissociated inside the brushes,
i.e., monomer density np = Np/(ξ 2H ) and ϕ are constants.

The total free energy of a PE chain and its surrounding
electrolyte ions shown in Fig. 1(b) is [31,32]

F = Fels + FEV + Felec, (1)

where Fels = kBT H2/(a2Np) and FEV = kBT νN2
p/(ξ 2H ) are,

respectively, the elastic energy and the excluded volume en-
ergy following the Alexander-de Gennes model [28–30], Felec
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FIG. 1. Schematics of (a) two opposing PE brushes and (b) a PE
chain and its surrounding electrolyte ions.

is the electrostatic energy, ν = (1 − 2χ )a3 is the excluded
volume parameter, and χ is the Flory parameter.

Considering negatively charged monomers and monova-
lent electrolyte ions (z± = ±1), the electrostatic energy is [3]

Felec

kBT
= −ξ 2

∫ −D+H

−D

eψ

kBT

Npϕ

ξ 2H
dy − ξ 2

∫ 0

−D

ε0εr

2kBT

∣∣∣∣dψ

dy

∣∣∣∣
2

dy

+ ξ 2
∫ 0

−D

∑{
eψ

kBT
zini+ni,∞+ni

[
ln

(
ni

ni,∞

)
−1

]}
dy,

(2)

where ψ is the electrostatic potential relative to a reference
ψ = 0 in the bulk, ε0 is the vacuum permittivity, εr is the
relative dielectric constant of water, and ni and ni,∞ = ns

(i = ±) are the local and bulk ion concentrations, respectively
[31,32]. Here, the first term is the electrostatic energy of one
PE chain, the second term is the self-energy of the electric
field, and the third term consists of the Coulomb interactions
and the entropy of mixing the electrolyte ions. Each term of
the electrostatic energy in Eq. (2) varies with the electrostatic
potential ψ , the local ion concentration n±, and the brush
height H at equilibrium, and is eventually a function of the
bulk salt concentration ns.

Minimizing Felec with respect to ψ and n± respectively
leads to the Poisson equation and Boltzmann distribution,

d2ψ

dy2
=

e
(
n− − n+ + Npϕ

ξ 2H

)
ε0εr

, for − D � y � −D + H, (3a)

d2ψ

dy2
= e(n− − n+)

ε0εr
, for − D + H � y � 0, (3b)

n± = ns exp

(
∓ eψ

kBT

)
, for − D � y � 0. (3c)

We assume that the substrate at y = ±D is neutral, and the
electrostatic potential is continuous at y = −D + H :

dψ

dy

∣∣∣∣
y=−D

= 0, (4a)

ψ |y=(−D+H )+ = ψ |y=(−D+H )− , (4b)

dψ

dy

∣∣∣∣
y=(−D+H )+

= dψ

dy

∣∣∣∣
y=(−D+H )−

. (4c)

A symmetric boundary condition is used at y = 0:

dψ

dy

∣∣∣∣
y=0

= 0. (5)

Then the numerical solution of the brush height H at equilib-
rium with respect to a minimum free energy F can be obtained
using Eqs. (1)–(5).

III. RESULTS

Analytic solutions for Eq. (3) are obtained within
the Debye-Hückel (DH) limit, i.e., |	| � 1 [where 	 =
eψ/(kBT ) is the dimensionless electrostatic potential]:

	 ≈ − Np

ξ 2H

ϕ

2ns

[
1 − sinh

(
D−H

λ

)
sinh

(
D
λ

) cosh

(
y + D

λ

)]
,

for − D � y � −D + H, (6a)

	 ≈ − Np

ξ 2H

ϕ

2ns

sinh
(

H
λ

)
sinh

(
D
λ

) cosh
( y

λ

)
,

for − D + H � y � 0, (6b)

where λ =
√

ε0εrkBT/(2nse2) is the Debye length. Note that
Eq. (6) is consistent with Ref. [33], which assumes that
the dissociated groups of valence were homogeneously dis-
tributed inside the brush, i.e., np and ϕ are constants. However,
	 in Eq. (6) is a function of y. The spatial variation of 	 may
cause nonhomogeneous dissociation and distribution of the
monomers, which violates the homogeneous brush assump-
tion.

To address this concern, we identify three important length
scales, i.e., the equilibrium brush height H , the separation
distance D, and the Debye length λ, and obtain asymptotic
approximations for Eq. (6a) as

|	| ≈ Np

ξ 2H

ϕ

2ns
, for λ � H � D, (7a)

|	| ≈ Np

ξ 2λ

ϕ

2ns
, for H � λ � D, (7b)

|	| ≈ Np

ξ 2D

ϕ

2ns
, for H < D � λ. (7c)

Therefore the homogeneous brush assumption is appropriate
when λ and H are of different orders of magnitude since 	 is
approximately constant in Eq. (7).

Now considering the PE brushes in a θ -solvent, i.e., χ =
0.5, we obtain the total free energy when |	| � 1 using
Eqs. (1)–(3) and (6):

F

kBT
≈ H2

a2Np
+ N2

p

ξ 2H

ϕ2

4ns

[
1 − λ

H

sinh
(

H
λ

)
sinh

(
D−H

λ

)
sinh

(
D
λ

)
]
.

(8)

Minimizing F with respect to H yields the analytic solution
for the equilibrium brush height,(

H

aNp

)3

≈ ϕ2

4

(
a

ξ

)2 1

nsa3

sinh
(

D−H
λ

)
sinh

(
D
λ

)
×

[
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(
H

λ

)
− λ

H
sinh

(
H

λ

)]
, (9)
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FIG. 2. (a) H/(aNp) as a function of nsa3 for various ϕ and D,
where the circles mark H/(aNp) at nsa3 = 10−4, 10−3, 10−2. (b) Spa-
tial distributions of 	 for specific H/(aNp) marked in (a). Parameters
used are ε0 = 8.8 × 10−12 F/m, εr = 80, T = 300 K, a = 0.3 nm,
Np = 500, ξ/a = 10, and χ = 0.5.

which can be simplified to

H

aNp
≈ 1

2
ϕ

2
3

(
a

ξ

) 2
3

(nsa
3)−

1
3 , for λ � H � D, (10a)

H

aNp
≈ 2π

3
N2

pϕ2

(
a

ξ

)2
�B

a
, for H � λ � D, (10b)

H

aNp
≈ 2π�BaN2

pϕ2D

2π�Ba2N3
pϕ2 + 3Dξ 2

, for H < D � λ, (10c)

where �B = e2/(4πε0εrkBT ) is the Bjerrum length. Note
that the analytic predictions, i.e., Eqs. (10a)–(10c), are valid
within the DH limit (|	| � 1) and the brushlike configu-
ration (ξ � H). Equations (10a) and (10b) agree with the
classical SB regime and PB regime, respectively [21–23].
Equation (10c) yields H ≈ D at small separation distance
D � 2πN3

pϕ2a2�B/(3ξ 2).
The numerical solutions for the dimensionless equilibrium

brush height H/(aNp) with dimensionless added salt nsa3 for
various charge fractions ϕ and separation distances D are
plotted in Fig. 2(a). The results for H/(aNp) show plateaus
at small nsa3 and then decrease with ns increase. The brush
height becomes lower with a smaller ϕ. The decrease of
H/(aNp) at large nsa3 (where λ � H) is captured by our pre-
diction Eq. (10a) (which agrees with the SB regime [21,23]).
The two plateaus for H/(aNp) at small nsa3 for D = 50 nm
cannot be captured by Eq. (10b) or (10c), since the corre-
sponding 	 goes beyond the DH limit [see Fig. 2(b)]. We
cannot justify these plateaus as the OsB regime either, since
we do not make the salt-free assumption as used in the clas-
sical OsB regime [21,22]. The plateau for H/(aNp) at small
nsa3 for D = 20 nm is captured by D/(aNp), which suggests
that the confinement effect on H is important at low salt
concentration and small separation distance.

The dimensionless potential distributions of |	| with var-
ious ϕ and D are plotted in Fig. 2(b), where the brush
heights H/D marked by the arrows correspond to the specific
H/(aNp) marked by the circles in Fig. 2(a). Note that 	 shown
in Fig. 2(b) is approximately constant inside the brush, which
is consistent with our discussions on the homogeneous brush
assumption and Eq. (7).

0.15

FIG. 3. (a) Comparison between the MD simulations (scatters)
[26] and our numerical solutions (solid lines) for H/(aNp) as a
function of ns with identical parameters for various ξ and D.
(b) Comparisons between the MD simulations (scatters) [26] and
our numerical solutions under the homogeneous brush assumption
(solid lines) for monomer density profile npa3 as a function of y/a
for various nsa3. Here, we use the solution for the brush height at
nsa3 = 10−3 to approximate the salt-free condition, i.e., nsa3 = 0.
Parameters used are a = �B = 0.7 nm, Np = 30, ϕ = 1, χ = 0, and
D = 2aNp.

IV. DISCUSSIONS

With our numerical predictions and scaling laws for the
brush height and the potential distribution, we can now pro-
vide explanations for the aforementioned puzzles on the PE
brush configuration.

(i) Anomalous shrinkage of the brush height. Variations
of H/(aNp) with nsa3 predicted by previous MD simulations
[26] are plotted in Fig. 3(a). It is claimed that the best fitting
power law for the data points is H ∝ n−0.15

s , which deviates far
from the classical SB regime H ∝ n−1/3

s [26]. Here, we fit the
data with our numerical prediction for the brush height in solid
lines as shown in Fig. 3(a), where we consider the brushes in
a good solvent with χ = 0. Comparing with our prediction
for H/(aNp) at large nsa3 in Fig. 2(a), where χ = 0.5 and
FEV = 0, we note that here the excluded volume energy is
the key factor of the anomalous shrinkage of the brush. It
is also possible that the anomalous shrinkage of the brush is
due to the inhomogeneity of the ion distribution among the
PE chains, though there is no definitive explanation [34,35].
Please note that the inhomogeneity of the ion distribution is
beyond the scope of the present model as well as the classical
scaling theories. We will incorporate the effect of local ion
distribution in our future work.

(ii) Monomer density profile. The monomer density profiles
npa3 reported in [26] are plotted in Fig. 3(b). The corre-
sponding Debye lengths and brush heights used in Ref. [26]
for nsa3 = 0 and nsa3 = 0.11 correspond to λ → +∞, H =
15.75 nm and λ = 0.42 nm, H = 12.25 nm, with our notation,
respectively. It can be seen that λ and H differ by more
than one order of magnitude, and the monomer density inside
the brush is approximately constant. Our numerical solutions
for the dimensionless monomer density npa3 = Npa3/(ξ 2H )
under the homogeneous brush assumption (i.e., step function
monomer profile) also quantitatively fit well with the MD
simulations. Note that our predictions for 	 inside the brush
in Fig. 2(b) show similar profiles as the MD data in Fig. 3(b),
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1/3

FIG. 4. Comparison between the measurements (scatters) [24]
and our numerical solutions (solid lines) for H as a function of
ns with identical parameters for various Np, ξ , and ϕ. Parameters
used are ε0 = 8.8 × 10−12 F/m, εr = 80, T = 300 K, a = 0.29 nm,
χ = 0.5, and D = 300 nm.

which is approximately constant inside the brush. The ho-
mogeneous brush assumption is consistent with the spatial
distribution of 	 only in certain regimes when λ and H are not
comparable (λ � H or λ � H). In other words, the homo-
geneous brush assumption is invalid when H ≈ λ, although
our model can give the corresponding solutions under this
scenario.

(iii) Confinement effect in brush height measurements. The
experimental data for H of two opposing brushes measured by
SFA [24] is shown in Fig. 4, in which H was determined by
identifying the separation distance at the first detectable inter-
action. It is shown that the data follows the classical scaling
law H ∝ n−1/3

s at high salt concentration. Accordingly, we use
identical parameters as [24] and consider χ = 0.5 to obtain
the numerical predictions for H in solid lines, which fit well
with the experimental measurements. Note that here a larger
separation distance D = 300 nm will not change our predic-
tion for the brush height H at lower salt concentration ns,
which implies that the confinement effect is weak. However,

other measurements have shown that the two opposing brush
heights measured by SFA (i.e., finite D with our notation)
are significantly lower than the single brush height measured
by neutron reflectivity (i.e., D → ∞ with our notation) [8].
Although it is possible that the SFA measured the separation
distance D rather than the brush height H , it is an evidence that
the confinement effect of two opposing PE brushes affects the
brush configuration.

V. CONCLUSIONS

We probe the electrostatics and equilibrium brush height
of two opposing PE brushes and provide explanations for the
aforementioned puzzles on the brush configuration: (i) The
anomalous shrinkage of PE brush height with added salt,
i.e., H ∝ n−0.15

s and H ∝ n−0.17
s , observed in experimental

measurements and MD simulations, which deviates from the
classical salted brush regime H ∝ n−1/3

s , may be caused by
the excluded volume energy. (ii) The homogeneous brush
assumption is applicable when the brush height H and the
Debye length λ are not comparable, i.e., λ � H or λ � H
with our notation. (iii) The confinement effect induced by
small separation distance D between two opposing brushes
(i.e., D ≈ H or D ≈ λ with our notation) affects the measure-
ment of the brush height by SFA. These remarks rationalize
the range of applicability of the classical scaling theories and
also provide physical insight for MD simulations and experi-
mental characterizations of PE brushes. We anticipate that our
model will be able to predict the PE brush configuration in
applications of ionic valves and biomembranes, as well as the
lubrication between artificial joint interfaces and organisms
[20,33]. The present modeling procedure can also be used to
understand the swelling-shrinking nature of other charged soft
matter systems such as hydrogel [36] and soil, as well as the
stability of colloids [37].
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